JPH0521367A - Thermal processing apparatus - Google Patents

Thermal processing apparatus

Info

Publication number
JPH0521367A
JPH0521367A JP19722691A JP19722691A JPH0521367A JP H0521367 A JPH0521367 A JP H0521367A JP 19722691 A JP19722691 A JP 19722691A JP 19722691 A JP19722691 A JP 19722691A JP H0521367 A JPH0521367 A JP H0521367A
Authority
JP
Japan
Prior art keywords
holder
heat treatment
substrate
temperature
thermal processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19722691A
Other languages
Japanese (ja)
Inventor
Michihisa Kono
通久 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP19722691A priority Critical patent/JPH0521367A/en
Publication of JPH0521367A publication Critical patent/JPH0521367A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve reproducibility and uniformity of electrical characteristics of an ion-implanted semiconductor by forming a trapping type holder with a cover for loading a sample with a material such as silicon, which does not allow vaporization of elements at a thermal processing temperature and ensures excellent infrared absorption coefficient, in a thermal processing apparatus of a semiconductor substrate. CONSTITUTION:Halogen lamps 1 are disposed at the upper and lower outside of a quartz glass furnace tube 2. A 3-inch GaAs substrate 3 is housed within a Si holder 4. The holder 4 is formed as a disk measuring external diameter of 125mm and thickness of 1.5mm. The holder 4 houses a substrate 3, provided with a cover 6 made of Si and is then loaded within a furnace tube 2 with support of a quartz glass pin 5. With this structure, the holder is heated by the infrared emitted by the halogen lamp 1. Namely, Si is implanted in the quantity of 1X10<13>cm<-2> to an undoped semi-insulating GaAs substrate with an implantation energy of 10keV by the surface orientation <100> LEC method at a room temperature. As a result, fuluctuation of sheet resistance can be improved in comparison with that of a graphite holder.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えばIII−V族半
導体単結晶基板にイオン注入した後に短時間熱処理して
導電層を形成するに際して使用する短時間熱処理装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a short-time heat treatment apparatus used for forming a conductive layer by, for example, ion-implanting a III-V semiconductor single crystal substrate and then heat-treating for a short time.

【0002】[0002]

【従来の技術】近年、III−V族化合物半導体材料を
用いた高速デジタル集積回路の開発が進むにつれて、短
時間熱処理法の重要性がますます高まってきている。す
なわち、ヘテロ接合バイポーラ・トランジスタやヘテロ
接合電界効果トランジスタなどの異種接合デバイスの製
造プロセスにおいて、コンタクト抵抗の低減を目的とし
たイオン注入が行われており、これらのデバイスの製造
においては、微細構造を持つ異種接合に大きな結晶損傷
を与えない熱処理法が要求されるが、この目的に現在最
も適した方法が短時間熱処理法である。
2. Description of the Related Art In recent years, as the development of high-speed digital integrated circuits using III-V compound semiconductor materials has progressed, the importance of the short-time heat treatment method has been increasing. That is, in the manufacturing process of heterojunction devices such as heterojunction bipolar transistors and heterojunction field effect transistors, ion implantation is performed for the purpose of reducing the contact resistance. Although a heat treatment method that does not cause large crystal damage to the dissimilar junction is required, the short-time heat treatment method is currently the most suitable method for this purpose.

【0003】また、この短時間熱処理法は、電界効果ト
ランジスタの性能を高めるために重要な浅く高濃度の動
作層の形成にも適している。この方法を用いることによ
り、動作層の不純物の再分布が抑えられるばかりでな
く、高い電気的活性化率が得られることが知られてい
る。
This short-time heat treatment method is also suitable for forming a shallow and high-concentration operating layer which is important for enhancing the performance of the field effect transistor. It is known that, by using this method, not only the redistribution of impurities in the operating layer can be suppressed, but also a high electrical activation rate can be obtained.

【0004】短時間熱処理法は、昇温(毎秒約100
℃)及び極めて短時間の熱処理時間(1〜数10秒)を
有するプロセスであるため、効率のよい試料加熱方式が
必要とされる。
The short-time heat treatment method involves a temperature rise (about 100 per second).
(° C.) and an extremely short heat treatment time (1 to several tens of seconds), an efficient sample heating method is required.

【0005】このため、例えば半導体基板を熱処理する
場合、一般には試料の垂直方向からハロゲンランプ等に
より赤外線を直接照射する方法が用いられてきた。この
直接加熱方式によると、半導体の赤外線吸収・放散によ
り迅速に試料の昇・降温を行うことができ、例えば試料
のおかれたプレートをジュール熱で加熱する間接加熱方
式等と比べて、より応答性に優れた温度制御を行うこと
ができる。
Therefore, for example, when heat-treating a semiconductor substrate, a method of directly irradiating infrared rays from a vertical direction of a sample with a halogen lamp or the like has been generally used. According to this direct heating method, the temperature of the sample can be raised and lowered quickly by infrared absorption / emission of the semiconductor. For example, it is more responsive than the indirect heating method of heating the plate on which the sample is placed with Joule heat. It is possible to perform temperature control with excellent properties.

【0006】このような短時間熱処理を行う場合、熱処
理される基板の設置方法としては、基板を石英などのピ
ンで3点支持したり、他の半導体基板上に設置してガー
ドリングで周囲を囲む等の方法が用いられてきたが、今
日最も注目されているのが、グラファイト等でできた円
盤状のホルダー内に試料を収納して熱処理する方法であ
る(A.Tamura et al.J.Appl.P
hys.62,1102(1987),S.J.Pea
rton & R.Caruso J.Appl.Ph
ys.66.663(1989)参照)。
When such a short-time heat treatment is performed, the substrate to be heat-treated is installed by supporting the substrate at three points with pins such as quartz, or by installing it on another semiconductor substrate and surrounding it with a guard ring. Although the method of enclosing and the like has been used, the method which has received the most attention today is a method in which a sample is housed in a disk-shaped holder made of graphite or the like and heat-treated (A. Tamura et al. J. Appl.P
hys. 62, 1102 (1987), S.H. J. Pea
rton & R. Caruso J. Appl. Ph
ys. 66.663 (1989)).

【0007】この方法を用いることにより、基板周囲か
らの熱放射により基板周辺部の温度が中央部より低下す
るエッジ効果(R.T.Blunt et al.Ap
pl.Phys.Lett.47.304(1985)
参照)や、雰囲気ガスの対流がもたらす温度不均一効果
(M.Kohno et al.J.Appl.Phy
s.69.1294(1991)参照)を抑制すること
ができ、均一性に優れた熱処理が行えることが知られて
いる。
By using this method, the edge effect (RT Blunt et al. Ap) in which the temperature of the peripheral portion of the substrate is lower than that of the central portion due to heat radiation from the periphery of the substrate
pl. Phys. Lett. 47.304 (1985)
Temperature non-uniformity effect caused by the convection of the atmospheric gas (M. Kohno et al. J. Appl. Phy).
s. 69.1294 (see 1991)), and heat treatment with excellent uniformity can be performed.

【0008】このような熱処理を大量に再現性よく行な
うための温度制御方法としては、試料の熱輻射を検出し
て温度をモニターするパイロメータを用いることが必要
である。
As a temperature control method for carrying out such a large amount of heat treatment with good reproducibility, it is necessary to use a pyrometer for detecting the thermal radiation of the sample and monitoring the temperature.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、このよ
うにホルダー内に試料基板を収納してパイロメータを用
いて短時間熱処理を行った場合、ホルダー表面のエミッ
シビティの値により測定温度が大きな影響を受けること
が知られている。
However, when the sample substrate is housed in the holder and the heat treatment is performed for a short time using the pyrometer, the measurement temperature is greatly affected by the value of the emissivity of the surface of the holder. It has been known.

【0010】特に、グラファイト等のように不純物を吸
着しやすい材質や、GaAs等のように高温で成分が蒸
発しやすい材質を用いてホルダーを作製する場合には、
熱処理中の不純物による汚染を防ぐ目的で、ホルダー表
面をSiC等の物質でコーティングする必要があるが、
このようなコーティングを行った場合エミッシビティの
値はコーティングされた物質の厚さや品質に大きく依存
することが知られている。
In particular, when the holder is made of a material such as graphite that easily adsorbs impurities, or a material such as GaAs that easily evaporates components at high temperatures,
It is necessary to coat the surface of the holder with a substance such as SiC in order to prevent contamination by impurities during heat treatment.
It is known that when such coating is performed, the value of emissivity largely depends on the thickness and quality of the coated material.

【0011】このため、コーティング物質の厚さ,品質
の再現性が温度測定に影響を与えやすいが、コーティン
グを行う時点でのプロセス再現性が一般には十分ではな
いのと同時に、熱処理による変性の要素が加わるため
に、エミッシビティの再現性は一般にコーティングを行
った場合に低下することが知られている。
For this reason, the reproducibility of the thickness and quality of the coating material easily affects the temperature measurement, but the process reproducibility at the time of coating is not generally sufficient, and at the same time, the factor of modification by heat treatment. It is known that the reproducibility of the emissivity is generally deteriorated when the coating is performed due to the addition of the.

【0012】このような場合、パイロメータにより測定
されるホルダーの温度再現性が低下し、プロセスの再現
性を低下させる。このことは、歩留りの優れた集積回路
を作製するために回避すべき問題である。
In such a case, the temperature reproducibility of the holder measured by the pyrometer is lowered, and the reproducibility of the process is lowered. This is a problem that must be avoided in order to manufacture an integrated circuit with excellent yield.

【0013】このため、パイロメータを用いて再現性よ
く温度制御を行うためのホルダー材料として、前述した
ような不純物による汚染等の可能性の極めて低い物質を
選択する必要がある。
Therefore, it is necessary to select, as a holder material for controlling the temperature with good reproducibility using a pyrometer, a substance having a very low possibility of contamination by impurities as described above.

【0014】ところが、基板の赤外線吸収特性,熱伝導
率,比熱,密度等の違いに基づき、両者の間に瞬時的な
温度差が発生して、均一性,プロセス再現性を低下させ
ることがあることが知られている。
However, due to differences in the infrared absorption characteristics, thermal conductivity, specific heat, density, etc. of the substrates, an instantaneous temperature difference may occur between the two, resulting in deterioration of uniformity and process reproducibility. It is known.

【0015】例えば、ホルダー材料の赤外線吸収スペク
トルが、試料のGaAsのそれよりもはるかに大きかっ
た場合、ランプ加熱による昇温過程で、ホルダーの温度
が試料よりも高くなりやすいことは明らかである。
For example, when the infrared absorption spectrum of the holder material is much larger than that of GaAs of the sample, it is clear that the temperature of the holder tends to be higher than that of the sample during the temperature rising process by lamp heating.

【0016】このような場合、熱電対やパイロメータに
より測定されるホルダーの温度と、試料の温度間にずれ
が発生し、プロセスの再現性を低下させると同時に、均
一性そのものにも悪影響を与える。このことは、歩留り
の優れた集積回路を作製するために回避すべき問題であ
る。
In such a case, a deviation occurs between the temperature of the holder measured by a thermocouple or a pyrometer and the temperature of the sample, which deteriorates the reproducibility of the process and adversely affects the uniformity itself. This is a problem that must be avoided in order to manufacture an integrated circuit with excellent yield.

【0017】本発明の目的は、以上述べたようなランプ
加熱熱処理に関する従来の問題点を解決する熱処理装置
を提供することにある。
An object of the present invention is to provide a heat treatment apparatus which solves the conventional problems associated with the above-mentioned lamp heating heat treatment.

【0018】[0018]

【課題を解決するための手段】上記目的を達成するた
め、本発明による熱処理装置においては、閉じ込め型の
蓋付ホルダーを有し、ホルダー内に化合物半導体基板な
どの試料を設置した熱処理装置であって、閉じ込め型の
蓋付ホルダーは、シリコン,ゲルマニウムその他熱処理
温度下において成分が蒸発せず、且つ赤外線吸収率の優
れた材料をもって成型されたものである。
In order to achieve the above object, the heat treatment apparatus according to the present invention is a heat treatment apparatus having a confined holder with a lid and a sample such as a compound semiconductor substrate placed in the holder. The confined holder with a lid is formed of a material such as silicon, germanium or the like, which does not evaporate components at the heat treatment temperature and has an excellent infrared absorption rate.

【0019】[0019]

【作用】イオン注入したIII−V族化合物半導体基板
を短時間熱処理するにあたり、不純物を吸着しにくく、
かつ高温で成分が蒸発することのない(蒸気圧が低い)
Si結晶等のような物質でできた円盤状のホルダー内に
試料を設置して熱処理を行うことにより、イオン注入層
の電気的均一性及び再現性が大幅に向上する。
When the ion-implanted III-V compound semiconductor substrate is heat-treated for a short time, it is difficult to adsorb impurities,
And the components do not evaporate at high temperature (low vapor pressure)
By placing the sample in a disk-shaped holder made of a substance such as Si crystal and performing heat treatment, the electrical uniformity and reproducibility of the ion-implanted layer is significantly improved.

【0020】本発明により熱処理プロセスの均一性が大
幅に向上する理由としては、不純物を吸着しにくく、か
つ高温で成分が蒸発することのない(蒸気圧が低い)S
i結晶等のような物質でできた円盤状のホルダー内に試
料を設置して熱処理を行うため、パイロメータによる試
料温度測定に誤差が少ないことから、プロセスの再現性
が向上することが考えられる。
The reason why the present invention greatly improves the uniformity of the heat treatment process is that it is difficult to adsorb impurities, and the components do not evaporate at high temperatures (low vapor pressure).
Since the sample is placed in a disk-shaped holder made of a substance such as i-crystal and the heat treatment is performed, there is little error in measuring the sample temperature with a pyrometer, and it is considered that the reproducibility of the process is improved.

【0021】[0021]

【実施例】以下に本発明の実施例について詳細に説明す
る。
EXAMPLES Examples of the present invention will be described in detail below.

【0022】図1は、本発明の実施例の装置構成を概略
的に示す図である。
FIG. 1 is a diagram schematically showing a device configuration of an embodiment of the present invention.

【0023】図において、ハロゲンランプ1は、石英ガ
ラス炉心管2の外部の上方・下方に配置されている。3
インチGaAs基板3は、Si製ホルダー(サセプタ)
4に収納されている。ホルダー4は、円盤状であり、外
径125mm,厚さは1.5mmである。
In the figure, the halogen lamp 1 is arranged above and below the quartz glass core tube 2. Three
Inch GaAs substrate 3 is a Si holder (susceptor)
It is stored in 4. The holder 4 has a disk shape, and has an outer diameter of 125 mm and a thickness of 1.5 mm.

【0024】このSiホルダー4は、基板3を収納し、
Si製の蓋6で施蓋し、石英ガラスピン5で支えて炉芯
管2内に設置される。以上の構成の本発明熱処理装置を
用い、ハロゲンランプ1から照射した赤外線により加熱
して以下に示す実験を行った。
The Si holder 4 accommodates the substrate 3,
It is covered with a Si lid 6, supported by a quartz glass pin 5, and installed in the furnace core tube 2. Using the heat treatment apparatus of the present invention having the above configuration, heating was performed by infrared rays emitted from the halogen lamp 1, and the following experiment was conducted.

【0025】面方位<100>LEC(Liquid
Encapsulated Czochralski)
法アンドープ半絶縁性GaAs基板に注入エネルギー1
00KeVでSi(プラス)を1×1013cm-2室温で
注入した。20回以上実験を行った結果のシート抵抗ば
らつきはσRs=7Ω/□であり、SiCをコートした
グラファイト製のホルダーを用いた場合の結果σRs=
18Ω/□と比べて大幅に改善されていることが分かっ
た。
Orientation <100> LEC (Liquid
Encapsulated Czochralski)
Energy of undoped semi-insulating GaAs substrate 1
Si (plus) was injected at 00 KeV at 1 × 10 13 cm −2 at room temperature. The sheet resistance variation as a result of performing the experiment 20 times or more is σRs = 7Ω / □, and the result when the graphite holder coated with SiC is used σRs =
It was found that it was significantly improved compared to 18Ω / □.

【0026】基板の寸法については、本実施例で用いた
3インチ径以外の任意の寸法に対しても本発明の装置は
有効である。
Regarding the size of the substrate, the apparatus of the present invention is effective for any size other than the 3 inch diameter used in this embodiment.

【0027】本発明において、ホルダー材料としては、
赤外線吸収率が高く、且つ熱処理温度においてホルダー
の構成成分が蒸発しにくい物質を選定したものであり、
Siのほかに、例えばゲルマニウム等の不純物を吸着し
にくく、かつ高温で成分が蒸発することのない(蒸気圧
が低い)物質であれば適用できる。以上のことから、本
発明の熱処理装置を用いることにより、均一性の優れた
熱処理を再現性よく行うことのできることが確認され
た。
In the present invention, as the holder material,
It is a material that has a high infrared absorption rate and that does not easily evaporate the constituent components of the holder at the heat treatment temperature.
In addition to Si, any substance that does not easily adsorb impurities such as germanium and whose components do not evaporate at high temperatures (low vapor pressure) can be applied. From the above, it was confirmed that by using the heat treatment apparatus of the present invention, heat treatment with excellent uniformity can be performed with good reproducibility.

【0028】[0028]

【発明の効果】以上説明したように、本発明の装置によ
れば、例えばIII−V族化合物半導体の短時間熱処理
により得られたイオン注入活性層の基板面内の抵抗均一
性及び再現性を従来よりも大幅に向上させることがで
き、従って高速集積回路の歩留りを大幅に改善すること
ができる。
As described above, according to the apparatus of the present invention, for example, the resistance uniformity and reproducibility in the substrate surface of the ion-implanted active layer obtained by the short-time heat treatment of the III-V group compound semiconductor can be improved. The yield can be greatly improved as compared with the conventional one, and thus the yield of the high speed integrated circuit can be greatly improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の装置構成を概略的に示す構成
図である。
FIG. 1 is a configuration diagram schematically showing a device configuration of an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 ハロゲンランプ 2 石英ガラス製炉心管 3 3インチGaAs基板 4 本発明のホルダー(Si製) 5 石英ガラスピン 6 蓋(Si製) DESCRIPTION OF SYMBOLS 1 Halogen lamp 2 Quartz glass core tube 3 3 inch GaAs substrate 4 Holder of the present invention (made of Si) 5 Quartz glass pin 6 Lid (made of Si)

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01L 21/26 L 8617−4M 21/324 C 8617−4M ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI Technical display location H01L 21/26 L 8617-4M 21/324 C 8617-4M

Claims (1)

【特許請求の範囲】 【請求項1】 閉じ込め型の蓋付ホルダーを有し、ホル
ダー内に化合物半導体基板などの試料を設置した熱処理
装置であって、 閉じ込め型の蓋付ホルダーは、シリコン,ゲルマニウム
その他熱処理温度下において成分が蒸発せず、且つ赤外
線吸収率の優れた材料をもって成型されたものであるこ
とを特徴とする熱処理装置。
Claim: What is claimed is: 1. A heat treatment apparatus having a confinement type holder with a lid, wherein a sample such as a compound semiconductor substrate is installed in the holder, wherein the confinement type holder with the lid is made of silicon or germanium. In addition, the heat treatment apparatus is characterized in that it is formed of a material that does not evaporate the components at the heat treatment temperature and has an excellent infrared absorption rate.
JP19722691A 1991-07-11 1991-07-11 Thermal processing apparatus Pending JPH0521367A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19722691A JPH0521367A (en) 1991-07-11 1991-07-11 Thermal processing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19722691A JPH0521367A (en) 1991-07-11 1991-07-11 Thermal processing apparatus

Publications (1)

Publication Number Publication Date
JPH0521367A true JPH0521367A (en) 1993-01-29

Family

ID=16370940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19722691A Pending JPH0521367A (en) 1991-07-11 1991-07-11 Thermal processing apparatus

Country Status (1)

Country Link
JP (1) JPH0521367A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006190731A (en) * 2005-01-04 2006-07-20 Mitsubishi Heavy Ind Ltd Substrate heating device, vacuum device and substrate heating method
WO2007049413A1 (en) * 2005-10-28 2007-05-03 National Institute Of Advanced Industrial Science And Technology Semiconductor production apparatus and semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006190731A (en) * 2005-01-04 2006-07-20 Mitsubishi Heavy Ind Ltd Substrate heating device, vacuum device and substrate heating method
WO2007049413A1 (en) * 2005-10-28 2007-05-03 National Institute Of Advanced Industrial Science And Technology Semiconductor production apparatus and semiconductor device
JPWO2007049413A1 (en) * 2005-10-28 2009-04-30 独立行政法人産業技術総合研究所 Semiconductor manufacturing apparatus and semiconductor device

Similar Documents

Publication Publication Date Title
US4794217A (en) Induction system for rapid heat treatment of semiconductor wafers
JPH02185038A (en) Thermal treatment equipment
JPH02303121A (en) Manufacture of semicowductor device
JPH045822A (en) Apparatus and method for lamp annealing
US5219798A (en) Method of heating a semiconductor substrate capable of preventing defects in crystal from occurring
US4492852A (en) Growth substrate heating arrangement for UHV silicon MBE
JPH0377657B2 (en)
JPH0521367A (en) Thermal processing apparatus
JPH0834191B2 (en) Method for high-temperature drive-in diffusion of dopant into semiconductor wafer
JPS60239400A (en) Process for annealing compound semiconductor
JPH04334018A (en) Heat treatment device
JP2758770B2 (en) Jig for heat treatment of semiconductor substrate
JP2841438B2 (en) Short-time heat treatment method
JPH04334017A (en) Heat-treatment device
JPH02185037A (en) Short-time thermal treatment equipment
JPH03240238A (en) Heat-treating equipment
JP2876994B2 (en) Short-time annealing equipment
JPH04275417A (en) Heat-treatment equipment
JPH11163070A (en) Temperature control method for heat treatment process in production of semiconductor device
JPS6175517A (en) Compound semiconductor substrate annealing method
JPH05243240A (en) Heat treating apparatus
JPH025295B2 (en)
JPH07106274A (en) Specimen heating method and specimen heat-treating equipment
JP2509817B2 (en) Processing equipment
JPH0653223A (en) Heat treatment furnace