JPH02181916A - Method of heat-treating semiconductor substrate - Google Patents

Method of heat-treating semiconductor substrate

Info

Publication number
JPH02181916A
JPH02181916A JP259589A JP259589A JPH02181916A JP H02181916 A JPH02181916 A JP H02181916A JP 259589 A JP259589 A JP 259589A JP 259589 A JP259589 A JP 259589A JP H02181916 A JPH02181916 A JP H02181916A
Authority
JP
Japan
Prior art keywords
heat
semiconductor substrate
substrate
gaas
rta
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP259589A
Other languages
Japanese (ja)
Inventor
Yasuhito Nakagawa
中川 泰仁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP259589A priority Critical patent/JPH02181916A/en
Publication of JPH02181916A publication Critical patent/JPH02181916A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain, with good reproducibility, a high-concentration and steep profile of a carrier concentration by a method wherein a speed to heat a semiconductor substrate by means of a short-time annealing method using an infrared lamp is made lower than a specific value. CONSTITUTION:When a semiconductor substrate is heat-treated by means of a short-time annealing method using an infrared lamp, a speed to heat the semiconductor substrate is made lower than 20 deg.C/sec. When the heating speed is made low, an annealing time becomes longer; accordingly, heat supplied to the substrate is increased; an activation rate is increased; a high-concentration profile can be obtained; a performance of a GaAs LSI can be made higher.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は半導体基板の熱処理方法に関するものである。[Detailed description of the invention] <Industrial application field> The present invention relates to a heat treatment method for a semiconductor substrate.

〈従来の技術〉 化合物半導体、なかでもGaAsは、Siに比べて優れ
た物理的性質を持っているため、現在そのLSI化の研
究が活発に行われている。
<Prior Art> Compound semiconductors, especially GaAs, have superior physical properties compared to Si, and therefore, research is currently being actively carried out to incorporate them into LSIs.

GaAs  LSIは半絶縁性GaAs基板にSiをイ
オン注入して作成したMESFETを基本デバイスとし
て用いている。イオン注入技術を用いて導電層を形成す
るためには、GaAs基板を800℃以上の高温で熱処
理し、注入した不純物を電気的に活性化させる必要があ
る。この熱処理工程はGaAsLSI製造工程のなかで
最も高温を必要とし、GaAsLSI0高性能化の高歩
留まり化をはかるためには最適化された熱処理技術の確
立が重要である。
GaAs LSI uses as a basic device a MESFET made by ion-implanting Si into a semi-insulating GaAs substrate. In order to form a conductive layer using ion implantation technology, it is necessary to heat-treat the GaAs substrate at a high temperature of 800° C. or higher to electrically activate the implanted impurities. This heat treatment process requires the highest temperature among the GaAs LSI manufacturing processes, and it is important to establish an optimized heat treatment technology in order to achieve high performance and high yield of GaAs LSI0.

GaAs  LSIの製造において現在広く用いられて
いる熱処理方法は、抵抗加熱式の電気炉を用いる方法で
ある。この技術は元来Siプロセスとして培われただ技
術であり、プロセスの安定性・均一性に優れている。し
かし、この方法では装置の大きな熱容量の関係から、制
御可能な最短熱処理時間が数分から数十分に制限される
。不必要に長い熱処理時間は、注入不純物の縦方向・横
方向の熱拡散や、耐熱ゲート金属とGaAs間の相互反
応を助長する。などの原因となり、GaAs  LSI
A heat treatment method currently widely used in manufacturing GaAs LSIs is a method using a resistance heating type electric furnace. This technology was originally developed as a Si process, and has excellent process stability and uniformity. However, in this method, the shortest controllable heat treatment time is limited to several minutes to several tens of minutes due to the large heat capacity of the apparatus. Unnecessarily long heat treatment time promotes vertical and lateral thermal diffusion of implanted impurities and interaction between the refractory gate metal and GaAs. GaAs LSI
.

高性能化・大規模化を計るうえでの障害となる。This becomes an obstacle in achieving higher performance and larger scale.

これらの問題を解決する目的で、赤外線ランプを用いた
短時間アニール法(Rapid Thermal An
neal;以下RTAと記述)が注目されている。
In order to solve these problems, a rapid thermal annealing method using an infrared lamp has been developed.
neal (hereinafter referred to as RTA) is attracting attention.

RTAでは、基板加熱用のランプ熱源が高精度の温度制
御系の下で用いられており、秒単位のアニール時間の制
御が可能となる。そのため、電気炉での熱処理に比べて
、熱拡散が抑制され、急峻な不純物分布が得られる。と
いう優れた特徴があり、GaAs  LSIの高性能化
を導く事ができる。
In RTA, a lamp heat source for heating the substrate is used under a highly accurate temperature control system, making it possible to control the annealing time in seconds. Therefore, compared to heat treatment in an electric furnace, thermal diffusion is suppressed and a steep impurity distribution can be obtained. It has such excellent characteristics that it can lead to higher performance of GaAs LSI.

しかし、RTAは基板温度の急激な昇温・降温過程を特
徴とするため、GaAS基板と雰囲気ガスの間に熱平衡
関係が成立せず、基板面内で温度の不均一が生じやすい
。基板面内での温度不均一は、注入不純物の活性化率を
ばらつかせるだけでなく、スリップ・ラインや基板の反
りなどを発生する原因ともなっている。
However, since RTA is characterized by a rapid temperature increase/decrease process of the substrate temperature, a thermal equilibrium relationship is not established between the GaAS substrate and the atmospheric gas, and temperature non-uniformity is likely to occur within the substrate surface. Temperature non-uniformity within the substrate surface not only causes variations in the activation rate of implanted impurities, but also causes slip lines and substrate warping.

一般にGaAS基板をRTAで熱処理する際、第1図の
如く、GaAs基板11を、該GaAs基板11より径
の大きいS 基板等のサセプタ12.13で挾み、加熱
を行なう。この時、GaAs基板ll内に温度不均一が
生じる原因として、 ■GaAs基板11端からの熱放射 ■GaAs支持用サセブクサセプタ3面内での単位面積
あたりの熱容量の差 があげられる。■はGaAs1板11端からの熱放射に
よって基板周辺部の温度が中央部より低くなる現象であ
る。一方、■はGaAs基板11でおおわれたサセプタ
12.13の中央部と、おおわれていない周辺部での熱
容量の違いによる両部の温度差が、GaAs基板11周
辺部の温度差を変化させる現象である。これらの原因は
、第3図に示すようなドーナツ状のガードリング14を
サセプタ12.13の間のGaAs基板11周辺に配置
することにより、ある程度は制御することができる。
Generally, when heat-treating a GaAS substrate by RTA, as shown in FIG. 1, the GaAs substrate 11 is sandwiched between susceptors 12 and 13 such as S2 substrates having a larger diameter than the GaAs substrate 11 and heated. At this time, the causes of temperature non-uniformity within the GaAs substrate 11 are: (1) heat radiation from the end of the GaAs substrate 11; (2) differences in heat capacity per unit area within the surface of the susceptor 3 for supporting GaAs. (2) is a phenomenon in which the temperature of the peripheral portion of the substrate becomes lower than that of the central portion due to heat radiation from the end of the GaAs board 11. On the other hand, ■ is a phenomenon in which the temperature difference between the central part of the susceptor 12.13 covered with the GaAs substrate 11 and the peripheral part that is not covered due to the difference in heat capacity changes the temperature difference in the peripheral part of the GaAs substrate 11. be. These causes can be controlled to some extent by arranging a donut-shaped guard ring 14 as shown in FIG. 3 around the GaAs substrate 11 between the susceptors 12 and 13.

〈発明が解決しようとする課題〉 しかし、このガードリング法は熱の移動を定量的に理解
したうえでの解決法ではなく、上記の定性的な理解に基
りく解決法であるだめ、再現性に乏しい。すなわち、最
適なガードリングの材質や形状・GaAs基板との位置
関係・アニール条件との対応など、定量的に明らかにし
なければならない諸条件が、再現性良く決定できない、
という問題があり、RTAの実用化を阻んでいる。
<Problem to be solved by the invention> However, this guard ring method is not a solution based on a quantitative understanding of heat transfer, but a solution based on the above qualitative understanding, and therefore, reproducibility is poor. Poor. In other words, various conditions that must be quantitatively clarified, such as the optimal guard ring material and shape, positional relationship with the GaAs substrate, and correspondence with annealing conditions, cannot be determined with good reproducibility.
This problem is hindering the practical application of RTA.

く課題を解決するための手段〉 本発明は上述する問題点を解決するためになされたもの
で、赤外線ランプによる短時間アニール法を用いて半導
体基板を熱処理する際、半導体基板を加熱する速度を毎
秒20℃よりも低くした半導体基板の熱処理方法を提供
するものである。
Means for Solving the Problems> The present invention has been made to solve the above-mentioned problems, and is aimed at reducing the heating rate of a semiconductor substrate when heat-treating the semiconductor substrate using a short-time annealing method using an infrared lamp. The present invention provides a method for heat-treating a semiconductor substrate at a temperature lower than 20° C. per second.

〈作用〉 RTAの利点は昇温・降温による短時間での熱処理によ
り生じるが、スリップラインの発生のような問題もある
。しかし、この問題は、従来のRTAではその高速熱処
理を意識しすぎたため、加熱速度を速く設定しすぎ(8
0に/s程度)、そのためGaAs基板とサセプタおよ
び雰囲気ガス間での熱平衡関係が成立しないために生じ
たものである、と考えられる。
<Function> The advantage of RTA is that the heat treatment is performed in a short time by increasing and decreasing the temperature, but there are also problems such as the occurrence of slip lines. However, this problem arises because conventional RTA is too conscious of high-speed heat treatment, so the heating rate is set too fast (8
This is thought to be caused by the failure of a thermal equilibrium relationship between the GaAs substrate, the susceptor, and the atmospheric gas.

従って、RTAの長所を損なわない程度に加熱速度を低
くすれば、より熱平衡関係に近い状態で7ニールできる
ため、スリップラインの発生等の問題を生じる事なく、
電気炉アニールより優れたアニールを行うことができる
Therefore, if the heating rate is lowered to a degree that does not impair the advantages of RTA, 7 anneals can be performed in a state closer to thermal equilibrium, without causing problems such as the generation of slip lines.
It can perform annealing superior to electric furnace annealing.

〈実施例〉 以下、図面を用いて本発明について詳細に説明する〇 半絶縁性GaAs基板に S1+を50keV4X10
  cm  イオン注入した後、ウエノ1を3つに分け
てアニールを行った。
<Example> Hereinafter, the present invention will be explained in detail with reference to the drawings. S1+ was applied to a semi-insulating GaAs substrate at 50keV4X10.
cm After ion implantation, Ueno 1 was divided into three parts and annealed.

第1図はRTAを行うときのGaAs基板11とサセプ
タ12.13の位置関係を示し、下側のサセプタ12は
GaAs基板11を支えるためであり、上側のサセプタ
13は熱処理中にGaAs基板11から蒸気圧の低いA
sが抜けるのを防ぐだめに設けたものである。サセプタ
12はアニール装置の構造によっては無くても良い。ま
た、サセプタ13はGaAs基板11表面が窒化シリコ
ンなどで保護されている時などは無くても良い。
FIG. 1 shows the positional relationship between the GaAs substrate 11 and the susceptors 12 and 13 when performing RTA. A with low vapor pressure
This was provided to prevent the s from falling out. The susceptor 12 may be omitted depending on the structure of the annealing apparatus. Further, the susceptor 13 may be omitted when the surface of the GaAs substrate 11 is protected with silicon nitride or the like.

また、第3図に示す従来技術で用いていたガードリンク
14は用いていない。
Furthermore, the guard link 14 used in the prior art shown in FIG. 3 is not used.

試料1:従来の電気炉アニール(p−CV  )による
窒化シリコン膜で表面を保護し、 N2雰囲気で850
℃15分のアニールを 行った。) 試料2:従来のRTA(加熱速度:80に/s(℃ル)
温度=800℃ 時間:2 秒) 試料3:本発明のRTA(加熱速度:10に/s温度:
SOO℃ 時間=10秒) 第2図に、C−V測定により求めた、試料1,2゜3の
キャリア濃度プロファイルを示す。試料1のプロファイ
ルに比べて、試料2,3ではより浅く急峻なプロファイ
ルが得られており、RTAでは電気炉アニールよりGa
As  LSIが高性能化できることが分かる。
Sample 1: The surface was protected with a silicon nitride film by conventional electric furnace annealing (p-CV), and annealed at 850°C in an N2 atmosphere.
Annealing was performed at ℃ for 15 minutes. ) Sample 2: Conventional RTA (heating rate: 80/s (°C)
Temperature = 800°C Time: 2 seconds) Sample 3: RTA of the present invention (heating rate: 10/s Temperature:
(SOO°C time = 10 seconds) Figure 2 shows the carrier concentration profiles of samples 1 and 2°3 determined by CV measurement. Compared to the profile of sample 1, samples 2 and 3 have shallower and steeper profiles, and in RTA, Ga
It can be seen that As LSI can improve performance.

また、本発明のRTA(試料3)では従来のRTA(試
料2)より高濃度なプロファイルが得られており、Ga
As  LSIが更に高性能化できる。
In addition, the RTA of the present invention (sample 3) has a higher concentration profile than the conventional RTA (sample 2), and Ga
As LSI can achieve even higher performance.

この理由は、加熱速度を低くしたことによりアニール時
間が長くなるため、GaAs基板に供給される熱が増え
、活性化率が増大したことに依る。
The reason for this is that the annealing time becomes longer due to the lower heating rate, which increases the amount of heat supplied to the GaAs substrate and increases the activation rate.

さらに、試料1乃至3ではガードリンク14を用いてい
ないため、加熱速度の速い試料2(従来のPTA)では
スリップラインが発生しているが、加熱速度の低い試料
3(本発明のRTA )ではスリップラインは全く発生
していない。本発明では、プログラムにより高精度に制
御できるアニール条件(加熱速度、温度、時間など)を
最適化することによりスリップラインを抑制しているた
め、ガードリング法にくらべて再現性が著しく向上する
Furthermore, since the guard link 14 was not used in Samples 1 to 3, a slip line occurred in Sample 2 (conventional PTA) with a fast heating rate, but in Sample 3 (RTA of the present invention) with a low heating rate. No slip lines occurred at all. In the present invention, slip lines are suppressed by optimizing annealing conditions (heating rate, temperature, time, etc.) that can be controlled with high precision by a program, so reproducibility is significantly improved compared to the guard ring method.

また、本実施例では加熱速度はIOK/sとしたが、実
験の結果20に/sまでは同等の効果が得られることが
分かった。即ち、加熱速度の上限は20に/s程度と考
えられる。下限については、あまり低い加熱速度ではR
TAの利点が無くなるため、IOK/s〜20に/sが
最適と考えられる。
Further, in this example, the heating rate was set to IOK/s, but as a result of experiments, it was found that the same effect can be obtained up to 20 IOK/s. That is, the upper limit of the heating rate is considered to be about 20/s. Regarding the lower limit, if the heating rate is too low, R
Since the advantage of TA disappears, /s is considered to be optimal for IOK/s to 20.

ここまではGaAs基板に限って記述してきたが、本発
明になるRTAではこのほかの化合物半導体基板やSi
基板にも適用できることは明らかである0 〈発明の効果〉 以上詳述したように、毎秒20℃の加熱速度でRTAを
行うことにより、従来のガードリングを用いたRTAに
比べて、より高濃度で急峻なキャリア濃度プロファイル
を、再現性良く得ることができる。
So far, the description has been limited to GaAs substrates, but in the RTA of the present invention, other compound semiconductor substrates and Si
It is clear that it can be applied to substrates as well.0 <Effects of the Invention> As detailed above, by performing RTA at a heating rate of 20°C per second, a higher concentration can be achieved compared to RTA using a conventional guard ring. A steep carrier concentration profile can be obtained with good reproducibility.

【図面の簡単な説明】 第1図は本発明のRTAを行うときのサセプタと半導体
基板の位置関係を示す模式図、第2図は従来技術との違
いを示すキャリア濃度プロファイル図、第3図は従来技
術のRTAを行うときのサセプタと半導体基板の位置関
係を示す模式図であるO
[Brief Description of the Drawings] Fig. 1 is a schematic diagram showing the positional relationship between the susceptor and the semiconductor substrate when performing RTA of the present invention, Fig. 2 is a carrier concentration profile diagram showing the difference from the conventional technology, and Fig. 3 O is a schematic diagram showing the positional relationship between a susceptor and a semiconductor substrate when performing RTA in the conventional technology.

Claims (1)

【特許請求の範囲】[Claims] 1、赤外線ランプによる短時間アニール法を用いて半導
体基板を熱処理する際、半導体基板を加熱する速度を毎
秒20℃よりも低くしたことを特徴とする半導体基板の
熱処理方法。
1. A method for heat treatment of a semiconductor substrate, characterized in that when the semiconductor substrate is heat treated using a short-time annealing method using an infrared lamp, the rate of heating the semiconductor substrate is lower than 20° C. per second.
JP259589A 1989-01-09 1989-01-09 Method of heat-treating semiconductor substrate Pending JPH02181916A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP259589A JPH02181916A (en) 1989-01-09 1989-01-09 Method of heat-treating semiconductor substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP259589A JPH02181916A (en) 1989-01-09 1989-01-09 Method of heat-treating semiconductor substrate

Publications (1)

Publication Number Publication Date
JPH02181916A true JPH02181916A (en) 1990-07-16

Family

ID=11533737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP259589A Pending JPH02181916A (en) 1989-01-09 1989-01-09 Method of heat-treating semiconductor substrate

Country Status (1)

Country Link
JP (1) JPH02181916A (en)

Similar Documents

Publication Publication Date Title
US5279973A (en) Rapid thermal annealing for semiconductor substrate by using incoherent light
KR100203780B1 (en) Heat treating apparatus for semiconductor wafer
JP2009542000A5 (en)
JPH0263294B2 (en)
EP1454367A2 (en) Baking oven for photovoltaic devices
JPH02181916A (en) Method of heat-treating semiconductor substrate
JPH0480880B2 (en)
JP2758770B2 (en) Jig for heat treatment of semiconductor substrate
JPS603124A (en) Annealing method of compound semiconductor
JPH0817755A (en) Heat treatment equipment of semiconductor wafer
JPS60239030A (en) Annealing method of compound semiconductor
JPS6175517A (en) Compound semiconductor substrate annealing method
JPH03240238A (en) Heat-treating equipment
JPH02185037A (en) Short-time thermal treatment equipment
JPH025295B2 (en)
JPH0480878B2 (en)
RU2183365C1 (en) Method for boron diffusion in silicon plate
JPH04360524A (en) Heat treatment furnace for compound semiconductor substrate
JPH0521367A (en) Thermal processing apparatus
JPH07321060A (en) Diffusion of boron
JPS59101825A (en) Manufacture of semiconductor device and heat treatment apparatus therefor
JPH0278221A (en) Heat treatment of compound semiconductor substrate
JPS6037122A (en) Annealing method of semiconductor substrate
JPH02249227A (en) Short time heat treating method
JPH02291119A (en) Heat treatment method for compound semiconductor substrate