JPH11163070A - Temperature control method for heat treatment process in production of semiconductor device - Google Patents

Temperature control method for heat treatment process in production of semiconductor device

Info

Publication number
JPH11163070A
JPH11163070A JP32264397A JP32264397A JPH11163070A JP H11163070 A JPH11163070 A JP H11163070A JP 32264397 A JP32264397 A JP 32264397A JP 32264397 A JP32264397 A JP 32264397A JP H11163070 A JPH11163070 A JP H11163070A
Authority
JP
Japan
Prior art keywords
temperature
substrate
temperature measuring
light
measuring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP32264397A
Other languages
Japanese (ja)
Inventor
Shusaku Yanagawa
周作 柳川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP32264397A priority Critical patent/JPH11163070A/en
Publication of JPH11163070A publication Critical patent/JPH11163070A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Control Of Temperature (AREA)

Abstract

PROBLEM TO BE SOLVED: To control the board temperature accurately even when a board having radiation rate or light absorption (treating temperature) dependent on the film structure, film quality, impurity concentration, or the like, is heat treated by feeding the board temperature back to the lamp output and using it in closed circuit control for controlling the board to a desired temperature. SOLUTION: Temperature control method for measuring the temperature of a board 51 being heated through irradiation with light from a light source 113 by means of a thermocouple 11 without touching the board using a temperature measuring unit 1 contained in a heating furnace having the light source 113 as a heating means comprises a step for measuring the temperature of the board 51 using the temperature measuring unit 1 which is made of a high thermal conductivity material on the periphery of the contact part with the board 51 (temperature measuring part coating member 22) in the coating member 21 of the thermocouple 12 thereof and the coating member 21 (line part coating member 23) is made of a material having high light transmittance or reflectance except the periphery of the contact part, a step for measuring the temperature of the board 51 using the temperature measuring unit 1, and a step performing closed circuit control for feeding a measured value back to the output of the light source 113.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体装置製造の
熱処理工程における温度制御方法に関し、詳しくは閉回
路制御による温度制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a temperature control method in a heat treatment process for manufacturing a semiconductor device, and more particularly, to a temperature control method by closed circuit control.

【0002】[0002]

【従来の技術】近年、半導体デバイスの微細化にともな
いMOSデバイスでは、短チャネル効果を抑制するた
め、バイポーラデバイスでは遮断周波数fT を向上さ
せるために、浅い接合を高精度に形成する必要性が生じ
ている。そして浅い接合を形成する方法の一つとして、
高温で短時間の処理が可能な光照射による加熱方法(R
TA:Rapid Thermal Annealing )が採用されている。
またRTAは、イオン注入により生じた結晶欠陥の回復
やシンター等の各種アニーリング、酸化膜、窒化膜の形
成にも利用されている。そのため、さまざまな膜構造を
有する基板、さまざまな不純物濃度を有する基板等に対
し、基板温度を正確に制御することが極めて重要になっ
ている。
In recent years, in the MOS device with the miniaturization of semiconductor devices, in order to suppress the short channel effect, in order to improve the cutoff frequency f T is a bipolar device, the need to form a shallow junction with high accuracy Has occurred. And as one of the methods to form a shallow junction,
Heating method by light irradiation (R
TA: Rapid Thermal Annealing).
RTA is also used for recovery of crystal defects caused by ion implantation, various annealing methods such as sintering, and formation of oxide films and nitride films. Therefore, it is extremely important to accurately control the substrate temperature for substrates having various film structures, substrates having various impurity concentrations, and the like.

【0003】しかし、光照射による基板加熱では、膜構
造や膜質、不純物濃度等により基板の輻射率が変化する
ため、光の照射強度が一定〔開回路制御(Open Loop Co
ntrol )〕のもとでは、基板の光吸収量(処理温度)が
変化することになる。そのため、製造工程の複雑化にと
もない、各種ばらつき(膜厚、膜質、不純物量、構造等
によるばらつき)を含む基板の加熱状態を精度よく制御
することは極めて難しい。さらに基板加熱装置を構成す
る石英チューブの光透過率やチャンバの内壁の光反射
率、光源となるランプの出力の経時的な変化等によって
基板の処理温度が変化する。この問題に対処するため、
基板の温度を測定してその測定値をランプの出力にフィ
ードバックする閉回路制御(Closed Loop Control )が
検討されている。これにより、精度の高い基板温度の測
定が実現できれば、優れた基板温度制御が可能になる。
However, when the substrate is heated by light irradiation, the emissivity of the substrate changes depending on the film structure, film quality, impurity concentration, etc., so that the light irradiation intensity is constant [Open Loop Co., Ltd.
ntrol)], the amount of light absorption (processing temperature) of the substrate changes. Therefore, it is extremely difficult to accurately control the heating state of the substrate including various variations (variations due to film thickness, film quality, impurity amount, structure, and the like) as the manufacturing process becomes complicated. Further, the processing temperature of the substrate changes due to the light transmittance of the quartz tube constituting the substrate heating device, the light reflectance of the inner wall of the chamber, the output of a lamp serving as a light source, and the like over time. To address this issue,
Closed loop control, which measures the temperature of the substrate and feeds back the measured value to the output of the lamp, has been studied. Thereby, if accurate measurement of the substrate temperature can be realized, excellent substrate temperature control becomes possible.

【0004】また、基板の温度を測定する装置としては
放射温度計がある。この放射温度計は非接触で温度測定
ができる利点がある。別の温度測定装置としては熱電対
がある。熱電対で温度測定する場合には、基板の表面に
熱電対を直接接触させる方法、耐熱性接着剤を用いて基
板の表面に熱電対を固定する方法等がある。これらの方
法は、熱電対の測温部(合金部)が基板に直接接触する
ので、基板温度をほぼ正確に測定することができるとい
う長所を有する。
A device for measuring the temperature of a substrate includes a radiation thermometer. This radiation thermometer has the advantage that temperature can be measured without contact. Another temperature measuring device is a thermocouple. When measuring the temperature with a thermocouple, there are a method of directly contacting the thermocouple with the surface of the substrate, a method of fixing the thermocouple to the surface of the substrate using a heat-resistant adhesive, and the like. These methods have the advantage that the temperature of the substrate (alloy portion) of the thermocouple directly contacts the substrate, so that the substrate temperature can be measured almost accurately.

【0005】他の温度測定装置としては、シリコンカー
バイド(SiC)からなる被覆部材に熱電対を内挿し、
その熱電対を被覆部材を介して基板に接触させて、基板
温度を間接的に測定する装置が特開平4−148546
号公報に開示されている。
As another temperature measuring device, a thermocouple is inserted into a covering member made of silicon carbide (SiC),
An apparatus for indirectly measuring the temperature of a substrate by bringing the thermocouple into contact with the substrate via a covering member is disclosed in Japanese Patent Laid-Open No. 4-148546.
No. 6,086,045.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記放
射温度計を用いた温度測定では、熱電対を用いた接触式
の温度測定方法と異なり、測定対象の表面状態によって
測定精度が左右されたり、測定環境の影響を強く受け
る。そのため、様々な膜構造や不純物濃度を持つ基板で
は基板毎に輻射率が異なり、正確な温度測定を行うこと
が困難である。
However, in the temperature measurement using the radiation thermometer, unlike the contact-type temperature measurement method using a thermocouple, the measurement accuracy is affected by the surface condition of the object to be measured, or the measurement accuracy is affected. Be strongly influenced by the environment. Therefore, the emissivity differs for each substrate having various film structures and impurity concentrations, and it is difficult to perform accurate temperature measurement.

【0007】また、基板に熱電対を直接接触させて温度
測定する方法では、基板と熱電対との反応による熱電対
の劣化、基板の金属汚染等の問題が発生する。
Further, in the method of measuring the temperature by bringing a thermocouple into direct contact with the substrate, problems such as deterioration of the thermocouple due to the reaction between the substrate and the thermocouple and metal contamination of the substrate occur.

【0008】さらに被覆部材に内装した熱電対による温
度測定では、熱電対による基板への金属汚染の問題は解
決されるが、熱電対が測定しているのは被覆部材の温度
になる。また光照射型熱処理装置により基板が熱処理さ
れる過程で、基板の温度が上昇すると、熱伝導により被
覆部材が加熱されるだけではなく、被覆部材自体が照射
された光を直接吸収して加熱される。よって、光照射強
度を変える閉回路制御は、照射強度に依存して被覆部材
の光吸収による加熱量が変化するため、様々な膜構造や
不純物濃度を持つ基板の輻射率の変化による光吸収量
(基板温度)の変化を正確に測定することは難しい。こ
のように、基板温度の精度の高い測定技術がないことか
ら、従来の閉回路制御による基板温度制御には問題があ
った。
Further, in the temperature measurement using a thermocouple provided inside the covering member, the problem of metal contamination of the substrate by the thermocouple is solved, but the temperature measured by the thermocouple is the temperature of the covering member. Also, when the temperature of the substrate rises in the process of heat-treating the substrate by the light irradiation type heat treatment apparatus, not only is the coated member heated by heat conduction, but the coated member itself is directly absorbed by the irradiated light and heated. You. Therefore, in the closed-circuit control that changes the light irradiation intensity, the amount of heating due to the light absorption of the covering member changes depending on the irradiation intensity, and thus the amount of light absorption due to the change in the emissivity of the substrate having various film structures and impurity concentrations. It is difficult to accurately measure a change in (substrate temperature). As described above, since there is no technique for measuring the substrate temperature with high accuracy, there has been a problem in the conventional substrate temperature control by closed circuit control.

【0009】また基板からの熱伝導と被覆部材からの輻
射吸収、および照射ランプ光の吸収は、被覆部材として
用いる材料により異なる。石英と炭化シリコン(Si
C)の場合を例に示すと、石英による被覆では、光吸収
が抑えられるが、熱伝導が悪いために基板温度の測定が
難しく熱応答性も劣る。一方、炭化シリコンによる被覆
では、基板温度の伝導には優れるが、光吸収が多いため
に測定温度の光照射強度依存が顕著に現れる。このよう
な熱特性により、それぞれの材料には一長一短がある。
Further, heat conduction from the substrate, radiation absorption from the covering member, and absorption of irradiation lamp light differ depending on the material used as the covering member. Quartz and silicon carbide (Si
In the case of C), for example, coating with quartz suppresses light absorption, but poor heat conduction makes it difficult to measure the substrate temperature, resulting in poor thermal response. On the other hand, the coating with silicon carbide is excellent in the conductivity of the substrate temperature, but has a large light absorption, so that the measurement temperature significantly depends on the light irradiation intensity. Due to such thermal characteristics, each material has advantages and disadvantages.

【0010】また、被覆部材と基板との接触部において
被覆部材を平坦に加工して、疑似的な面接触状態を形成
し、基板からの熱伝導効率を増す方法もあるが、この方
法では被覆部材の熱容量を増やすことにもなる。そのた
め、光の直接吸収による加熱が増えるので正確な基板の
温度測定ができない。
There is also a method in which the covering member is flattened at a contact portion between the covering member and the substrate to form a pseudo-surface contact state, thereby increasing the efficiency of heat conduction from the substrate. This also increases the heat capacity of the member. As a result, heating due to direct absorption of light increases, so that accurate temperature measurement of the substrate cannot be performed.

【0011】よって、光照射強度を変える閉回路制御で
は、照射強度に依存して被覆部材の光吸収による加熱量
が変化するため、さまざまな膜構造や不純物濃度を持っ
た基板の輻射率の変化による光吸収量(基板温度)の変
化を正確に測定することはできない。
Therefore, in the closed-circuit control for changing the light irradiation intensity, the amount of heating due to the light absorption of the covering member changes depending on the irradiation intensity, so that the emissivity of the substrate having various film structures and impurity concentrations changes. It is not possible to accurately measure the change in light absorption (substrate temperature) due to light.

【0012】[0012]

【課題を解決するための手段】本発明は、上記課題を解
決するためになされた半導体装置製造の熱処理工程にお
ける温度制御方法であり、加熱手段に光源を有する加熱
炉内に収容され、その光源からの光照射によって加熱さ
れる基板の温度を熱電対により接触式に測定する温度測
定装置を用いた温度制御方法である。上記温度測定装置
の熱電対を被覆する被覆部材における、基板との接触部
周辺は熱伝導率の高い材料で形成され、かつ基板との接
触部周辺を除く被覆部材は光透過率の高い材料または光
の反射率の高い材料で形成されている、このような温度
測定装置を用いて、基板の温度を測定する工程と、その
測定した値を前記光源の出力にフィードバックする閉回
路制御を行う工程とを備えている。
SUMMARY OF THE INVENTION The present invention is directed to a temperature control method in a heat treatment step for manufacturing a semiconductor device, which is provided to solve the above-mentioned problems, and is housed in a heating furnace having a light source in the heating means. This is a temperature control method using a temperature measuring device that measures the temperature of a substrate heated by light irradiation from a contact point using a thermocouple. In the covering member covering the thermocouple of the temperature measuring device, the periphery of the contact portion with the substrate is formed of a material having a high thermal conductivity, and the covering member excluding the periphery of the contact portion with the substrate is a material having a high light transmittance or A step of measuring the temperature of the substrate using such a temperature measuring device, which is formed of a material having a high light reflectance, and a step of performing closed circuit control for feeding back the measured value to the output of the light source And

【0013】上記半導体装置製造の熱処理工程における
温度制御方法では、上記構成の温度測定装置による基板
温度の測定と、その測定値を光源の出力にフィードバッ
クする閉回路制御とを組み合わせることにより、基板温
度の制御精度が高まる。すなわち、上記温度測定装置で
は、熱電対が被覆部材により被覆され、この被覆部材の
うち、測温部を覆う部分の被覆部材が熱伝導性の高い材
料からなることから、基板の熱が測温部に伝導し易くな
る。そのため、被覆部材を介しての温度測定ではある
が、基板の温度を精度良く測定することが可能になる。
In the temperature control method in the heat treatment step of manufacturing a semiconductor device, the substrate temperature is measured by the temperature measuring apparatus having the above-described configuration, and the closed circuit control for feeding back the measured value to the output of the light source is combined. Control accuracy increases. That is, in the above temperature measuring device, the thermocouple is covered with the covering member, and the covering member of the covering member covering the temperature measuring section is made of a material having high thermal conductivity. It becomes easy to conduct to the part. Therefore, although the temperature is measured via the covering member, the temperature of the substrate can be accurately measured.

【0014】また、この熱伝導性の高い材料からなる被
覆部材を除く他の部分の被覆部材は光の透過率の高い材
料または光の反射率の高い材料からなることから、その
部分の被覆部材が光の照射を受けてその光を吸収するこ
とがほとんどない。そのため、光の照射による被覆部材
の温度上昇がほとんどなくなるので、被覆部材の吸熱に
よる熱電対の測温値の変化、基板からの輻射による測温
値の変化がほとんど起こらない。したがって、基板温度
を高精度に測定することが可能になり、その温度に基づ
いて光源の出力に対してフィードバックをかけることか
ら、基板温度を高精度に制御することが可能になる。
Since the covering member of the other part except the covering member made of the material having high thermal conductivity is made of a material having a high light transmittance or a material having a high light reflectivity, the covering member of that part is made of a material having a high light reflectance. Hardly receives the light and absorbs the light. Therefore, the temperature rise of the covering member due to the light irradiation hardly occurs, so that a change in the temperature measurement value of the thermocouple due to heat absorption of the covering member and a change in the temperature measurement value due to radiation from the substrate hardly occur. Therefore, the substrate temperature can be measured with high precision, and the output of the light source is fed back based on the temperature, so that the substrate temperature can be controlled with high precision.

【0015】[0015]

【発明の実施の形態】本発明に係わる半導体装置製造の
熱処理工程における温度制御方法の実施形態の一例を、
図1に温度測定装置を基板とともに概略断面図によって
説明し、光照射型熱処理装置の一例を図2の概略構成断
面図によって説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An example of an embodiment of a temperature control method in a heat treatment step of manufacturing a semiconductor device according to the present invention will be described.
FIG. 1 is a schematic sectional view of a temperature measuring device together with a substrate, and an example of a light irradiation type heat treatment device will be described with reference to a schematic sectional view of FIG.

【0016】図1に示すように、半導体装置製造の熱処
理工程において被熱処理基板の温度測定に用いる温度測
定装置1は、図2によって説明する加熱手段に光源11
3を有する加熱炉(石英製のチューブ112)内に収容
され、上記光源113からの光照射により加熱される基
板51の温度を熱電対11により接触式に測定するもの
である。その熱電対11を被覆する被覆部材21におけ
る上記基板51との接触部周辺(測温部12の測温部被
覆部材22)は熱伝導率の高い材料からなる。そのよう
な材料としては、例えば炭化シリコン、シリコン化合物
(例えば、モリブデンシリサイド、チタンシリサイド、
コバルトシリサイド等のシリサイド)もしくはアルミナ
が用いられている。一方、上記基板51との接触部周辺
を除く上記温度測定装置1の被覆部材21(線部被覆部
材23)は光透過率の高い材料または光の反射率が高い
材料からなる。光透過率の高い材料としては、例えば石
英が用いられている。または光の反射率が高い材料とし
ては、例えばアルミナが用いられている。
As shown in FIG. 1, a temperature measuring device 1 used for measuring the temperature of a substrate to be heat-treated in a heat-treating step in the manufacture of a semiconductor device includes a light source 11 as a heating means described with reference to FIG.
The temperature of the substrate 51, which is housed in a heating furnace (quartz tube 112) having a tube 3 and heated by light irradiation from the light source 113, is measured in a contact manner by the thermocouple 11. The periphery of the covering member 21 covering the thermocouple 11 around the contact portion with the substrate 51 (the temperature measuring section covering member 22 of the temperature measuring section 12) is made of a material having high thermal conductivity. Such materials include, for example, silicon carbide, silicon compounds (eg, molybdenum silicide, titanium silicide,
Silicide such as cobalt silicide) or alumina is used. On the other hand, the covering member 21 (the line covering member 23) of the temperature measuring device 1 except for the vicinity of the contact portion with the substrate 51 is made of a material having a high light transmittance or a material having a high light reflectance. As a material having a high light transmittance, for example, quartz is used. Alternatively, as a material having a high light reflectance, for example, alumina is used.

【0017】具体的には、接触式熱電対からなる温度測
定装置1は、熱電対11が被覆部材21によって被覆さ
れている構造となっている。この熱電対11は、例え
ば、白金(Pt)−白金(Pt)・10%ロジウム(R
h)熱電対であり、熱電対11の測温部(合金部)12
は、白金線と白金・10%ロジウム線との合金により形
成されている。また少なくともいずれか一方の線は絶縁
管31内に遊挿されていて、この絶縁管31は例えば石
英からなる。この例では、白金の導線13の方が絶縁管
31内に遊挿されている。当然のことながら、白金・1
0%ロジウム線14の方が絶縁管31内に遊挿されてい
てもよい。
More specifically, the temperature measuring device 1 composed of a contact thermocouple has a structure in which the thermocouple 11 is covered by a covering member 21. The thermocouple 11 is made of, for example, platinum (Pt) -platinum (Pt) · 10% rhodium (R
h) a thermocouple, and a temperature measuring part (alloy part) 12 of the thermocouple 11
Is formed of an alloy of a platinum wire and a platinum / 10% rhodium wire. At least one of the wires is loosely inserted into the insulating tube 31, and the insulating tube 31 is made of, for example, quartz. In this example, the platinum conductive wire 13 is loosely inserted into the insulating tube 31. Naturally, platinum 1
The 0% rhodium wire 14 may be loosely inserted into the insulating tube 31.

【0018】上記被覆部材21のうち、上記測温部12
を覆う部分の測温部被覆部材22は、熱伝導性の高い材
料で構成され、測温部12に十分に接触する状態に設け
られている。この測温部被覆部材22は、例えば石英
(熱伝導率=1.66W・m-1・K-1)の十倍程度以上
の熱伝導率を有する材料、好ましくは100W・m-1
-1程度以上の熱伝導率を有する材料からなる。このよ
うな材料としては、例えば炭化シリコン(熱伝導率=2
61W・m-1・K-1)がある。
The temperature measuring section 12 of the covering member 21
Is covered with a material having high thermal conductivity, and is provided in a state where the temperature measuring unit 12 is sufficiently in contact with the temperature measuring unit 12. The temperature measuring section covering member 22 is made of, for example, a material having a thermal conductivity that is about ten times or more that of quartz (thermal conductivity = 1.66 W · m −1 · K −1 ), preferably 100 W · m −1 · K.
It is made of a material having a thermal conductivity of about K -1 or more. As such a material, for example, silicon carbide (thermal conductivity = 2
61 W · m −1 · K −1 ).

【0019】上記測温部被覆部材22は、測温部12に
十分に接触し、かつ、熱伝導性の高い材料である炭化シ
リコンで形成されている。このことから、測温部被覆部
材22を介しての温度測定ではあるが、基板51の熱は
測温部12へ十分に伝わり、基板51の温度を測定する
ことが可能になる。さらに測温部被覆部材22は、光の
直接の吸収を極力抑えるために表面積を小さく、また熱
応答性を高めるために熱容量の小さな構造としている。
すなわち、測温部被覆部材22の形状は、測温部12に
対してキャップ形状を成していて、例えば、キャップの
外径が1.4mm、キャップの内径が0.9mm、キャ
ップの高さ1.4mmに形成されている。
The temperature measuring section covering member 22 is made of silicon carbide, which is a material having high thermal conductivity, which is in sufficient contact with the temperature measuring section 12. From this, although the temperature is measured via the temperature measuring section covering member 22, the heat of the substrate 51 is sufficiently transmitted to the temperature measuring section 12, and the temperature of the substrate 51 can be measured. Further, the temperature measuring section covering member 22 has a structure having a small surface area in order to minimize direct absorption of light and a small heat capacity in order to enhance thermal responsiveness.
That is, the shape of the temperature measuring section covering member 22 is a cap shape with respect to the temperature measuring section 12, for example, the outer diameter of the cap is 1.4 mm, the inner diameter of the cap is 0.9 mm, and the height of the cap is It is formed to 1.4 mm.

【0020】また、上記被覆部材21のうち、上記測温
部被覆部材22を除く他の部分の線部被覆部材23は、
赤外線の透過性に優れた石英で構成されていて、しかも
光の直接の吸収を極力抑えた構造として円形断面を有す
る管状に形成されているので、光の照射を受けてもその
光を吸収することがほとんどない。よって、光の照射に
よる線部被覆部材23の温度上昇がほとんどなくなるの
で、線部被覆部材23の吸熱による熱電対11の測温値
の変化はほとんど起こらない。
The line covering member 23 other than the temperature measuring unit covering member 22 in the covering member 21 is
It is made of quartz with excellent infrared transmittance, and it is formed in a tubular shape with a circular cross section as a structure that minimizes the direct absorption of light, so it absorbs light even when it is irradiated with light There are few things. Therefore, the temperature rise of the wire covering member 23 due to the light irradiation hardly occurs, so that the temperature measurement value of the thermocouple 11 due to the heat absorption of the wire covering member 23 hardly changes.

【0021】また、一般に熱電対11の導線13,14
の各表面は光を反射し易い状態に形成されている。その
ため、熱電対11に光が照射されても、熱電対11は照
射された光の影響をほとんど受けることはない。さら
に、上記測温部被覆部材22が耐熱性が高く通常のシリ
コン基板の熱処理温度(1200℃以下)では熱的に安
定な炭化シリコンで形成されているため、熱処理時に上
記測温部被覆部材22によって基板51が汚染されるこ
ともない。
In general, the conductors 13 and 14 of the thermocouple 11
Are formed in a state in which light is easily reflected. Therefore, even if the thermocouple 11 is irradiated with light, the thermocouple 11 is hardly affected by the irradiated light. Further, since the temperature measuring section covering member 22 is formed of silicon carbide which has high heat resistance and is thermally stable at a normal heat treatment temperature of a silicon substrate (1200 ° C. or lower), the temperature measuring section covering member 22 is not heat treated. The substrate 51 is not contaminated by the above.

【0022】なお、基板51は、石英トレー(図示省
略)より突出した石英製の複数本(例えば2本)の基板
支持部(図示省略)とともに、上記温度測定装置1の先
端部分になる測温部被覆部材22によって水平に支持さ
れている。
The substrate 51 has a plurality of (for example, two) quartz substrate supporting portions (not shown) protruding from a quartz tray (not shown) and a temperature measuring device to be a tip portion of the temperature measuring device 1. It is horizontally supported by the part covering member 22.

【0023】次に、上記実施形態で説明した温度測定装
置1を使用する光照射型熱処理装置の一例を、図2の概
略構成断面図によって説明する。
Next, an example of a light irradiation type heat treatment apparatus using the temperature measuring apparatus 1 described in the above embodiment will be described with reference to a schematic sectional view of FIG.

【0024】図2に示すように、金で被覆された反応炉
111の内部には、赤外線に対して高い透過性を有する
石英ガラスによりなるチューブ112が設置され、この
チューブ112の側周に加熱用の光源113となるハロ
ゲンランプが設置されている。そして反応炉111の一
端側に上記チューブ112の一端側を設け、その部分に
は、基板51の搬出入の際に開閉し、さらに上記チュー
ブ112内を密閉する時にはこのチューブ112内を気
密にできるように、パッキン114(例えば樹脂製のパ
ッキン)を装着したドア115が備えられている。
As shown in FIG. 2, a tube 112 made of quartz glass having a high transmittance to infrared rays is installed inside a reaction furnace 111 covered with gold. A halogen lamp serving as a light source 113 is provided. One end of the tube 112 is provided at one end of the reaction furnace 111. The tube 112 is opened and closed at the time of loading and unloading of the substrate 51, and the inside of the tube 112 can be airtight when the tube 112 is sealed. Thus, the door 115 provided with the packing 114 (for example, packing made of resin) is provided.

【0025】一方、上記チューブ112の他端側にはガ
スを導入するためのガス導入管116が接続されてい
る。そして上記チューブ112の内部には、基板51を
支持するための石英製のトレー117が置かれている。
このトレー117には石英製の基板支持部118が形成
されていて、この基板支持部118とともにトレー11
7上に配置した温度測定装置1の先端部(前記図1によ
って説明した測温部被覆部材22を介した測温部12)
によって基板51が支持されている。また温度測定装置
1の熱電対の導線13,14は反応炉111の端部に設
けた孔119より外部に引き出されている。また反応炉
111にはパイロメーター131により温度測定を可能
とする窓120が形成されている。このように、光照射
型熱処理装置101は構成されている。
On the other hand, a gas introduction pipe 116 for introducing a gas is connected to the other end of the tube 112. A quartz tray 117 for supporting the substrate 51 is placed inside the tube 112.
The tray 117 is provided with a substrate support portion 118 made of quartz.
(Temperature measuring section 12 via temperature measuring section covering member 22 described with reference to FIG. 1)
The substrate 51 is supported by. The thermocouple wires 13 and 14 of the temperature measuring device 1 are drawn out through holes 119 provided at the end of the reaction furnace 111. In addition, a window 120 is formed in the reaction furnace 111 so that a temperature can be measured by a pyrometer 131. Thus, the light irradiation type heat treatment apparatus 101 is configured.

【0026】上記図1によって説明した温度測定装置1
を用いて、第1工程では、図2によって説明した光照射
型熱処理装置101により加熱される上記基板51の温
度を測定する。
The temperature measuring device 1 described with reference to FIG.
In the first step, the temperature of the substrate 51 heated by the light irradiation type heat treatment apparatus 101 described with reference to FIG. 2 is measured.

【0027】次いで第2工程で、上記基板51の温度の
測定値を上記光源113の出力にフィードバックして、
基板51の温度を所定範囲内に保持するように光源11
3の出力を調節する閉回路制御を行う。
Next, in a second step, the measured value of the temperature of the substrate 51 is fed back to the output of the light source 113,
The light source 11 is controlled to maintain the temperature of the substrate 51 within a predetermined range.
The closed circuit control for adjusting the output of No. 3 is performed.

【0028】上記閉回路制御は、例えば、基板温度が高
い場合にはその測定温度値と設定温度値との差を求め、
その差に基づいて光源113の出力を減少させて基板温
度を設定温度に一致させるようにし、一方、基板温度が
低い場合にはその測定温度値と設定温度値との差を求
め、その差に基づいて光源113の出力を増加させるこ
とにより基板温度を設定温度に一致させるようにして、
常に基板温度が設定温度に保持されるようにする。上記
基板温度の測定値と設定温度値との差より光源の出力の
増減量は、例えば予め求めておいたデータに基づいて決
定すればよい。
In the closed circuit control, for example, when the substrate temperature is high, the difference between the measured temperature value and the set temperature value is obtained,
Based on the difference, the output of the light source 113 is reduced so that the substrate temperature matches the set temperature. On the other hand, when the substrate temperature is low, the difference between the measured temperature value and the set temperature value is obtained. By increasing the output of the light source 113 based on the temperature of the substrate to match the set temperature,
The substrate temperature is always kept at the set temperature. From the difference between the measured substrate temperature and the set temperature, the amount of increase or decrease in the output of the light source may be determined based on, for example, data obtained in advance.

【0029】上記半導体装置製造の熱処理工程における
温度制御方法では、上記構成の温度測定装置1による基
板51の温度測定と、その測定値を光源113の出力に
フィードバックする閉回路制御とを組み合わせることに
より、基板51の温度制御の精度が高まる。すなわち、
上記温度測定装置1では、熱電対11が被覆部材21に
より被覆され、この被覆部材21のうち、測温部12を
覆う部分の測温部被覆部材22が熱伝導性の高い材料か
らなることから、基板51の温度が測温部12に伝導し
易くなる。そのため、測温部被覆部材22を介しての温
度測定ではあるが、基板51の温度を精度良く測定する
ことが可能になる。
In the temperature control method in the heat treatment step of manufacturing the semiconductor device, the temperature measurement of the substrate 51 by the temperature measuring device 1 having the above-described configuration is combined with the closed circuit control for feeding back the measured value to the output of the light source 113. Thus, the accuracy of controlling the temperature of the substrate 51 is improved. That is,
In the temperature measuring device 1, the thermocouple 11 is covered with the covering member 21, and the temperature measuring unit covering member 22 of the covering member 21 covering the temperature measuring unit 12 is made of a material having high thermal conductivity. In addition, the temperature of the substrate 51 is easily transmitted to the temperature measuring unit 12. Therefore, although the temperature is measured via the temperature measuring section covering member 22, the temperature of the substrate 51 can be accurately measured.

【0030】また、測温部被覆部材22を除く他の部分
の線部被覆部材23は光の透過率の高い材料または光の
反射率の高い材料からなることから、その線部被覆部材
23が光の照射を受けてその光を吸収することがほとん
どない。そのため、光の照射による線部被覆部材23の
温度上昇がほとんどなくなるので、線部被覆部材23の
吸熱による熱電対11の測温値の変化、基板51からの
輻射による測温値の変化がほとんど起こらない。したが
って、基板51の温度を高精度に測定することが可能に
なり、その温度に基づいて光源113の出力に対してフ
ィードバックをかけることから、基板51の温度を高精
度に制御することが可能になる。
Since the wire covering member 23 other than the temperature measuring portion covering member 22 is made of a material having a high light transmittance or a material having a high light reflectivity, the wire covering member 23 is formed of a material having a high light reflectance. It hardly absorbs the light when it is irradiated. Therefore, the temperature rise of the wire portion covering member 23 due to light irradiation hardly occurs, so that the change in the temperature measurement value of the thermocouple 11 due to the endothermic heat of the wire portion covering member 23 and the change in the temperature measurement value due to the radiation from the substrate 51 hardly occur. Does not happen. Therefore, the temperature of the substrate 51 can be measured with high accuracy, and the output of the light source 113 is fed back based on the temperature, so that the temperature of the substrate 51 can be controlled with high accuracy. Become.

【0031】次に比較例として従来の接触式熱電対の温
度測定装置を、図3の概略構成断面図によって説明す
る。図3では、従来型の温度測定装置201が光照射型
熱処理装置の石英製のチューブ112内に挿入されてい
て、基板51の温度を測定している状態を示しており、
前記図1によって説明した構成部品と同様のものには同
一符号を付与する。この従来型の温度測定装置201
は、熱電対11が炭化シリコン(SiC)からなる被覆
部材221によって被覆されている構造となっている。
この熱電対11は、例えば、白金(Pt)−白金(P
t)・10%ロジウム(Rh)熱電対であり、熱電対1
1の測温部(合金部)12は、白金線と白金・10%ロ
ジウム線との合金により形成されている。また少なくと
もいずれか一方の線は絶縁管31内に遊挿されていて、
この絶縁管31は例えば石英からなる。この例では、白
金の導線13の方が絶縁管31内に遊挿されている。
Next, as a comparative example, a conventional temperature measuring device for a contact thermocouple will be described with reference to the schematic sectional view of FIG. FIG. 3 shows a state in which the conventional temperature measuring device 201 is inserted into the quartz tube 112 of the light irradiation type heat treatment device, and the temperature of the substrate 51 is measured.
The same components as those described with reference to FIG. 1 are denoted by the same reference numerals. This conventional temperature measuring device 201
Has a structure in which the thermocouple 11 is covered with a covering member 221 made of silicon carbide (SiC).
The thermocouple 11 is, for example, platinum (Pt) -platinum (P
t) 10% rhodium (Rh) thermocouple, thermocouple 1
The first temperature measuring part (alloy part) 12 is formed of an alloy of a platinum wire and a platinum / 10% rhodium wire. Also, at least one of the wires is loosely inserted into the insulating tube 31,
This insulating tube 31 is made of, for example, quartz. In this example, the platinum conductive wire 13 is loosely inserted into the insulating tube 31.

【0032】上記従来型の温度測定装置201では、熱
電対11が測定しているのは被覆部材221の温度であ
る。光照射型熱処理装置(図示省略)により基板51が
熱処理される過程で、基板51が加熱されてその温度が
上昇すると、基板51からの熱伝導により被覆部材22
1が加熱されるだけではなく、被覆部材221自身が光
源113の光を直接吸収して加熱されるため、基板温度
の正確な測定は困難となる。基板51からの熱伝導と被
覆部材221の基板51からの輻射、および光源113
からの光の吸収は、被覆部材221として用いる材料に
より異なり、石英と炭化シリコンの場合を例に示すと、
石英は、輻射吸収が少なく熱伝導が悪いために、基板温
度の測定が難しく熱応答性も劣る。一方、炭化シリコン
は輻射吸収が多く熱伝導が良いために、炭化シリコンに
よる被覆では基板温度の伝導には優れるが光吸収が多く
測定温度の光照射強度依存が顕著に現れる。
In the above-mentioned conventional temperature measuring device 201, what the thermocouple 11 measures is the temperature of the covering member 221. In the process of heating the substrate 51 by a light irradiation type heat treatment apparatus (not shown), the substrate 51 is heated and its temperature rises.
Not only is the substrate 1 heated, but also the coating member 221 itself is heated by directly absorbing the light of the light source 113, so that accurate measurement of the substrate temperature becomes difficult. Heat conduction from the substrate 51, radiation of the covering member 221 from the substrate 51, and light source 113
The absorption of light from varies depending on the material used as the covering member 221, and in the case of quartz and silicon carbide as an example,
Since quartz has low radiation absorption and poor heat conduction, it is difficult to measure the substrate temperature and has poor thermal responsiveness. On the other hand, since silicon carbide has a large amount of radiation absorption and good heat conduction, coating with silicon carbide is excellent in substrate temperature conduction, but has a large amount of light absorption, and the measurement temperature is significantly dependent on light irradiation intensity.

【0033】次に基板の輻射率を変えるための膜厚を変
化させた3種類のサンプルの構造を図4によって説明す
る。
Next, the structures of three types of samples in which the film thickness for changing the emissivity of the substrate is changed will be described with reference to FIG.

【0034】図4の(1)に示すように、第1評価サン
プル61は、シリコン基板62の一方側(表面側)に酸
化シリコン(SiO2 )膜63、150nmの厚さの多
結晶シリコン膜64、300nmの厚さのキャッピング
酸化シリコン膜65が積層され、シリコン基板62の他
方側(裏面側)に酸化シリコン(SiO2 )膜66、1
50nmの厚さの多結晶シリコン膜67が積層されたも
のである。そして上記酸化シリコン膜63,66は70
0nm〜900nmの範囲で厚さを変えているが、光吸
収量の膜厚依存性は少ないものとなっている。また多結
晶シリコン膜64には打ち込みエネルギーが40ke
V、ドーズ量が5.4×1014個/cm2なる条件で二
フッ化ホウ素(BF2 )がイオン注入されている。
As shown in FIG. 4A, a first evaluation sample 61 has a silicon oxide (SiO 2 ) film 63 on one side (front side) of a silicon substrate 62 and a polycrystalline silicon film having a thickness of 150 nm. A capping silicon oxide film 65 having a thickness of 64 nm or 300 nm is laminated, and a silicon oxide (SiO 2 ) film 66, 1 is formed on the other side (back side) of the silicon substrate 62.
The polycrystalline silicon film 67 having a thickness of 50 nm is laminated. The silicon oxide films 63 and 66 are 70
Although the thickness is changed in the range of 0 nm to 900 nm, the dependency of the light absorption amount on the film thickness is small. The implantation energy of the polycrystalline silicon film 64 is 40 ke.
V and boron difluoride (BF 2 ) are ion-implanted under the condition that the dose is 5.4 × 10 14 / cm 2 .

【0035】図4の(2)に示すように、第2評価サン
プル71は、シリコン基板72の一方側(表面側)に8
00nmの厚さの酸化シリコン(SiO2 )膜73、1
50nmの厚さの多結晶シリコン膜74、300nmの
厚さのキャッピング酸化シリコン膜75が積層され、シ
リコン基板72の他方側(裏面側)に800nmの厚さ
の酸化シリコン(SiO2 )膜76、多結晶シリコン膜
77が積層されたものである。そして上記裏面側の多結
晶シリコン膜77は150nm〜350nmの範囲で厚
さを変化させており、光吸収量の膜厚依存性は第1評価
サンプル61よりも大きくなっている。また表面側の多
結晶シリコン膜74には、打ち込みエネルギーが40k
eV、ドーズ量が5.4×1014個/cm2 なる条件で
二フッ化ホウ素(BF2 )がイオン注入されている。
As shown in FIG. 4B, the second evaluation sample 71 is provided on one side (front side) of the silicon substrate 72.
A silicon oxide (SiO 2 ) film 73, 1 having a thickness of 00 nm;
A polycrystalline silicon film 74 having a thickness of 50 nm and a capping silicon oxide film 75 having a thickness of 300 nm are laminated, and a silicon oxide (SiO 2 ) film 76 having a thickness of 800 nm is formed on the other side (back side) of the silicon substrate 72. The polycrystalline silicon film 77 is laminated. The thickness of the polycrystalline silicon film 77 on the rear surface side is changed in the range of 150 nm to 350 nm, and the dependency of the light absorption amount on the film thickness is larger than that of the first evaluation sample 61. The implantation energy of 40 k is applied to the polycrystalline silicon film 74 on the front side.
Boron difluoride (BF 2 ) is ion-implanted under the conditions of eV and a dose of 5.4 × 10 14 / cm 2 .

【0036】図4の(3)に示すように、第3評価サン
プル81は、シリコン基板82の一方側(表面側)に酸
化シリコン(SiO2 )膜83、150nmの厚さの多
結晶シリコン膜84、300nmの厚さのキャッピング
酸化シリコン膜85が積層され、シリコン基板82の他
方側(裏面側)に酸化シリコン(SiO2 )膜86、1
50nmの厚さの多結晶シリコン膜87が積層されたも
のである。そして上記第3評価サンプル81は、酸化シ
リコン膜83,86の厚さが100nm〜600nmの
範囲、すなわち、100nm、200nm、300n
m、400nm、600nmの5種類のものが用意され
ている。そのため、これらの第3評価サンプル81にお
いては酸化シリコン膜83,86の光吸収の膜厚依存性
は極めて大きいものとなっている。また多結晶シリコン
膜84には、打ち込みエネルギーが40keV、ドーズ
量が5.4×1014個/cm2 なる条件で二フッ化ホウ
素(BF2 )がイオン注入されている。
As shown in FIG. 4C, a third evaluation sample 81 is composed of a silicon oxide (SiO 2 ) film 83 on one side (front side) of a silicon substrate 82 and a polycrystalline silicon film having a thickness of 150 nm. A capping silicon oxide film 85 having a thickness of 84 nm and 300 nm is laminated, and a silicon oxide (SiO 2 ) film 86, 1 is formed on the other side (back side) of the silicon substrate 82.
A polycrystalline silicon film 87 having a thickness of 50 nm is laminated. The third evaluation sample 81 has a thickness of the silicon oxide films 83 and 86 in the range of 100 nm to 600 nm, that is, 100 nm, 200 nm, and 300 n.
Five types of m, 400 nm, and 600 nm are prepared. Therefore, in these third evaluation samples 81, the thickness dependence of the light absorption of the silicon oxide films 83 and 86 is extremely large. Boron difluoride (BF 2 ) is ion-implanted into the polycrystalline silicon film 84 under the conditions that the implantation energy is 40 keV and the dose is 5.4 × 10 14 / cm 2 .

【0037】酸化シリコン膜63の膜厚が異なる複数の
各第1評価サンプル61,多結晶シリコン膜77の膜厚
が異なる複数の各第2評価サンプル71,酸化シリコン
膜83,86の膜厚が異なる複数の各第3評価サンプル
81のそれぞれに、耐熱性接着剤を用いて熱電対を直接
張りつけて、その熱電対を用いた正確な温度測定を行っ
た。
The plurality of first evaluation samples 61 having different thicknesses of the silicon oxide film 63, the plurality of second evaluation samples 71 having different thicknesses of the polycrystalline silicon film 77, and the thicknesses of the silicon oxide films 83 and 86 are different. A thermocouple was directly attached to each of the plurality of different third evaluation samples 81 using a heat-resistant adhesive, and accurate temperature measurement was performed using the thermocouple.

【0038】温度測定では、前記図2によって説明した
光照射型熱処理装置101を用いて基板51の代わりに
上記図4によって説明した各第1,第2,第3評価サン
プル61,71,81を熱処理〔RTA(Rapid Therma
l Annealing )〕した。そのRTAのシーケンスは、図
5に示すように、200℃の温度雰囲気に設定したチュ
ーブ112(図2参照)内に評価サンプルを搬入する。
そして50℃/sの加熱速度でRTAの設定温度Tまで
加熱した後、その設定温度Tにt秒間(例えば10秒
間)保持し、その後50℃/sの冷却速度で400℃ま
で冷却して、チューブ112内から評価サンプルを搬出
するという順である。上記RTAの設定温度Tは、90
0℃、1000℃、1050℃、1100℃、1150
℃に設定した。なお、上記RTAのシーケンスは一例で
あり、適宜変更することは可能である。
In the temperature measurement, the first, second, and third evaluation samples 61, 71, and 81 described with reference to FIG. 4 are used instead of the substrate 51 by using the light irradiation type heat treatment apparatus 101 described with reference to FIG. Heat treatment [RTA (Rapid Therma
l Annealing)] In the RTA sequence, as shown in FIG. 5, an evaluation sample is loaded into a tube 112 (see FIG. 2) set at a temperature of 200 ° C.
Then, after heating to the set temperature T of the RTA at a heating rate of 50 ° C./s, the set temperature T is maintained for t seconds (for example, 10 seconds), and then cooled to 400 ° C. at a cooling rate of 50 ° C./s. The evaluation sample is unloaded from the tube 112. The set temperature T of the RTA is 90
0 ° C, 1000 ° C, 1050 ° C, 1100 ° C, 1150
Set to ° C. The above RTA sequence is an example, and can be changed as appropriate.

【0039】ここで、各設定温度で処理をしたときの各
評価サンプルのシート抵抗の温度依存性を図6に示す。
図6では、縦軸にシート抵抗ρsを示し、横軸にRTA
の設定温度を示す。図6に示すように、900℃から9
50℃程度まではほぼ一定の2140Ω/□程度のシー
ト抵抗値を示し、1000℃程度より高温になると急激
にシート抵抗が低下する。そして1050℃では142
0Ω/□程度のシート抵抗値になり、1100℃では9
80Ω/□程度のシート抵抗値を示し、1150℃では
800Ω/□程度のシート抵抗値になった。
FIG. 6 shows the temperature dependence of the sheet resistance of each evaluation sample when processing is performed at each set temperature.
In FIG. 6, the vertical axis represents the sheet resistance ρs, and the horizontal axis represents the RTA.
Shows the set temperature. As shown in FIG.
Up to about 50 ° C., a substantially constant sheet resistance value of about 2140 Ω / □ is shown, and at a temperature higher than about 1000 ° C., the sheet resistance sharply decreases. And 142 at 1050 ° C.
The sheet resistance becomes about 0Ω / □ and becomes 9 at 1100 ° C.
The sheet resistance was about 80 Ω / □, and at 1150 ° C., the sheet resistance was about 800 Ω / □.

【0040】図7は、本発明の温度測定器1(図1参
照)および従来型の温度測定装置201(図3参照)に
よって測定した各評価サンプルのシート抵抗ρs(縦
軸)と測定温度(横軸)との関係を示したものである。
温度測定器1による測定値は白抜きの丸、三角、四角印
で示し、温度測定装置201による測定値は黒塗りの
丸、三角、四角印で示す。
FIG. 7 shows the sheet resistance ρs (vertical axis) and the measured temperature (vertical axis) of each evaluation sample measured by the temperature measuring device 1 (see FIG. 1) of the present invention and the conventional temperature measuring device 201 (see FIG. 3). (Horizontal axis).
The values measured by the temperature measuring device 1 are indicated by white circles, triangles, and squares, and the values measured by the temperature measuring device 201 are indicated by black circles, triangles, and squares.

【0041】具体的には、第2評価サンプル71におけ
る多結晶シリコン膜77の膜厚が250nmの評価サン
プルにおいて基板温度は1050℃になるようなランプ
出力を用い、第1評価サンプル61の酸化シリコン膜6
3,66の厚さ、第2評価サンプル71の多結晶シリコ
ン膜77の厚さ、および第3評価サンプル81の酸化シ
リコン膜83,86の厚さを変えた全ての評価サンプル
に対して、同一ランプ出力で熱処理を行う。すなわち、
光の照射強度が一定のもとで熱処理を行うという開回路
制御により連続処理を行い、シート抵抗および基板温度
を測定する。
Specifically, in the evaluation sample of the second evaluation sample 71 in which the thickness of the polycrystalline silicon film 77 is 250 nm, a lamp output is used so that the substrate temperature becomes 1050 ° C., and the silicon oxide of the first evaluation sample 61 is used. Membrane 6
3, 66, the thickness of the polycrystalline silicon film 77 of the second evaluation sample 71, and the same for all the evaluation samples in which the thicknesses of the silicon oxide films 83, 86 of the third evaluation sample 81 were changed. Heat treatment is performed with lamp output. That is,
Continuous processing is performed by open circuit control in which heat treatment is performed under a constant light irradiation intensity, and the sheet resistance and the substrate temperature are measured.

【0042】図7に示すように、基板によらず同じ光照
射強度で処理する開回路制御では、基板表面に形成され
た膜の厚さの違いによりシート抵抗(基板温度)が変化
する。また、図6および図7において、RTAの設定温
度によるシート抵抗の温度依存の曲線と、温度測定装置
1による測定温度でのシート抵抗の温度依存の曲線とを
比較すると、曲線の形は一致している。このことから、
基板構造が異なり光の吸収量が違うさまざまな基板に対
しても、温度測定装置1(図1参照)は基板温度の正確
な測定を再現性良くできることを示している。これに対
し、従来型の温度測定装置201(図3参照)により測
定した測定温度とそのときのシート抵抗との関係は、図
6の温度依存の曲線と大幅に異なることがわかり、従来
型の温度測定装置201は基板温度の正確な測定ができ
ていないことを示している。
As shown in FIG. 7, in open circuit control in which processing is performed at the same light irradiation intensity regardless of the substrate, the sheet resistance (substrate temperature) changes due to the difference in the thickness of the film formed on the substrate surface. In FIGS. 6 and 7, when the temperature-dependent curve of the sheet resistance at the set temperature of the RTA is compared with the temperature-dependent curve of the sheet resistance at the temperature measured by the temperature measuring device 1, the shapes of the curves match. ing. From this,
This shows that the temperature measuring device 1 (see FIG. 1) can accurately measure the substrate temperature with good reproducibility even for various substrates having different substrate structures and different light absorption amounts. On the other hand, the relationship between the measured temperature measured by the conventional temperature measuring device 201 (see FIG. 3) and the sheet resistance at that time is significantly different from the temperature-dependent curve in FIG. The temperature measurement device 201 indicates that the substrate temperature cannot be accurately measured.

【0043】第3評価サンプル81の酸化シリコン膜8
3,86の膜厚を変化させたサンプルを、温度測定装置
201(図3参照)と温度測定装置1(図1参照)とを
用いた閉回路制御にて、前記図5によって説明したシー
ケンスにより測定温度1050℃で処理を施し、この時
のシート抵抗の膜厚依存性を開回路制御における膜厚依
存性とともに図8に示す。この図8では、縦軸にシート
抵抗ρsを示し、横軸に酸化シリコン膜厚を示し、図中
の黒塗りの丸印は開回路制御、白抜きの四角印は温度測
定装置1による閉回路制御、白抜きの三角印は従来型の
温度測定装置201による閉回路制御を示す。また、同
様に、シート抵抗からの換算温度の膜厚依存性を図9に
示し、図中の黒塗りの丸印は開回路制御、白抜きの四角
印は温度測定装置1による閉回路制御、白抜きの三角印
は従来型の温度測定装置201による閉回路制御を示
す。この図9では、縦軸に基板温度を示し、横軸に酸化
シリコン膜厚を示す。図8および図9から明らかなよう
に、開回路制御において顕著に現れるシート抵抗(基板
温度)の膜厚依存は、温度測定装置1を用いることで改
善される。しかし、温度測定装置201では、シート抵
抗(基板温度)の膜厚依存の改善効果がみられない。
The silicon oxide film 8 of the third evaluation sample 81
The samples having different thicknesses of 3,86 were subjected to the closed circuit control using the temperature measuring device 201 (see FIG. 3) and the temperature measuring device 1 (see FIG. 1) in accordance with the sequence described with reference to FIG. The treatment was performed at a measurement temperature of 1050 ° C., and the film thickness dependency of the sheet resistance at this time is shown in FIG. 8 together with the film thickness dependency in the open circuit control. In FIG. 8, the vertical axis indicates the sheet resistance ρs, the horizontal axis indicates the silicon oxide film thickness, black circles indicate open circuit control, and white squares indicate closed circuits by the temperature measurement device 1. Control, white triangles indicate closed circuit control by the conventional temperature measuring device 201. Similarly, FIG. 9 shows the film thickness dependence of the converted temperature from the sheet resistance. In FIG. 9, black circles indicate open circuit control, white squares indicate closed circuit control by the temperature measurement device 1, Open triangles indicate closed-circuit control by the conventional temperature measuring device 201. In FIG. 9, the vertical axis indicates the substrate temperature, and the horizontal axis indicates the silicon oxide film thickness. As apparent from FIGS. 8 and 9, the dependency of the sheet resistance (substrate temperature) on the film thickness, which appears remarkably in the open circuit control, is improved by using the temperature measurement device 1. However, in the temperature measuring device 201, the effect of improving the film resistance of the sheet resistance (substrate temperature) is not seen.

【0044】温度測定装置1(図1参照)と温度測定装
置201(図3参照)とを用いた閉回路制御により第3
評価サンプル81の酸化シリコン膜83,86の膜厚を
変化させたサンプルを前記図5によって説明したシーケ
ンスにより測定温度1050℃で処理を施した時の、酸
化シリコン膜83,86の膜厚による安定時のランプ出
力を図10に示した。この図10では、縦軸にランプ出
力(最大出力に対する出力比)を示し、横軸に酸化シリ
コン膜厚を示し、図中の黒塗りの丸印は開回路制御、白
抜きの四角印は温度測定装置1による閉回路制御、白抜
きの三角印は従来型の温度測定装置201による閉回路
制御を示す。
The third circuit is controlled by a closed circuit using the temperature measuring device 1 (see FIG. 1) and the temperature measuring device 201 (see FIG. 3).
When the sample of the evaluation sample 81 in which the thickness of the silicon oxide films 83 and 86 is changed is processed at the measurement temperature of 1050 ° C. by the sequence described with reference to FIG. The lamp output at this time is shown in FIG. In FIG. 10, the vertical axis indicates the lamp output (output ratio with respect to the maximum output), the horizontal axis indicates the silicon oxide film thickness, black circles indicate open circuit control, and white squares indicate temperature. Closed circuit control by the measuring device 1 and open triangles indicate closed circuit control by the conventional temperature measuring device 201.

【0045】図10に示すように、温度測定装置1を用
いた閉回路制御では、基板温度が低くなる酸化シリコン
膜厚においてより高いランプ出力を加えて基板温度を補
正しているのがわかる。しかし、前記図7に示すよう
に、温度測定装置201では、実際に基板温度が変わっ
ていても、測定温度がほとんど変わらないため、酸化シ
リコン膜厚に依らずほぼ同じランプ出力となり、酸化シ
リコン膜厚により基板温度を補正することができていな
い。以上のことから、温度測定装置201では、ランプ
からの光を温度測定装置201が直接吸収していること
を証明している。このように、温度測定装置の構造とし
ては、炭化シリコンの表面積を減らして、光吸収を極力
抑えた構造にする必要があることがわかる。要するに、
従来温度測定装置201のように熱電対11を全て覆っ
た構造では、光吸収が多く、閉回路制御における精度の
良い測定はできない。
As shown in FIG. 10, in the closed circuit control using the temperature measuring device 1, it is understood that the substrate temperature is corrected by applying a higher lamp output at the silicon oxide film thickness where the substrate temperature becomes lower. However, as shown in FIG. 7, in the temperature measurement device 201, even if the substrate temperature actually changes, the measurement temperature hardly changes, so that the lamp output becomes almost the same regardless of the silicon oxide film thickness. The substrate temperature cannot be corrected by the thickness. From the above, the temperature measurement device 201 proves that the light from the lamp is directly absorbed by the temperature measurement device 201. Thus, it can be seen that it is necessary to reduce the surface area of silicon carbide to minimize the light absorption as the structure of the temperature measuring device. in short,
In a structure in which the thermocouple 11 is entirely covered like the conventional temperature measuring device 201, light absorption is large and accurate measurement in closed circuit control cannot be performed.

【0046】上記図6〜図10では、酸化シリコン膜厚
により極端に基板の光吸収量が変わる第3評価サンプル
81の結果を用いて、温度測定装置1による閉回路制御
の結果を示したが、実際の管理された半導体装置の製造
工程においては、膜厚や膜質の工程ばらつきによる光吸
収(基板温度)の変動は、はるかに少なく、温度測定装
置1を用いた閉回路制御により、開回路制御におけるシ
ート抵抗(基板温度)の膜厚依存を十分に解消できる。
FIGS. 6 to 10 show the results of the closed-circuit control by the temperature measuring device 1 using the results of the third evaluation sample 81 in which the amount of light absorption of the substrate changes extremely depending on the thickness of the silicon oxide film. In an actual controlled semiconductor device manufacturing process, fluctuations in light absorption (substrate temperature) due to process variations in film thickness and film quality are much smaller, and an open circuit is controlled by a closed circuit control using the temperature measuring device 1. The thickness dependence of the sheet resistance (substrate temperature) in control can be sufficiently eliminated.

【0047】以上のように、閉回路制御において精度の
良い測定を行うためには、測温部に被覆する炭化シリコ
ンの構造を極力小さくし、光吸収を抑える必要がある。
As described above, in order to perform accurate measurement in the closed circuit control, it is necessary to minimize the structure of silicon carbide covering the temperature measuring section and suppress light absorption.

【0048】一例として、膜厚を変化させ、光の吸収量
を変えた基板を用いて、閉回路制御の効果を示したが、
温度測定装置1(図1参照)を用いた閉回路制御では、
実際の基板温度を測定し、光源113となるランプの出
力にフィードバックするため、光照射型熱処理装置10
1を構成する石英製のチューブ112の光透過率や反応
炉111の内壁の光反射率、光源113となるランプの
出力の経時的な変化等によっての基板51の処理温度が
変化するような場合にも、本発明により、精度の高い基
板温度の測定が実現される。
As an example, the effect of closed-circuit control has been shown by using a substrate having a different film thickness and a different light absorption amount.
In the closed circuit control using the temperature measuring device 1 (see FIG. 1),
In order to measure the actual substrate temperature and feed it back to the output of the lamp serving as the light source 113, the light irradiation type heat treatment apparatus 10
In the case where the processing temperature of the substrate 51 changes due to the light transmittance of the quartz tube 112, the light reflectance of the inner wall of the reaction furnace 111, the output of the lamp serving as the light source 113 over time, or the like. In addition, the present invention realizes highly accurate measurement of the substrate temperature.

【0049】この制御方法の安定性を評価するため、温
度測定装置1(図1参照)を用いた閉回路制御により、
前記図5によって説明したシーケンスにより測定温度1
050℃で10秒間の熱処理を実行し、この時の温度測
定装置1とパイロメーターの測定温度、ならびに光源1
13となるランプの出力を読み取ることにより、135
0枚の連続処理における温度測定装置1による閉回路制
御の安定性を評価した。サンプルには、600nmの熱
酸化膜(SiO2 膜)が形成されたシリコン基板を使用
し、測定温度とランプ出力のサンプリングを同じシリコ
ン基板から行うことで、シリコン基板の輻射率ばらつき
によるパイロメーターの測定誤差を排除した。
In order to evaluate the stability of this control method, a closed circuit control using the temperature measuring device 1 (see FIG. 1)
According to the sequence described with reference to FIG.
A heat treatment is performed at 050 ° C. for 10 seconds. At this time, the temperature measured by the temperature measurement device 1 and the pyrometer, and the light source 1
By reading the output of the lamp No. 13, 135
The stability of the closed circuit control by the temperature measuring device 1 in the continuous processing of zero sheets was evaluated. As a sample, a silicon substrate on which a thermal oxide film (SiO 2 film) of 600 nm was formed was used, and measurement temperature and lamp output were sampled from the same silicon substrate. Measurement errors were eliminated.

【0050】図11に示す温度測定装置1の測定温度の
推移は、温度測定装置1による閉回路制御であるため、
当然1050℃で一定となる。この図11では、縦軸に
測定温度を示し、横軸に基板の処理枚数を示す。
The transition of the measured temperature of the temperature measuring device 1 shown in FIG. 11 is a closed circuit control by the temperature measuring device 1,
Naturally, it becomes constant at 1050 ° C. In FIG. 11, the vertical axis indicates the measured temperature, and the horizontal axis indicates the number of processed substrates.

【0051】しかしながら、実際の基板温度は、温度測
定装置1のドリフトのために一定ではなく、このドリフ
トは、同一サンプルに対して同一条件であれば、ほぼ正
確な基板温度を測定するパイロメーターの推移(図1
3)により知ることができる。この結果を図12によっ
て説明する。この図12では、左縦軸にパイロメーター
による測定温度を示し、右縦軸にドリフト温度を示し、
横軸に基板の処理枚数を示す。図12に示すように、新
品の温度測定装置1を使いはじめてから、200枚程度
までは、0℃から−3℃程度へのドリフトがみられる
が、200枚目以降は、例えば−3℃を中心として±
1.0℃以下の非常に優れた温度制御が可能であること
がわかる。
However, the actual substrate temperature is not constant due to the drift of the temperature measuring device 1, and this drift is substantially constant under the same conditions for the same sample. Transition (Fig. 1
3). This result will be described with reference to FIG. In FIG. 12, the left vertical axis indicates the temperature measured by the pyrometer, the right vertical axis indicates the drift temperature,
The horizontal axis indicates the number of processed substrates. As shown in FIG. 12, a drift from 0 ° C. to about −3 ° C. is observed up to about 200 sheets from the start of using a new temperature measuring device 1, but, for example, −3 ° C. ± as center
It can be seen that very excellent temperature control of 1.0 ° C. or less is possible.

【0052】また、図13に、ランプ出力(縦軸)と基
板の処理枚数(横軸)との関係を示す。ここで示すラン
プ出力は最大ランプ出力に対する比率である。この図1
3に示すように、ランプ出力は、およそ50枚の連続処
理を行った後は、±0.5%程度のばらつきの範囲内で
安定した出力となることがわかる。
FIG. 13 shows the relationship between the lamp output (vertical axis) and the number of substrates processed (horizontal axis). The lamp output shown here is a ratio to the maximum lamp output. This figure 1
As shown in FIG. 3, it can be seen that the lamp output is stable within a range of about ± 0.5% after continuous processing of about 50 sheets.

【0053】以上のことより、新品の温度測定装置1を
使用する際には、例えば前記図5によって説明したシー
ケンスにより測定温度1050℃で10秒間の熱処理を
200回程度施す必要がある。所定回数の連続した熱処
理を施した温度測定装置1による閉回路制御によって非
常に安定な基板温度制御が実現される。なお、上記熱処
理回数の200回というのは一例であって、その熱処理
回数は熱処理条件(温度、時間等)によって適宜選択さ
れる。
As described above, when using a new temperature measuring device 1, it is necessary to perform about 200 heat treatments at a measuring temperature of 1050 ° C. for 10 seconds according to the sequence described with reference to FIG. 5, for example. Very stable substrate temperature control is realized by closed-circuit control by the temperature measuring device 1 that has been subjected to a predetermined number of consecutive heat treatments. Note that the number of heat treatments of 200 is an example, and the number of heat treatments is appropriately selected depending on heat treatment conditions (temperature, time, and the like).

【0054】[0054]

【発明の効果】以上、説明したように本発明によれば、
温度測定装置の測温部の被覆部材が熱伝導性の高い材料
からなるので測温部に基板温度が十分に伝わり、他の部
分の被覆部材が光透過率または光反射率の高い材料から
なるのでこの部分の被覆部材は光をほとんど吸収しな
い。そのため、本温度測定装置により基板温度を正確に
測定することができる。この温度測定装置を、基板温度
をランプ出力にフィードバックして基板を所望の温度に
制御する閉回路制御に用いるので、膜構造、膜質、不純
物濃度等による輻射率や光吸収量(処理温度)が変化す
る基板を熱処理する場合であっても、基板温度を精度良
く制御することが可能になる。さらに光照射型熱処理装
置を構成する石英チューブの光透過率、反応炉内壁の光
反射率、光源となるランプの出力等の経時的な変化があ
っても基板温度の安定な制御を実現することができる。
As described above, according to the present invention,
Since the covering member of the temperature measuring unit of the temperature measuring device is made of a material having high thermal conductivity, the substrate temperature is sufficiently transmitted to the temperature measuring unit, and the covering members of other portions are made of a material having a high light transmittance or light reflectance. Therefore, the covering member in this portion hardly absorbs light. Therefore, the substrate temperature can be accurately measured by the present temperature measurement device. Since this temperature measuring device is used for closed-circuit control for controlling the substrate to a desired temperature by feeding back the substrate temperature to the lamp output, the emissivity and light absorption (processing temperature) depending on the film structure, film quality, impurity concentration, etc. Even when heat treatment is performed on a changing substrate, the substrate temperature can be controlled with high accuracy. Furthermore, stable control of the substrate temperature can be achieved even if there is a temporal change in the light transmittance of the quartz tube, the light reflectance of the inner wall of the reaction furnace, the output of the lamp as the light source, etc., which constitute the light irradiation type heat treatment apparatus. Can be.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の温度制御方法に係わる実施形態の説明
図である。
FIG. 1 is an explanatory diagram of an embodiment according to a temperature control method of the present invention.

【図2】温度測定装置を使用する光照射型熱処理装置の
概略構成断面図である。
FIG. 2 is a schematic configuration sectional view of a light irradiation type heat treatment apparatus using a temperature measurement device.

【図3】比較例の温度測定装置の概略構成断面図であ
る。
FIG. 3 is a schematic sectional view of a configuration of a temperature measuring device of a comparative example.

【図4】各評価サンプルの概略構成断面図である。FIG. 4 is a schematic sectional view of each evaluation sample.

【図5】RTAのシーケンスの説明図である。FIG. 5 is an explanatory diagram of an RTA sequence.

【図6】各評価サンプルのシート抵抗とRTAの設定温
度との関係図である。
FIG. 6 is a diagram showing the relationship between the sheet resistance of each evaluation sample and the set temperature of RTA.

【図7】本発明の温度測定装置および比較例の温度測定
装置による測定温度とシート抵抗との関係図である。
FIG. 7 is a diagram illustrating a relationship between a measured temperature and a sheet resistance by a temperature measuring device of the present invention and a temperature measuring device of a comparative example.

【図8】第3評価サンプルのシート抵抗と酸化シリコン
膜厚との関係図である。
FIG. 8 is a diagram illustrating a relationship between a sheet resistance and a silicon oxide film thickness of a third evaluation sample.

【図9】第3評価サンプルの基板温度と酸化シリコン膜
厚との関係図である。
FIG. 9 is a relationship diagram between a substrate temperature and a silicon oxide film thickness of a third evaluation sample.

【図10】第3評価サンプルでのランプ出力比と酸化シ
リコン膜厚との関係図である。
FIG. 10 is a diagram showing a relationship between a lamp output ratio and a silicon oxide film thickness in a third evaluation sample.

【図11】RTAの連続処理における本発明の温度測定
装置による測定温度と基板処理枚数との関係図である。
FIG. 11 is a diagram showing the relationship between the temperature measured by the temperature measuring device of the present invention and the number of substrates processed in the continuous processing of RTA.

【図12】RTAの連続処理におけるパイロメーターに
よる測定温度と基板処理枚数との関係図および本発明の
温度測定装置の測定温度のドリフト量と基板処理枚数と
の関係図である。
FIG. 12 is a diagram showing the relationship between the temperature measured by a pyrometer and the number of substrates processed in a continuous RTA process, and the relationship between the drift amount of the measured temperature of the temperature measuring device of the present invention and the number of substrates processed.

【図13】RTAの連続処理におけるランプ出力と基板
処理枚数との関係図である。
FIG. 13 is a diagram showing the relationship between the lamp output and the number of substrates processed in the continuous processing of RTA.

【符号の説明】[Explanation of symbols]

1…温度測定装置、11…熱電対、21…被覆部材、2
2…測温部被覆部材、23…線部被覆部材、51…基
板、113…光源
DESCRIPTION OF SYMBOLS 1 ... Temperature measuring device, 11 ... Thermocouple, 21 ... Covering member, 2
2 ... Temperature measuring section covering member, 23 ... Line part covering member, 51 ... Substrate, 113 ... Light source

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 加熱手段に光源を有する加熱炉内に収容
され、前記光源からの光照射により加熱される基板の温
度を熱電対により接触式に測定する温度測定装置を用い
た半導体装置製造の熱処理工程における温度制御方法で
あって、 前記温度測定装置の熱電対を被覆する被覆部材におけ
る、前記基板との接触部周辺は熱伝導率の高い材料で形
成され、かつ前記基板との接触部周辺を除く前記被覆部
材は光透過率の高い材料または光の反射率の高い材料で
形成された該温度測定装置を用いて、前記基板の温度を
測定する工程と、 前記測定した値を前記光源の出力にフィードバックし
て、前記基板の温度を所定範囲内に保持するように該光
源の出力を調節する閉回路制御を行う工程とを備えたこ
とを特徴とする半導体装置製造の熱処理工程における温
度制御方法。
1. A semiconductor device manufacturing method using a temperature measuring device which is housed in a heating furnace having a light source in a heating means and measures the temperature of a substrate heated by irradiation of light from the light source with a thermocouple in a contact type. A temperature control method in a heat treatment step, wherein, in a covering member covering a thermocouple of the temperature measuring device, a portion around a contact portion with the substrate is formed of a material having high thermal conductivity, and a portion around a contact portion with the substrate. Excluding the covering member, using the temperature measuring device formed of a material having a high light transmittance or a material having a high light reflectance, a step of measuring the temperature of the substrate, and measuring the measured value of the light source. Performing a closed circuit control to adjust the output of the light source so as to maintain the temperature of the substrate within a predetermined range by feeding back to the output. Temperature control method.
【請求項2】 請求項1記載の半導体装置製造の熱処理
工程における温度制御方法において、 前記基板との接触部周辺の被覆部材が炭化シリコン、シ
リコン化合物もしくはアルミナからなる前記温度測定装
置を用いて前記基板の温度を測定することを特徴とする
半導体装置製造の熱処理工程における温度制御方法。
2. The temperature control method in a heat treatment step of manufacturing a semiconductor device according to claim 1, wherein the covering member around a contact portion with the substrate is formed by using the temperature measuring device made of silicon carbide, a silicon compound or alumina. A temperature control method in a heat treatment step of manufacturing a semiconductor device, comprising measuring a temperature of a substrate.
【請求項3】 請求項1記載の半導体装置製造の熱処理
工程における温度制御方法において、 前記温度測定装置は、所定回数の熱処理を行った後、前
記基板の温度測定に用いることを特徴とする半導体装置
製造の熱処理工程における温度制御方法。
3. The temperature control method according to claim 1, wherein the temperature measurement device performs a predetermined number of heat treatments and then uses the temperature measurement for measuring the temperature of the substrate. A temperature control method in a heat treatment process for manufacturing a device.
【請求項4】 請求項1記載の半導体装置製造の熱処理
工程における温度制御方法において、 前記温度測定装置は、所定回数の熱処理を行った後、前
記基板の温度測定に用いることを特徴とする半導体装置
製造の熱処理工程における温度制御方法。
4. The temperature control method according to claim 1, wherein the temperature measuring device is used for measuring the temperature of the substrate after performing a predetermined number of heat treatments. A temperature control method in a heat treatment process for manufacturing a device.
JP32264397A 1997-11-25 1997-11-25 Temperature control method for heat treatment process in production of semiconductor device Withdrawn JPH11163070A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32264397A JPH11163070A (en) 1997-11-25 1997-11-25 Temperature control method for heat treatment process in production of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32264397A JPH11163070A (en) 1997-11-25 1997-11-25 Temperature control method for heat treatment process in production of semiconductor device

Publications (1)

Publication Number Publication Date
JPH11163070A true JPH11163070A (en) 1999-06-18

Family

ID=18146001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32264397A Withdrawn JPH11163070A (en) 1997-11-25 1997-11-25 Temperature control method for heat treatment process in production of semiconductor device

Country Status (1)

Country Link
JP (1) JPH11163070A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100974502B1 (en) 2008-03-28 2010-08-10 우진 일렉트로나이트(주) Temperature detecting element in the furnace
CN104460764A (en) * 2014-11-28 2015-03-25 广东工业大学 Extruder cylinder temperature control method based on pseudo removal control type fuzzy PID
JP2016076529A (en) * 2014-10-03 2016-05-12 東京エレクトロン株式会社 Support member for temperature measurement and heat treatment apparatus
WO2023230437A1 (en) * 2022-05-23 2023-11-30 Watlow Electric Manufacturing Company Compliant temperature sensing system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100974502B1 (en) 2008-03-28 2010-08-10 우진 일렉트로나이트(주) Temperature detecting element in the furnace
JP2016076529A (en) * 2014-10-03 2016-05-12 東京エレクトロン株式会社 Support member for temperature measurement and heat treatment apparatus
CN104460764A (en) * 2014-11-28 2015-03-25 广东工业大学 Extruder cylinder temperature control method based on pseudo removal control type fuzzy PID
WO2023230437A1 (en) * 2022-05-23 2023-11-30 Watlow Electric Manufacturing Company Compliant temperature sensing system

Similar Documents

Publication Publication Date Title
JPH10239165A (en) Method and apparatus for measuring temperature of substrate, and heating method for substrate
EP1163499B1 (en) Determination of the substrate temperature by measuring the thickness of a copper oxide layer
US6359263B2 (en) System for controlling the temperature of a reflective substrate during rapid heating
US4787551A (en) Method of welding thermocouples to silicon wafers for temperature monitoring in rapid thermal processing
JPH09246200A (en) Heating method and radiant heater
JP2003500671A (en) Apparatus and method for detecting infrared rays using SiC
JPH11163070A (en) Temperature control method for heat treatment process in production of semiconductor device
JP4056148B2 (en) Temperature measurement method using a radiation thermometer
US8420555B2 (en) Manufacturing method for semiconductor device and manufacturing apparatus for semiconductor device
JPH07221154A (en) Temperature detector and semiconductor manufacturing device
JP4346208B2 (en) Temperature measuring method, heat treatment apparatus and method, and computer-readable medium
JPH10170343A (en) Temperature measuring apparatus
JPH10144618A (en) Heater for manufacturing semiconductor device
JPH05198652A (en) Heat treating method for semiconductor substrate
JPS6294925A (en) Heat treatment device
JP3410347B2 (en) Calibration method and calibration device for pyrometer
JP3214092B2 (en) Semiconductor device manufacturing method and semiconductor manufacturing apparatus
JPH05299428A (en) Method and apparatus for heat-treatment of semiconductor wafer
JP2965737B2 (en) Wafer heating / monitoring system and operation method thereof
JP2002261038A (en) Heat treatment device
JPH04359125A (en) Temperature measuring device for heated body
KR100234366B1 (en) An apparatus for measuring a wafer temperature in a rapid thermal processing chamber and a method for measuring the wafer temperature using the same
Glück et al. Homogeneity of wet oxidation by RTP
JP2001289714A (en) Temperature measurement method and measurement device of substrate and treating device of the substrate
JPH0521367A (en) Thermal processing apparatus

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031212

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20031212

A977 Report on retrieval

Effective date: 20040623

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20060110

Free format text: JAPANESE INTERMEDIATE CODE: A131

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20060313