JPS6259895B2 - - Google Patents
Info
- Publication number
- JPS6259895B2 JPS6259895B2 JP56204422A JP20442281A JPS6259895B2 JP S6259895 B2 JPS6259895 B2 JP S6259895B2 JP 56204422 A JP56204422 A JP 56204422A JP 20442281 A JP20442281 A JP 20442281A JP S6259895 B2 JPS6259895 B2 JP S6259895B2
- Authority
- JP
- Japan
- Prior art keywords
- wavelength
- light receiving
- electrodes
- light
- epitaxial
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000004065 semiconductor Substances 0.000 claims description 21
- 239000000758 substrate Substances 0.000 claims description 6
- 230000035945 sensitivity Effects 0.000 claims description 4
- 150000001875 compounds Chemical class 0.000 description 13
- 238000000034 method Methods 0.000 description 10
- 230000003287 optical effect Effects 0.000 description 5
- 238000001514 detection method Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 3
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 2
- 229910004613 CdTe Inorganic materials 0.000 description 1
- 229910000661 Mercury cadmium telluride Inorganic materials 0.000 description 1
- 206010034972 Photosensitivity reaction Diseases 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000001259 photo etching Methods 0.000 description 1
- 230000036211 photosensitivity Effects 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/02—Details
- H01L31/0224—Electrodes
- H01L31/022408—Electrodes for devices characterised by at least one potential jump barrier or surface barrier
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/08—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
- H01L31/09—Devices sensitive to infrared, visible or ultraviolet radiation
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Light Receiving Elements (AREA)
- Spectrometry And Color Measurement (AREA)
- Solid State Image Pick-Up Elements (AREA)
Description
【発明の詳細な説明】
本発明は半導体受光装置に関し、特に巾広い波
長特性を有する半導体受光素子に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor light receiving device, and more particularly to a semiconductor light receiving element having wide wavelength characteristics.
光のスペクトルアナライザ、多重波長光通信等
における光信号の検知においては、単一の半導体
光検知素子例えばSi、Ge、GaAsあるいは多元系
化合物半導体のGaAlAs、InGaAsP、PbSnTe、
HgCdTe等々のみでは充分に広い波長領域をカバ
ーすくこと困難である。そのため、光検知には波
長特性の異る複数個の光検知器を併用することが
必要となる。 In the detection of optical signals in optical spectrum analyzers, multi-wavelength optical communications, etc., a single semiconductor photodetector element such as Si, Ge, GaAs or a multi-component compound semiconductor such as GaAlAs, InGaAsP, PbSnTe, etc.
It is difficult to cover a sufficiently wide wavelength range with HgCdTe etc. alone. Therefore, for photodetection, it is necessary to use a plurality of photodetectors with different wavelength characteristics.
従来から良く知られているように、多元系半導
体例えば2元系化合物ABとAC(ここで、A、
B、Cは任意の化合物を示す。)から構成される
B1-xCxAといつた3元系化合物半導体のバンド
ギヤツプEg(B1-xCxA)は一般的について2元
系化合物半導体の夫々のバンドギヤプEg
(AB)、Eg(AC)の間の任意の値を取ることが
可能である。例えば3元系化合物半導体
Hg1-xCdxTeでは第1図に示す如くHgHeの0eV
(x=0)からCdTeの1.5eV(x=1)の間で
“x”に応じた任意のバンドギヤツプを選ぶこと
が可能である。同図において、Egはバンドギヤ
ツプ、λcは受光波を示す。この様なことは、3
元系化合物半導体Al1-xGaxAs、4元系化合物半
導体In1-xGaxAsyP1-yにおいても同様である。 As is well known, multi-component semiconductors, such as binary compounds AB and AC (here, A,
B and C represent arbitrary compounds. ), the band gap Eg of a ternary compound semiconductor such as B 1-x C x A (B 1-x C x A) is generally the band gap Eg of each binary compound semiconductor.
It is possible to take any value between (AB) and Eg (AC). For example, ternary compound semiconductor
In Hg 1-x Cd x Te, HgHe's 0eV as shown in Figure 1.
It is possible to select any band gap depending on "x" between (x = 0) and 1.5eV (x = 1) of CdTe. In the figure, Eg indicates a band gap, and λ c indicates a received light wave. This kind of thing is 3
The same applies to the elemental compound semiconductor Al 1-x Ga x As and the quaternary compound semiconductor In 1-x Ga x As y P 1-y .
こういつた多元系半導体の性質を利用すること
によつて任意のバンドギヤツプ換言すると任意の
波長感度特性をもつた光検知素子をつくることが
可能である。 By utilizing these properties of multi-component semiconductors, it is possible to create photodetecting elements with any bandgap, or in other words, any wavelength sensitivity characteristics.
従来から用いられてきた多波長光検知素子は上
記の如き多元系化合物半導体の特性を利用したも
ので、その実際的な構成例を第2図a,bに示
す。 Multi-wavelength photodetecting elements conventionally used utilize the characteristics of multi-component compound semiconductors as described above, and examples of their practical configurations are shown in FIGS. 2a and 2b.
同図aは波長特性の異る複数個の素子をスタツ
ク状に積み重ねた構造である。即ち、例えば
Hg1-xCdxTeを例にとると、基板1上にxの異な
るHg1-x1Cdx1Te2、Hg1-x2Cdx2Te3が透明エポキ
シ樹脂4ではり合されている。Hg1-x1Cdx1Te2
上にはインジウム電極5,5′、Hg1-x2Cdx2Te3
上にはインジウム電極6,6′がそれぞれ形成さ
れている。また7は受光部を示す。但し、この場
合x1<x2であることが必要である。この様にし
て、波長特性の異なる多波長光検知素子が形成さ
れる。 Figure a shows a structure in which a plurality of elements with different wavelength characteristics are stacked in a stack. That is, for example
Taking Hg 1-x Cd x Te as an example, Hg 1-x1 Cd x1 Te2 and Hg 1-x2 Cd x2 Te3 with different x are bonded together on a substrate 1 using a transparent epoxy resin 4. Hg 1-x1 Cd x1 Te2
On top are indium electrodes 5,5', Hg 1-x2 Cd x2 Te3
Indium electrodes 6 and 6' are formed thereon, respectively. Further, 7 indicates a light receiving section. However, in this case, it is necessary that x 1 <x 2 . In this way, a multi-wavelength photodetecting element with different wavelength characteristics is formed.
同図bは波長特性の異る複数個の素子を並列に
配置したアレイ状多波長検知素子で、基板8上に
バンドキヤツプの異なる化合物半導体9,10,
……11を接着剤12を介して形成し、この半導
体9,10,……11上に電極13,13′,1
4,14′,……15,15′を形成したものであ
る。第2図a,bに示す場合においては、光検知
素子は樹脂による接着構造であるため、機械的強
度が小さく製造工程も煩雑なものになつてしまう
等の種々の欠点があつた。 Figure b shows an arrayed multi-wavelength sensing element in which multiple elements with different wavelength characteristics are arranged in parallel.
. . . 11 is formed via an adhesive 12, and electrodes 13, 13', 1 are formed on the semiconductors 9, 10, . . . 11.
4, 14', . . . 15, 15' are formed. In the cases shown in FIGS. 2a and 2b, since the photodetecting element has a resin adhesive structure, it has various drawbacks such as low mechanical strength and a complicated manufacturing process.
本発明はこのような従来の欠点を解消したモノ
リシツク構造の多波長光検知素子を提供するもの
である。すなわち、本発明の多波長光検知素子
は、単一素子で広い波長領域をカバーすることに
より、各種の光利用システムにおける光受信系の
簡易化、信頼性の向上を図つた多波長光検知器を
提供せんとするものである。 The present invention provides a multi-wavelength photodetecting element having a monolithic structure that eliminates the above-mentioned drawbacks of the prior art. In other words, the multi-wavelength photodetecting element of the present invention is a multi-wavelength photodetector that can simplify and improve the reliability of optical receiving systems in various optical systems by covering a wide wavelength range with a single element. We aim to provide the following.
以下、本発明の構成を図面を用いて説明する。
まず始めに、本発明では利用する多元系化合物半
導体結晶のエピタキシヤル成長が可能な基板上に
たとえばxの値の異なる多元系化合物半導体を順
次に多層にエピタキシヤル成長せしめる。この場
合、各エピタキシヤル層の積層順序は如何であつ
ても良いが、受光効率の点からは基板面から順次
バンドギヤツプの小さいものから大きいものへと
積層せしめる方が良い。又、各層の厚さは各々の
層のバンドギヤツプEgに対応する波長λg=
1.24/Egでの吸収係数αとしたとき、少なくと
も1/α以上とることが望ましく、一般的には1
〜10μmの間の値となる。 Hereinafter, the configuration of the present invention will be explained using the drawings.
First, in the present invention, multicomponent compound semiconductors having different values of x, for example, are sequentially epitaxially grown in multiple layers on a substrate capable of epitaxial growth of a multicomponent compound semiconductor crystal to be used. In this case, the epitaxial layers may be stacked in any order, but from the viewpoint of light receiving efficiency, it is better to stack the epitaxial layers in order from the substrate surface, from the smallest bandgap to the largest bandgap. Also, the thickness of each layer is determined by the wavelength λ g = corresponding to the band gap Eg of each layer.
When the absorption coefficient α is 1.24/Eg, it is desirable to have at least 1/α or more, and generally 1
The value is between ~10 μm.
以下では1.7μmから0.9μm程度の波長領域で
巾広い光検出が可能なIn1-xGaxAsyP1-y4元系化合
物半導体16〜19を利用した多波長光検知素子
の形成例を第3図に示す実施例でもつて説明す
る。第3図aに示した如くInP基板16上に
In1-x1Gax1Asy1P1-y(x1=0.21、y1=0.45)1
7、In1-x2Gax2Asy2P1-y2(x2=0.33、y2=0.71)
18、In1-x3Gax3Asy3P1-y3(x3=0.47、y3=1.0)
19を順次エピタキシヤル形成する。エピタキシ
ヤル層の形成法は典型的には液相法が用いられる
が気相法MBE法等のいずれの手法を用いても良
く、充分な格子整合のとれた良好な結晶成長を計
ると共に可能な限り不純物を取除き高純度化を図
ることが重要である。又各層の厚さは作り易さ、
光の吸収等からみて2〜5μmが適当である。 The following is an example of forming a multi-wavelength photodetecting element using In 1-x Ga x As y P 1-y quaternary compound semiconductors 16 to 19, which can detect light over a wide range of wavelengths from about 1.7 μm to 0.9 μm. This will also be explained with reference to the embodiment shown in FIG. As shown in Figure 3a, on the InP substrate 16
In 1-x1 Ga x1 As y1 P 1-y (x 1 = 0.21, y 1 = 0.45) 1
7. In 1-x2 Ga x2 As y2 P 1-y2 (x 2 = 0.33, y 2 = 0.71)
18, In 1-x3 Ga x3 As y3 P 1-y3 (x 3 = 0.47, y 3 = 1.0)
19 are epitaxially formed in sequence. Although the liquid phase method is typically used to form the epitaxial layer, any method such as the vapor phase method or MBE method may be used. It is important to remove impurities to achieve high purity. Also, the thickness of each layer depends on the ease of manufacturing,
In view of light absorption, etc., 2 to 5 μm is appropriate.
次いで同図bの如く、通常のフオトエツチング
工程を用いて順次階段状にエツチングを行い、1
7〜19の各層の一部が表面に現われる様な形状
に加工し夫々の波長に対する受光面20〜23を
形成する。この後、同図cに示す如く通常の蒸着
法を用いてAu/Sn電極24,25を形成するこ
とによつて完成する。 Next, as shown in FIG.
Each of the layers 7 to 19 is shaped so that a portion thereof appears on the surface to form light receiving surfaces 20 to 23 for each wavelength. Thereafter, Au/Sn electrodes 24 and 25 are formed using a normal vapor deposition method to complete the process, as shown in FIG.
この様にして、本実施例に係る多波長光検知素
子では、電極24,25及びIn1-x1Gax1Asy1P1-y1
17から構成される検知素子と電極24,25及
びIn1-x2Gax2Asy2P1-y218から構成される検知素
子等が並列接続される様にして構成される。ここ
で、本実施例に示す多波長検知素子では各光受光
層16〜19が全て共通電極24,25で形成さ
れているため、どの受光部で光受光を行つている
のかは判定不明で全体としての信号しか得られな
い。しかし、第4図及び第5図に示す検知素子で
は各受光部の電極が分離されたものであるため、
どの受光部で光受光を行なつているか判別出来る
ものである。すなわち、第4図に示すものは電極
24,25を受光部20〜23に応じて24a,
24b,24c,24d,25a,25b,25
c,25dに分離したものが示されている。ま
た、第5図に示す検知素子では電極24,25ば
かりでなく受光部20〜23の境界に隣接受光部
からの信号が入り込まない様に絶縁用溝26が設
けられているため、どの程度の波長光が現実に受
光されているかを判定することも可能となる。
尚、第4図、第5図において第3図と同一番号は
同一物を示す。 In this way, in the multi-wavelength photodetecting element according to this embodiment, the electrodes 24, 25 and In 1-x1 Ga x1 As y1 P 1-y1
The sensing element constituted by 17 and the sensing element constituted by electrodes 24, 25 and In 1-x2 Ga x2 As y2 P 1-y2 18 are connected in parallel. Here, in the multi-wavelength detection element shown in this embodiment, since each of the light-receiving layers 16 to 19 are all formed of the common electrodes 24 and 25, it is unclear which light-receiving part is receiving light, and the overall I can only get the signal as . However, in the detection elements shown in FIGS. 4 and 5, the electrodes of each light receiving part are separated, so
It is possible to determine which light receiving section is receiving light. That is, the electrodes 24 and 25 shown in FIG.
24b, 24c, 24d, 25a, 25b, 25
Separated images are shown in c and 25d. In addition, in the detection element shown in FIG. 5, insulating grooves 26 are provided not only at the electrodes 24 and 25 but also at the boundaries of the light receiving sections 20 to 23 to prevent signals from adjacent light receiving sections from entering. It also becomes possible to determine whether the wavelength light is actually being received.
In FIGS. 4 and 5, the same numbers as in FIG. 3 indicate the same parts.
以上の第3図〜第5図示された受光素子の受光
特性の一例を第6図に示す。同図の点線で示され
る波長感度曲線は長波長側から順次
In1-x3Gax3Asy3P1-y319、In1-x2Gax2Asy2P1-y21
8、In1-x1Gax1Asy1P1-y117及びInP16になる
ものであり、全体として実線Aで示される如く極
めて広い領域での波長感度をもたせることができ
る。尚、以上の実施例において、InP−
In1-xGaxAsyP1-yの例を述べたが、CdTe−
Hg1-xCdxTe、GaAs−Al1-xGaAs等の場合でも良
いことはもちろんである。 FIG. 6 shows an example of the light-receiving characteristics of the light-receiving elements shown in FIGS. 3 to 5 above. The wavelength sensitivity curves shown by the dotted lines in the same figure are sequentially shown from the long wavelength side.
In 1-x3 Ga x3 As y3 P 1-y3 19、In 1-x2 Ga x2 As y2 P 1-y2 1
8, In 1-x1 Ga x1 As y1 P 1-y1 17 and InP16, and as a whole can have wavelength sensitivity in an extremely wide range as shown by the solid line A. In addition, in the above embodiment, InP-
The example of In 1-x Ga x As y P 1-y was mentioned, but CdTe−
Of course, Hg 1-x Cd x Te, GaAs-Al 1-x GaAs, etc. may also be used.
以上示した如く本発明の光検知素子では従来の
様に波長特性の異る複数個の素子を接着によりは
り合せる様な複雑な手続きを必要とせず、基板上
への連続的な一連のエピタキシヤル層の成長過程
とフオトエツチング及び電極形成感程と通常良く
知られている簡単な製造法でもつて容易に形成出
来るばかりでなく、機械的強度が極めて強く工業
的価値の大なるものである。 As shown above, the photodetecting element of the present invention does not require complicated procedures such as bonding multiple elements with different wavelength characteristics as in the past, and it is possible to fabricate a continuous series of epitaxial layers on a substrate. Not only can it be easily formed using a simple manufacturing method that is generally well known, including the layer growth process, photoetching, and electrode formation process, but it also has extremely high mechanical strength and is of great industrial value.
第1図はHg1-xCdxTeの混合比xとバンドギヤ
ツプ(遮断波長)の関係を示す図、第2図a,b
は従来の多波長光検知素子を示す斜視図、第3図
a,b,cは本発明の一実施例に係る多波長光検
知素子の形成手順を示す図、第4図、第5図は第
3図に示す実施例の改良を示す構造斜視図、第6
図は本発明に係る多波長光感度特性を示す特性図
である。
16〜19……化合物半導体、24a〜24
d,25a〜25d……電源、26……分離用
溝。
Figure 1 shows the relationship between the mixing ratio x of Hg 1-x Cd x Te and the band gap (cutoff wavelength), Figure 2 a, b
3 is a perspective view showing a conventional multi-wavelength photodetecting element, FIGS. 3a, b, and c are diagrams showing a procedure for forming a multi-wavelength photodetecting element according to an embodiment of the present invention, and FIGS. 4 and 5 are A structural perspective view showing an improvement of the embodiment shown in FIG. 3, No. 6
The figure is a characteristic diagram showing multi-wavelength photosensitivity characteristics according to the present invention. 16-19... compound semiconductor, 24a-24
d, 25a to 25d...power supply, 26...separation groove.
Claims (1)
基板上に成長形成された複数のエピタキシヤル層
と、前記エピタキシヤル層の露出部の一部に形成
された電極とを備え、前記各エピタキヤル層の露
出部がそれぞれ所定の波長感度を有する半導体受
光装置。 2 各エピタキシヤル層の露出部上の電極が互い
に電気的に分離されていることを特徴とする特許
請求の範囲第1項記載の半導体受光装置。 3 各エピタキシヤル層の露出部が溝により電気
的分離がなされていることを特徴とする特許請求
の範囲第1項記載の半導体受光装置。[Scope of Claims] 1. A semiconductor device comprising: a plurality of epitaxial layers grown on a substrate such that at least a portion of the surface of each layer is exposed; and an electrode formed on a portion of the exposed portion of the epitaxial layer. . A semiconductor light receiving device in which each exposed portion of each of the epitaxial layers has a predetermined wavelength sensitivity. 2. The semiconductor light receiving device according to claim 1, wherein the electrodes on the exposed portions of each epitaxial layer are electrically isolated from each other. 3. The semiconductor light receiving device according to claim 1, wherein the exposed portion of each epitaxial layer is electrically isolated by a groove.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56204422A JPS58105569A (en) | 1981-12-16 | 1981-12-16 | Semiconductor photo detector |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56204422A JPS58105569A (en) | 1981-12-16 | 1981-12-16 | Semiconductor photo detector |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58105569A JPS58105569A (en) | 1983-06-23 |
JPS6259895B2 true JPS6259895B2 (en) | 1987-12-14 |
Family
ID=16490272
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56204422A Granted JPS58105569A (en) | 1981-12-16 | 1981-12-16 | Semiconductor photo detector |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58105569A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006292437A (en) * | 2005-04-06 | 2006-10-26 | Hamamatsu Photonics Kk | Temperature detection device |
Families Citing this family (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58121668A (en) * | 1982-01-13 | 1983-07-20 | Fuji Xerox Co Ltd | Multiple color image sensor |
FR2554971B1 (en) * | 1983-11-14 | 1986-01-24 | Labo Electronique Physique | CHARGE COUPLING DEVICE SENSITIVE TO INFRARED RADIATION AND METHOD FOR PRODUCING SUCH A DEVICE |
US4620209A (en) * | 1984-09-28 | 1986-10-28 | Texas Instruments Incorporated | Mosaic pattern of infrared detectors of different cut off wave lengths |
JPS628648U (en) * | 1985-06-29 | 1987-01-19 | ||
US5545381A (en) * | 1991-01-31 | 1996-08-13 | Ricoh Company, Ltd. | Device for regenerating printed sheet-like recording medium |
US5605777A (en) * | 1992-08-31 | 1997-02-25 | Ricoh Company, Ltd. | Method and apparatus for regenerating image holding member |
JP3345472B2 (en) * | 1992-08-31 | 2002-11-18 | 株式会社リコー | Reproduction method of image holding support |
JP3340200B2 (en) * | 1992-09-07 | 2002-11-05 | 株式会社リコー | Method of repeatedly using toner image carrier and toner for the method |
EP0639803A3 (en) * | 1993-07-21 | 1996-08-28 | Ricoh Kk | Apparatus for removing image forming substance from a sheet and sheet processing apparatus. |
JP2691512B2 (en) * | 1993-09-22 | 1997-12-17 | 株式会社リコー | Method and apparatus for removing image forming substance from image carrier |
JPH07140704A (en) * | 1993-09-22 | 1995-06-02 | Ricoh Co Ltd | Method of repeatedly using image carrier |
US5642550A (en) * | 1994-02-28 | 1997-07-01 | Ricoh Company, Ltd. | Apparatus for removing image forming substance from image holding member |
US5518934A (en) * | 1994-07-21 | 1996-05-21 | Trustees Of Princeton University | Method of fabricating multiwavelength infrared focal plane array detector |
US5574538A (en) * | 1994-09-26 | 1996-11-12 | Ricoh Company, Ltd. | Method and apparatus for removing image forming substance from image holding member forming processing situation mark |
JPH08166747A (en) | 1994-10-14 | 1996-06-25 | Ricoh Co Ltd | Device for removing adhesive matter from sheet material |
US5813344A (en) * | 1994-10-24 | 1998-09-29 | Ricoh Company, Ltd. | Method and apparatus for removing image forming substance from image holding member |
JP2007027462A (en) * | 2005-07-19 | 2007-02-01 | Sharp Corp | Stacked color sensor |
JP2007043150A (en) * | 2005-07-29 | 2007-02-15 | Interuniv Micro Electronica Centrum Vzw | Wavelength-sensitive detector with elongated nanostructure |
JP2008039665A (en) * | 2006-08-09 | 2008-02-21 | Kochi Univ Of Technology | Ultraviolet detection device |
DE102008006987A1 (en) | 2008-01-31 | 2009-08-06 | Osram Opto Semiconductors Gmbh | Radiation receiver and method for producing a radiation receiver |
JP5731869B2 (en) * | 2011-03-24 | 2015-06-10 | スタンレー電気株式会社 | Semiconductor UV receiver |
JP5706209B2 (en) * | 2011-03-24 | 2015-04-22 | スタンレー電気株式会社 | Semiconductor ultraviolet light receiving element and manufacturing method thereof |
CN110335908B (en) * | 2019-06-20 | 2020-11-13 | 深圳大学 | Heterojunction waveband division detector and preparation method and application thereof |
-
1981
- 1981-12-16 JP JP56204422A patent/JPS58105569A/en active Granted
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006292437A (en) * | 2005-04-06 | 2006-10-26 | Hamamatsu Photonics Kk | Temperature detection device |
JP4652874B2 (en) * | 2005-04-06 | 2011-03-16 | 浜松ホトニクス株式会社 | Temperature detection device |
Also Published As
Publication number | Publication date |
---|---|
JPS58105569A (en) | 1983-06-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6259895B2 (en) | ||
EP0820106B1 (en) | Image conversion panel and associated methods | |
US4297720A (en) | Multi-photodiodes | |
JPH0370912B2 (en) | ||
WO2001029896A1 (en) | Light-receiving element array and light-receiving element array chip | |
US6271943B1 (en) | Wavelength demultiplexing stack photodiode detector with electrical isolation layers | |
KR930015228A (en) | Semiconductor laser | |
US5032710A (en) | Photodetector to detect a light in different wavelength regions through clad layer having different thickness portions | |
JP3716401B2 (en) | Quantum well optical sensor | |
JP2000188424A (en) | Multiple wavelength light receiving element | |
JPH06204549A (en) | Waveguide type photodetector, manufacture thereof and driving method thereof | |
JPH02106979A (en) | Wavelength distributing type photodetector | |
JPH0923022A (en) | Photoelectric converter | |
JPS61248006A (en) | Optical demultiplexer | |
JP2700262B2 (en) | Light detection method | |
JP2847205B2 (en) | Semiconductor waveguide type photo detector | |
JP2685703B2 (en) | Semiconductor photodetector and method of manufacturing the same | |
JPS61182273A (en) | Multi-wavelength light-receiving element | |
JP2646978B2 (en) | Semiconductor light receiving element | |
JP2657289B2 (en) | Optical gate array | |
JPH0425717B2 (en) | ||
JP2000174322A (en) | Optical detector | |
JPH0770746B2 (en) | Multiwavelength receiving photoconductor | |
JP2988153B2 (en) | Wavelength-selective semiconductor photo detector | |
JPS6211292B2 (en) |