JPS61182273A - Multi-wavelength light-receiving element - Google Patents

Multi-wavelength light-receiving element

Info

Publication number
JPS61182273A
JPS61182273A JP60022012A JP2201285A JPS61182273A JP S61182273 A JPS61182273 A JP S61182273A JP 60022012 A JP60022012 A JP 60022012A JP 2201285 A JP2201285 A JP 2201285A JP S61182273 A JPS61182273 A JP S61182273A
Authority
JP
Japan
Prior art keywords
semiconductor layers
layers
type
semiconductor layer
semi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60022012A
Other languages
Japanese (ja)
Inventor
Susumu Hata
進 秦
Kiichi Nakajima
紀伊知 中島
Etsuo Noguchi
野口 悦男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP60022012A priority Critical patent/JPS61182273A/en
Publication of JPS61182273A publication Critical patent/JPS61182273A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation

Abstract

PURPOSE:To obtain a light-receiving element at multi-wavelengths by laminating N-type semiconductor layers onto a semi-insulating semiconductor substrate so that band gaps are increased in succession and attaching separated electrodes to each layer. CONSTITUTION:N-InGaAs layers 22, 23, 24 are superposed onto semi-insulating InP 21, and the compositions of several layer are adjusted and E1<E2<E3 holds from a lower section in band gaps E. When beams 28 of three kinds are projected, they are absorbed respectively in the layers 22-24, and isolated severally from electrode terminals 25, 26, 27 and extracted as electric signals. Multilayer semiconductor layers are laminated in the structure, but the multilayer semiconductor layers are isolated electrically, electric signals do not leak to other electric terminals, and the degree of isolation is improved and manufacture is simplified. The semiconductor layers 22-24 may take a P-type.

Description

【発明の詳細な説明】 (発明の技術分野) 本発明は複数波長分離用半導体受光素子に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field of the Invention) The present invention relates to a semiconductor light receiving element for separating multiple wavelengths.

(従来技術とその問題点) 従来、この種の装置は2種類のPN接合フォトダイオ−
「を積層して構成されていた。例えば、特願昭58−2
22750号「半導体受光素子およびその製造方法」に
示されている素子について、第1図に従って述べる。半
絶縁性半導体基板1上に順次積層されたn形半導体層2
.’3.4と、半導体層2゜4内に形成されたp形半導
体M域5,6で構成されており、半導体層2.5および
半導体層4,6で構成される2種類のpn接合ダイオー
ドが積層されている。これらのダイオードにはそれぞれ
p形電極8.9および共通n形電極10が絶縁膜7.1
7を介して設けられている。ここで半導体層4は半導体
層2よりも大きいバンドギャップエネルギを有する材料
が選ばれる。これを動作させるには、素子表面より2種
類の波長より構成される光信号11を入射し、2種類の
光信号のうち短波長側の光信号による電気信号を電極9
,10より、また長波長側の光信号による電気信号を電
極8.10よりそれぞれ取り出すものである。
(Prior art and its problems) Conventionally, this type of device uses two types of PN junction photodiodes.
For example, patent application No. 58-2
The device shown in No. 22750, “Semiconductor light-receiving device and its manufacturing method” will be described with reference to FIG. N-type semiconductor layers 2 sequentially stacked on a semi-insulating semiconductor substrate 1
.. '3.4, and p-type semiconductor M regions 5 and 6 formed within the semiconductor layer 2. Diodes are stacked. These diodes each have a p-type electrode 8.9 and a common n-type electrode 10 connected to the insulating film 7.1.
7. Here, a material having a larger bandgap energy than the semiconductor layer 2 is selected for the semiconductor layer 4. To operate this, an optical signal 11 composed of two types of wavelengths is input from the element surface, and an electrical signal based on the optical signal on the shorter wavelength side of the two types of optical signals is transmitted to the electrode 9.
, 10, and electrical signals based on optical signals on the longer wavelength side are extracted from electrodes 8 and 10, respectively.

従来装置はこのように構成されていたので、分離波長数
は2種類に限定されていた。さらに、n形電極10を2
種類のダイオードに共通にしているため、電気的分離度
が悪くなる欠点があった。
Since the conventional device was configured in this way, the number of separation wavelengths was limited to two types. Furthermore, the n-type electrode 10 is
Since it is common to all types of diodes, it has the disadvantage of poor electrical isolation.

(発明の目的) 本発明はこれらの欠点を除去するため、フォトコンダク
タ形の受光素子を積層し、分離波長数も2種類以上とな
るようにした多波長受光素子を提供するものである。
(Object of the Invention) In order to eliminate these drawbacks, the present invention provides a multi-wavelength light receiving element in which photoconductor type light receiving elements are stacked and the number of separated wavelengths is two or more.

(発明の構成と作用) 以下本発明の詳細な説明する。(Structure and operation of the invention) The present invention will be explained in detail below.

第2図は本発明の実施例である。半絶縁性InP基板2
1上にn形InGaAsP層(バンドギャップEl)2
2、n形1nGaAsP層(バンドギャップEz) 2
3.  n形InGaAsP層(ハンドギヤツブE3)
 24が積層されており、それぞれの半導体層にはオー
ミック電極25、26.27がそれぞれ対で設けられて
いる。ここで、半導体層22.23.24はそれぞれの
バンドギャップの大きさがEl<E2<E3の関係にな
るように組成を調整する。
FIG. 2 shows an embodiment of the invention. Semi-insulating InP substrate 2
n-type InGaAsP layer (bandgap El) on 1
2, n-type 1nGaAsP layer (band gap Ez) 2
3. n-type InGaAsP layer (hand gear tube E3)
24 are stacked, and each semiconductor layer is provided with a pair of ohmic electrodes 25, 26, and 27, respectively. Here, the composition of the semiconductor layers 22, 23, and 24 is adjusted so that the respective band gaps satisfy the relationship El<E2<E3.

次に、これを動作させるには半導体層24の側より、そ
れぞれのエネルギがE I’ + E2’ I B3′
 である3種類の光信号よりなる光28を入射させる。
Next, in order to operate this, each energy is E I' + E2' I B3' from the semiconductor layer 24 side.
Light 28 consisting of three types of optical signals is made incident.

この際、E+’ 、 E2’ 、 E3’ は第3図に
示すような関係にある。従って、E 3J の光は半導
体層22.23゜24で、E2′ の光は22.23で
、E1′ の光は22でそれぞれ吸収される。ここで、
半導体層24はE3′ の光を十分に吸収できるように
厚さが設定されており、同様に半導体層23はE2’ 
の光を十分に吸収できるようになされている。このため
、E3′ の光は24で吸収され、電気信号として電極
端子27から、同様にB、r の光は、電極端子26か
ら、EI′ の光は電極端子25からそれぞれ取り出さ
れる。このようにして、光子エネルギの異なるE I’
 + E2’ + E3’ の3種類の光信号よりなる
光を、それぞれ分離して電気信号として取り出すことが
できる。ここでは、3種類の異なる光子エネルギからな
る光を分離させる場合について説明したが、4種類以上
の場合においても、さらに半導体層を付加していくこと
により、3種類の場合と同様にして分離することができ
る。
At this time, E+', E2', and E3' have a relationship as shown in FIG. Therefore, the light of E 3J is absorbed by the semiconductor layer 22.23°24, the light of E2' is absorbed by the semiconductor layer 22.23, and the light of E1' is absorbed by the semiconductor layer 22. here,
The thickness of the semiconductor layer 24 is set so that it can sufficiently absorb the light of E3', and similarly the semiconductor layer 23 has a thickness of E2'.
It is designed so that it can absorb enough light. Therefore, the E3' light is absorbed by the electrode terminal 24, and the B and r lights are extracted from the electrode terminal 26 as electrical signals, and the EI' light is extracted from the electrode terminal 25. In this way, E I' with different photon energies
The light consisting of the three types of optical signals +E2' + E3' can be separated and extracted as electrical signals. Here, we have explained the case where light consisting of three different photon energies is separated, but even in the case of four or more types, by adding more semiconductor layers, it can be separated in the same way as in the case of three types. be able to.

本装置は上記のような構造になっており、多層半導体層
の各層に電極端子を取り付けるだけでよいため、製作が
容易である。このことは、pn接合形フォトダイオード
を積層した従来装置に比べると大きな利点である。また
、特性上からは分離度が良くなる利点をあげることがで
きる。すなわち、半導体層22.23.24は積層され
ているが、電気的には互いに分離されている。このため
、電気信号レベルでの他電気端子への漏れを抑圧するこ
とができ、分離度が良くなるわけである。
This device has the above-described structure, and is easy to manufacture because it is only necessary to attach electrode terminals to each layer of the multilayer semiconductor layer. This is a great advantage compared to conventional devices in which pn junction photodiodes are stacked. In addition, from the viewpoint of characteristics, it has the advantage of improving the degree of separation. That is, although the semiconductor layers 22, 23, and 24 are stacked, they are electrically separated from each other. Therefore, leakage to other electrical terminals at the electrical signal level can be suppressed, and the degree of isolation is improved.

以上の説明においては、半導体層22.23.24はn
形であるが、p形についても同様になる。さらに、キャ
リヤの数が極めて少ない高抵抗の半導体層であっても良
い。
In the above description, the semiconductor layers 22, 23, 24 are n
The same applies to the p-type. Furthermore, it may be a high-resistance semiconductor layer with an extremely small number of carriers.

(発明の効果) 以上説明したように、本装置は構造が簡単であるため製
作が容易であるばかりでなく、光信号の数を3種類以上
に容易に増加することができ、かつ、信号分離度も良く
することができる等の利点がある。
(Effects of the Invention) As explained above, this device has a simple structure, so it is not only easy to manufacture, but also allows for easy increase in the number of optical signals to three or more types, as well as signal separation. It has the advantage of being able to improve the temperature.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のpn接合フォトダイオードを2種類積層
した装置の断面図、第2図は本発明装置の一実施例を示
す斜視図、第3図は分光感度特性図である。 ■・・・半絶縁性半導体基板、 2’、3.4・・・n
形半導体層、 5,6・・・n形半導体層、 7,17
・・・絶縁膜、 8.9・・・p形電極、 10・・・
n形電極、 11・・・入射光信号、 21・・・半絶
縁性半導体基板、 22.23.24・・・半導体層、
 25.26.27・・・電極端子、 28・・・入射
光信号、 31・・・半導体層24の分光感度特性曲線
、 32・・・半導体層23の分光感度特性曲線、 3
3・・・半導体層22の分光感度特性曲線。
FIG. 1 is a sectional view of a conventional device in which two types of pn junction photodiodes are stacked, FIG. 2 is a perspective view showing an embodiment of the device of the present invention, and FIG. 3 is a spectral sensitivity characteristic diagram. ■...Semi-insulating semiconductor substrate, 2', 3.4...n
type semiconductor layer, 5, 6... n type semiconductor layer, 7, 17
...Insulating film, 8.9...P-type electrode, 10...
N-type electrode, 11... Incident optical signal, 21... Semi-insulating semiconductor substrate, 22.23.24... Semiconductor layer,
25.26.27... Electrode terminal, 28... Incident optical signal, 31... Spectral sensitivity characteristic curve of semiconductor layer 24, 32... Spectral sensitivity characteristic curve of semiconductor layer 23, 3
3... Spectral sensitivity characteristic curve of the semiconductor layer 22.

Claims (1)

【特許請求の範囲】[Claims]  半絶縁性の第1の半導体基板上に第1の導電形を有す
る半導体層が少なくとも2層以上積層され、かつ当該半
導体層が、それらのバンドギャップが基板側から順次大
きくなるように配置されており、さらに第1の導電形を
有するそれぞれの半導体層に各々分離された二電極を設
けたことを特徴とする多波長受光素子。
At least two or more semiconductor layers having a first conductivity type are laminated on a semi-insulating first semiconductor substrate, and the semiconductor layers are arranged such that their band gaps gradually increase from the substrate side. A multi-wavelength light-receiving element, further comprising two separate electrodes provided on each semiconductor layer having a first conductivity type.
JP60022012A 1985-02-08 1985-02-08 Multi-wavelength light-receiving element Pending JPS61182273A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60022012A JPS61182273A (en) 1985-02-08 1985-02-08 Multi-wavelength light-receiving element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60022012A JPS61182273A (en) 1985-02-08 1985-02-08 Multi-wavelength light-receiving element

Publications (1)

Publication Number Publication Date
JPS61182273A true JPS61182273A (en) 1986-08-14

Family

ID=12071084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60022012A Pending JPS61182273A (en) 1985-02-08 1985-02-08 Multi-wavelength light-receiving element

Country Status (1)

Country Link
JP (1) JPS61182273A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03227578A (en) * 1989-03-03 1991-10-08 Mitsubishi Electric Corp Optical element apparatus
WO2001065931A1 (en) 2000-03-06 2001-09-13 Fumakilla Limited Fan type chemicals diffusing device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03227578A (en) * 1989-03-03 1991-10-08 Mitsubishi Electric Corp Optical element apparatus
WO2001065931A1 (en) 2000-03-06 2001-09-13 Fumakilla Limited Fan type chemicals diffusing device

Similar Documents

Publication Publication Date Title
US4784701A (en) Multi-layered thin film solar cell
US4213138A (en) Demultiplexing photodetector
JPH025576A (en) Thin film solar cell device
US4318115A (en) Dual junction photoelectric semiconductor device
JPH0290573A (en) Monolithic solar battery and bypass diode system
JP2942285B2 (en) Semiconductor light receiving element
JPH0370912B2 (en)
US3888698A (en) Infrared-transparent solar cell
US4323911A (en) Demultiplexing photodetectors
JP2001291853A (en) Semiconductor energy detecting element
US3904879A (en) Photovoltaic infra-red detector
JPS61182273A (en) Multi-wavelength light-receiving element
JP2005005600A (en) Semiconductor light receiving element
JPH11274532A (en) Solar cell
JPS6313358B2 (en)
JPH01216581A (en) Semiconductor device
JPH04241458A (en) Semiconductor optical detector
JPH079996B2 (en) Semiconductor light receiving device
JPS6068676A (en) Wavelength selective photodetector device
JPS6269568A (en) Semiconductor color sensor
JPS61128578A (en) Inp group light-receiving element
JPS61185979A (en) Integrated photoelectric conversion element
JPS59138387A (en) Solar battery
JPH03289523A (en) Color sensor
JPH02241065A (en) Photodetector