JPH05243240A - Heat treating apparatus - Google Patents

Heat treating apparatus

Info

Publication number
JPH05243240A
JPH05243240A JP7821392A JP7821392A JPH05243240A JP H05243240 A JPH05243240 A JP H05243240A JP 7821392 A JP7821392 A JP 7821392A JP 7821392 A JP7821392 A JP 7821392A JP H05243240 A JPH05243240 A JP H05243240A
Authority
JP
Japan
Prior art keywords
substrate
tube
wall
heat treatment
core tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7821392A
Other languages
Japanese (ja)
Inventor
Michihisa Kono
通久 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP7821392A priority Critical patent/JPH05243240A/en
Publication of JPH05243240A publication Critical patent/JPH05243240A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an apparatus in which a temperature irregular effect due to generation of a Benard convection is suppressed and a heat treatment can be executed in a high uniformity for a short time by setting a product of a cube of a distance between a sample substrate and a wall of an upper core tube, a gravity constant, a volume expansion coefficient, a temperature difference of the substrate and the wall of the tube to a special value or less. CONSTITUTION:A heat treating apparatus has a core tube 2, and sets a product of a cube of a distance between a sample substrate 3 mounted in a core tube 2 and a wall of the upper tube, a gravity constant, a volume expansion coefficient, a temperature difference of the substrate 3 and the wall of the tube, a reciprocal of kinematic viscosity coefficient of atmospheric gas 5 and a reciprocal of a temperature conductivity of the gas 5 to 1700 or less. For example, a halogen lamp 1 is disposed above.below an exterior of the tube 2, and a 3-inch GaAs substrate 3 is supported by a pin 4 made of quarts glass. A distance between the substrate 3 and the wall of the upper tube of the board 3 is set to 5mm, and the gas 5 is N2 to satisfy conditions.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば、III−V族
半導体単結晶基板にイオン注入した後に、短時間熱処理
して導電層を形成するに際し、電気的特性の均一性及び
再現性に優れた導電層が得られる短時間熱処理装置に関
する。
BACKGROUND OF THE INVENTION The present invention has excellent uniformity and reproducibility of electrical characteristics when a conductive layer is formed by, for example, ion-implanting a III-V semiconductor single crystal substrate and then heat treating for a short time. The present invention relates to a short-time heat treatment apparatus capable of obtaining a conductive layer.

【0002】[0002]

【従来の技術】近年、III−V族化合物半導体材料を
用いた高速デジタル集積回路の開発が進むにつれて、短
時間熱処理法の重要性がますます高まってきている。す
なわち、ヘテロ接合バイポーラ・トランジスタやヘテロ
接合電界効果トランジスタなどの異種接合デバイスの製
造プロセスにおいて、コンタクト抵抗の低減を目的とし
たイオン注入が行なわれており、これらのデバイスの製
造においては、微細構造をもつ異種接合に大きな結晶損
傷を与えない熱処理法が要求されるが、この目的に現在
最も適した方法が短時間熱処理法である。
2. Description of the Related Art In recent years, as the development of high-speed digital integrated circuits using III-V compound semiconductor materials has progressed, the importance of the short-time heat treatment method has been increasing. That is, in the manufacturing process of heterojunction devices such as heterojunction bipolar transistors and heterojunction field effect transistors, ion implantation is performed for the purpose of reducing contact resistance. A heat treatment method that does not cause large crystal damage to the dissimilar junction is required, and the shortest time heat treatment method is currently the most suitable method for this purpose.

【0003】また、この短時間熱処理法は、電界効果ト
ランジスタの性能を高めるために重要な浅く高濃度の動
作層の形成にも適している。この方法を用いることによ
り、動作層の不純物の再分布が抑えられるばかりでな
く、高い電気的活性化率が得られることが知られてい
る。
This short-time heat treatment method is also suitable for forming a shallow and high-concentration operating layer which is important for enhancing the performance of the field effect transistor. It is known that, by using this method, not only the redistribution of impurities in the operating layer can be suppressed, but also a high electrical activation rate can be obtained.

【0004】短時間熱処理法は、急速な昇温(毎秒約1
00℃)及び極めて短時間の熱処理時間(1〜数10
秒)を有するプロセスであるため、効率の良い試料加熱
方式が必要とされる。このため、例えば半導体基板を熱
処理する場合、一般には、試料の垂直方向からハロゲン
ランプ等により赤外線を直接照射する方法が用いられて
きた。
The short-time heat treatment method has a rapid temperature rise (about 1 second per second).
Heat treatment time (1 to several tens)
Second), an efficient sample heating method is required. Therefore, for example, when heat-treating a semiconductor substrate, a method of directly irradiating infrared rays from a vertical direction of a sample with a halogen lamp or the like has been generally used.

【0005】このような直接加熱方式によると、半導体
の赤外線吸収・放散により、迅速に試料の昇・降温を行
なうことができ、例えば試料のおかれたプレートをジュ
ール熱で加熱する間接加熱方式等と比べて、より応答性
に優れた温度制御を行なうことができる。
According to such a direct heating method, it is possible to rapidly raise and lower the temperature of the sample by absorbing and radiating infrared rays from the semiconductor. For example, an indirect heating method of heating the plate on which the sample is placed with Joule heat. It is possible to perform temperature control with more excellent responsiveness as compared with.

【0006】このような短時間熱処理を行なう場合、高
温での大気のO2による試料の酸化を防ぐ目的で、Ar
(アルゴン),N2(窒素),H2(水素)等の不活性ガ
スを雰囲気として用いることが一般的に行なわれてい
る。
When such a short time heat treatment is performed, Ar is used to prevent the sample from being oxidized by O 2 in the atmosphere at a high temperature.
It is common practice to use an inert gas such as (argon), N 2 (nitrogen), H 2 (hydrogen) as an atmosphere.

【0007】また、このように雰囲気ガス中で短時間熱
処理を行なうことにより試料の酸化を防ぐことができる
上、試料の支持具あるいはサセプタと、試料の間の熱伝
導効率を著しく向上させることができ、温度均一性に優
れた熱処理を行なうことができる。
Further, by performing the heat treatment for a short time in the atmosphere gas in this way, the oxidation of the sample can be prevented, and the heat conduction efficiency between the sample support or the susceptor and the sample can be remarkably improved. It is possible to perform heat treatment with excellent temperature uniformity.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、このよ
うに雰囲気ガス中で短時間アニールを行なった場合、炉
芯管内に不規則なガスの流れが発生することがある。こ
のようなガスの流れは、高温度に加熱された試料と、そ
の上部の比較的低温度の炉芯管壁との間にセル状に発生
し、ベナール流とよばれる。ベナール流の発生は、短時
間アニール中の試料の面内温度均一性を低下させる原因
となりうることから、歩留りの優れた集積回路を作製す
るために回避すべき問題である。
However, when the annealing is performed for a short time in the atmosphere gas as described above, an irregular gas flow may occur in the furnace core tube. Such a gas flow is generated in a cell shape between the sample heated to a high temperature and the furnace core tube wall having a relatively low temperature above the sample, and is called a Benard flow. The generation of the Benard flow can be a cause of lowering the in-plane temperature uniformity of the sample during the short-time annealing, and is therefore a problem to be avoided in order to manufacture an integrated circuit with excellent yield.

【0009】本発明の目的は、以上述べたようなランプ
加熱処理に関し、ベナール対流の発生による温度不均一
効果を抑制し、高均一な熱処理を行なう熱処理装置を提
供することにある。
It is an object of the present invention to provide a heat treatment apparatus for the lamp heat treatment as described above, which suppresses the temperature non-uniformity effect due to the generation of Benard convection, and performs highly uniform heat treatment.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するた
め、本発明による熱処理装置においては、炉芯管を有す
る熱処理装置であって、炉芯管内に設置された試料基板
とその上部の炉芯管壁との距離の3乗、及び重力定数、
及び体膨張係数、及び試料基板とその上部の炉芯管壁と
の温度差、及び雰囲気ガスの動粘性係数の逆数、及び雰
囲気ガスの温度伝導率の逆数の積が、1700以下であ
る。
To achieve the above object, in a heat treatment apparatus according to the present invention, there is provided a heat treatment apparatus having a furnace core tube, wherein a sample substrate installed in the furnace core tube and a furnace core above it. Cube of distance to tube wall, and gravitational constant,
The product of the coefficient of body expansion, the temperature difference between the sample substrate and the furnace core tube wall above it, the reciprocal of the kinematic viscosity coefficient of the atmospheric gas, and the reciprocal of the thermal conductivity of the atmospheric gas is 1700 or less.

【0011】[0011]

【作用】熱処理中に雰囲気ガスの対流が発生して試料温
度の均一性を低下すると、結晶にスリップ線や反り等の
欠陥発生の原因となりうることが報告されている(Ko
hnoet al.J.Appl.Phys.69 1
294)。このような顕著な温度不均一効果は、対流の
中でも特にベナール流と呼ばれる不規則な流れによると
ころが大きいものと考えられる。
It has been reported that if convection of atmospheric gas occurs during heat treatment and the uniformity of the sample temperature is reduced, it may cause defects such as slip lines and warpage in the crystal (Ko.
hno et al. J. Appl. Phys. 69 1
294). It is considered that such conspicuous temperature nonuniformity is largely due to the irregular flow called Benard flow among convection.

【0012】ベナール対流は、試料付近で熱せられた雰
囲気ガスが浮力により上昇しようとすることにより発生
するもので、その発生程度は、試料基板上部の空間の広
さ、基板と基板上部壁面の温度差,雰囲気ガスの粘性、
等の値に依存することが知られている。
Benard convection is generated when the heated atmospheric gas near the sample tries to rise due to buoyancy. Difference, viscosity of atmospheric gas,
It is known to depend on the value of.

【0013】すなわち、グラスホフ数とプラントル数と
呼ばれる2つの無次元数の積の値がベナール対流発生の
指標となる。グラスホフ数とプラントル数の積は、試料
基板と、その上部の炉芯管壁との距離の3乗、及び重力
定数、及び体膨張係数、及び試料基板と、その上部の炉
芯管壁との温度差、及び雰囲気ガスの動粘性係数の逆
数、及び雰囲気ガスの温度伝導率の逆数の積となる。こ
の値が、約1700以上の場合に、ベナール流が発生す
ることが、経験的に知られている(J.P.Holma
n,HEAT TRANSFER,Mcgraw Hi
ll)。本発明は、このようなベナール流の発生条件を
回避しうる条件を備え、高均一な熱処理を提供するもの
である。
That is, the value of the product of two dimensionless numbers called Grashof number and Prandtl number is an index for the generation of Benard convection. The product of the Grashof number and the Prandtl number is the cube of the distance between the sample substrate and the furnace core tube wall above it, and the gravitational constant and the body expansion coefficient, and the sample substrate and the furnace core tube wall above it. It is the product of the temperature difference, the reciprocal of the kinematic viscosity of the atmosphere gas, and the reciprocal of the temperature conductivity of the atmosphere gas. It is empirically known that when this value is about 1700 or more, a Benard flow is generated (JP Holma.
n, HEAT TRANSFER, Mcgraw Hi
ll). The present invention provides a highly uniform heat treatment, which is provided with a condition that can avoid such a Benard flow generation condition.

【0014】[0014]

【実施例】以下に本発明の実施例について詳細に説明す
る。図1は、本発明の実施例の装置構成を概略的に示す
図である。
EXAMPLES Examples of the present invention will be described in detail below. FIG. 1 is a diagram schematically showing a device configuration of an embodiment of the present invention.

【0015】図において、ハロゲンランプ1は、石英ガ
ラス炉芯管2の外部の上方・下方に配置されている。3
インチGaAs基板3は、石英ガラス製のピン4で支え
られている。基板3と、基板上部の炉芯管壁との距離5
mm,雰囲気ガスはN2である。このような構成は、上
記ベナール対流の発生を回避しうる条件を満たしてい
る。
In the figure, a halogen lamp 1 is arranged above and below the quartz glass furnace core tube 2. Three
The inch GaAs substrate 3 is supported by pins 4 made of quartz glass. Distance 5 between the substrate 3 and the furnace core tube wall above the substrate
mm, atmosphere gas is N 2 . Such a structure satisfies the condition that the occurrence of Benard convection can be avoided.

【0016】以上の構成の装置を用いて、以下に示す実
験を行なった。面方位<100>Liquid Enc
apsulated Czochralski(LE
C)法アンドープ半絶縁性GaAs基板に注入エネルギ
ー100KeVでSi(プラス)を1×1013cm-2
温で注入した後、図1に示した熱処理装置を用いて、9
00℃で5秒間熱処理した。この結果、得られた活性層
シート抵抗のばらつきは、σRs=5Ω/□であり、N
2ガス雰囲気中で、基板と、基板上部の炉芯管壁との距
離15mmを有する熱処理装置を用いて熱処理した場合
の結果σRs=20Ω/□と比べて大幅に改善されてい
る。
The following experiment was conducted using the apparatus having the above-mentioned configuration. Plane orientation <100> Liquid Enc
updated Czochralski (LE
C) method After implanting Si (plus) into an undoped semi-insulating GaAs substrate at an injection energy of 100 KeV at 1 × 10 13 cm -2 at room temperature, using the heat treatment apparatus shown in FIG.
Heat treatment was performed at 00 ° C. for 5 seconds. As a result, the variation in the obtained active layer sheet resistance is σRs = 5Ω / □, and N
This is significantly improved compared to the result σRs = 20Ω / □ when the heat treatment is performed in a two- gas atmosphere using a heat treatment apparatus having a distance between the substrate and the furnace core tube wall above the substrate of 15 mm.

【0017】基板の寸法については、本実施例で用いた
3インチ径以外の任意の寸法に対しても本発明の装置は
有効である。
Regarding the size of the substrate, the apparatus of the present invention is effective for any size other than the 3-inch diameter used in this embodiment.

【0018】以上のことから、本発明の熱処理装置を用
いることにより、均一性の優れた熱処理を再現性よく行
なうことのできることが確認された。
From the above, it was confirmed that by using the heat treatment apparatus of the present invention, heat treatment with excellent uniformity can be performed with good reproducibility.

【0019】[0019]

【発明の効果】以上説明したように、本発明の装置によ
れば、例えばIII−V族化合物半導体の短時間熱処理
により得られたイオン注入活性層の基板面内の抵抗均一
性を従来よりも大幅に向上させることができ、従って、
高速集積回路の歩留りを大幅に改善することができる。
As described above, according to the device of the present invention, the resistance uniformity in the substrate surface of the ion-implanted active layer obtained by, for example, the short-time heat treatment of the III-V group compound semiconductor is made higher than that of the conventional one. Can be significantly improved, and therefore
The yield of high-speed integrated circuits can be greatly improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の装置構成を概略的に示す構成
図である。
FIG. 1 is a configuration diagram schematically showing a device configuration of an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 ハロゲンランプ 2 石英ガラス製炉芯管 3 3インチGaAs基板 4 石英ガラスピン 5 雰囲気ガス(N21 Halogen lamp 2 Quartz glass furnace core tube 3 3 inch GaAs substrate 4 Quartz glass pin 5 Atmosphere gas (N 2 )

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 炉芯管を有する熱処理装置であって、 炉芯管内に設置された試料基板とその上部の炉芯管壁と
の距離の3乗、及び重力定数、及び体膨張係数、及び試
料基板とその上部の炉芯管壁との温度差、及び雰囲気ガ
スの動粘性係数の逆数、及び雰囲気ガスの温度伝導率の
逆数の積が、1700以下であることを特徴とする熱処
理装置。
1. A heat treatment apparatus having a furnace core tube, wherein the cube of the distance between the sample substrate installed in the furnace core tube and the furnace core tube wall above it, the gravitational constant, and the body expansion coefficient, and A heat treatment apparatus characterized in that the product of the temperature difference between the sample substrate and the furnace core tube wall above it, the reciprocal of the kinematic viscosity coefficient of the atmospheric gas, and the reciprocal of the temperature conductivity of the atmospheric gas is 1700 or less.
JP7821392A 1992-02-28 1992-02-28 Heat treating apparatus Pending JPH05243240A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7821392A JPH05243240A (en) 1992-02-28 1992-02-28 Heat treating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7821392A JPH05243240A (en) 1992-02-28 1992-02-28 Heat treating apparatus

Publications (1)

Publication Number Publication Date
JPH05243240A true JPH05243240A (en) 1993-09-21

Family

ID=13655775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7821392A Pending JPH05243240A (en) 1992-02-28 1992-02-28 Heat treating apparatus

Country Status (1)

Country Link
JP (1) JPH05243240A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08288372A (en) * 1995-04-11 1996-11-01 Nippon Pillar Packing Co Ltd Wafer support plate
US9577153B2 (en) 2012-02-20 2017-02-21 Sharp Kabushiki Kaisha Light emission device and illumination device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08288372A (en) * 1995-04-11 1996-11-01 Nippon Pillar Packing Co Ltd Wafer support plate
US9577153B2 (en) 2012-02-20 2017-02-21 Sharp Kabushiki Kaisha Light emission device and illumination device

Similar Documents

Publication Publication Date Title
JP3125199B2 (en) Vertical heat treatment equipment
US5336641A (en) Rapid thermal annealing using thermally conductive overcoat
US4461670A (en) Process for producing silicon devices
JP3474258B2 (en) Heat treatment apparatus and heat treatment method
JP4894111B2 (en) Heat treatment equipment
JPH05243240A (en) Heat treating apparatus
JPH03108716A (en) Heat treating method for semiconductor integrated circuit device
JPS6139731B2 (en)
JPS60239400A (en) Process for annealing compound semiconductor
JPH02185037A (en) Short-time thermal treatment equipment
JPH05243171A (en) Semiconductor substrate heat treatment jig
US3007819A (en) Method of treating semiconductor material
JP3089669B2 (en) Method for manufacturing semiconductor device
JPH0521367A (en) Thermal processing apparatus
JPH04334018A (en) Heat treatment device
JPH0572096B2 (en)
JPH04275417A (en) Heat-treatment equipment
JPH03240238A (en) Heat-treating equipment
KR100328753B1 (en) Semiconductor device manufacturing method for gettering contamination elements
JPH08130192A (en) Thermal treatment equipment
JPH07326593A (en) Method and device for heat treatment
JPH03187219A (en) Heat treatment device
JP2006100303A (en) Substrate manufacturing method and heat treatment apparatus
JPS60240118A (en) Manufacture of si semiconductor
JPS59101825A (en) Manufacture of semiconductor device and heat treatment apparatus therefor