JPH07221154A - Temperature detector and semiconductor manufacturing device - Google Patents

Temperature detector and semiconductor manufacturing device

Info

Publication number
JPH07221154A
JPH07221154A JP1332594A JP1332594A JPH07221154A JP H07221154 A JPH07221154 A JP H07221154A JP 1332594 A JP1332594 A JP 1332594A JP 1332594 A JP1332594 A JP 1332594A JP H07221154 A JPH07221154 A JP H07221154A
Authority
JP
Japan
Prior art keywords
substrate
temperature
support pin
base
pin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1332594A
Other languages
Japanese (ja)
Inventor
Hisashi Miyashita
恒 宮下
Mitsuo Tokuda
光雄 徳田
Sukeyoshi Tsunekawa
助芳 恒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1332594A priority Critical patent/JPH07221154A/en
Publication of JPH07221154A publication Critical patent/JPH07221154A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To control the temperature of a semiconductor substrate or a glass substrate evenly and accurately. CONSTITUTION:A semiconductor substrate or a glass substrate is supported by a support pin 14. A thermocouple 15 is provided in the interior of the pin 14 as a temperature detector of a semiconductor manufacturing device, wherein these substrates are subjected to heating treatment. The point part of the pin 14 is constituted of a high-thermal conductivity material and a base 17 of the pin 14 is constituted of an inorganic material of a thermal conductivity lower than that of the substrate. The thermocouple 15 is secured o the point part of the flat pin 14 and a neck part 17a is provided at the base of the pin 14.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体製造装置、特に
赤外線ランプ,セラミックヒータ等の熱線源を使用する
半導体製造装置およびそれらに用いられる温度検出装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor manufacturing apparatus, and more particularly to a semiconductor manufacturing apparatus which uses a heat ray source such as an infrared lamp and a ceramic heater, and a temperature detecting apparatus used therein.

【0002】[0002]

【従来の技術】半導体素子の性能を高め、かつ、性能の
ばらつきを少なくするには、半導体素子の製造過程中、
半導体基板、或いはガラス基板の温度を均一かつ正確に
制御することが必要であり、既に幾つかの対策が提案さ
れている。
2. Description of the Related Art In order to improve the performance of a semiconductor device and reduce the variation in the performance of the semiconductor device,
It is necessary to control the temperature of the semiconductor substrate or the glass substrate uniformly and accurately, and some measures have already been proposed.

【0003】例えば、特開平4−98135号公報に記載の温
度の検出方法では、測温体を熱伝導率の高い材質からな
るキャップで被覆し、熱抵抗を低減している。或いはま
た、文献(JICST E91121096)ではアルミナ管を支持ピン
とし、その内部に熱電対を埋め込んだ例が示されてい
る。これら従来例では、被測定基板と測温体との間の熱
抵抗を少なくしているものの、測温体と支持基盤との間
の熱抵抗には十分な考慮がなされていない。従って、温
度測定部を通り、多量の熱が被測定基板から流れ出すこ
とにより、測定部の基板そのものの温度低下、並びに、
測温体と被測定基板との温度差が増加する欠点が有っ
た。また、測温体がSUS等の金属支持体を有するもの
では、被測定基板にとって有害な金属汚染(例えば、F
e,Crによる汚染)を発生する欠点が有り、特開平4
−148545 号公報に記載の温度測定装置では、測温体を
被覆部材に内挿する例が示されているものの、被測定基
板からの熱流には十分な考慮がなされていない。
For example, in the temperature detecting method described in Japanese Patent Laid-Open No. 4-98135, the temperature measuring element is covered with a cap made of a material having a high thermal conductivity to reduce the thermal resistance. Alternatively, the literature (JICST E91121096) shows an example in which an alumina tube is used as a support pin and a thermocouple is embedded inside the support pin. In these conventional examples, the thermal resistance between the substrate to be measured and the temperature measuring element is reduced, but the thermal resistance between the temperature measuring element and the support base is not sufficiently considered. Therefore, a large amount of heat flows out from the substrate to be measured through the temperature measuring unit, which lowers the temperature of the substrate itself in the measuring unit, and
There is a drawback that the temperature difference between the temperature sensing element and the substrate to be measured increases. If the temperature measuring element has a metal support such as SUS, the metal contamination (for example, F
e, Cr contamination).
In the temperature measuring device described in Japanese Patent No. 148545, an example in which the temperature measuring element is inserted into the covering member is shown, but the heat flow from the substrate to be measured is not sufficiently taken into consideration.

【0004】[0004]

【発明が解決しようとする課題】本発明の目的は、半導
体基板、或いはガラス基板の温度を均一かつ正確に制御
することが出来、有害な金属汚染の生じない改良された
半導体製造装置およびその温度検出装置を提供すること
に有る。
SUMMARY OF THE INVENTION It is an object of the present invention to improve the temperature of a semiconductor substrate or a glass substrate uniformly and accurately, and to prevent the generation of harmful metal contamination. It is to provide a detection device.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するた
め、本発明は半導体基板、或いはガラス基板の支持ピン
を兼ねる温度検出部を、熱伝導率の高い材質でその先端
部(以下キャップと称する)を平坦に形成し、基板より
も熱伝導率の低い無機材質でその基部断面積を小さく形
成し、熱電対の接点を前記基部に設けられた穴を通して
前記キャップに固着する。このような特性を持ったキャ
ップの材質は、低温処理にはアルミニウム又はアルミナ
が、高温処理にはアルミナが好都合であり、窒化珪素、
或いは炭化珪素等も可能である。また、基部の材質は、
石英ガラス、又はステアタイト等の酸化マグネシュウム
と酸化珪素との化合物、或いは、酸化ジルコニュウムと
酸化珪素との化合物が好都合である。
In order to achieve the above object, the present invention provides a temperature detecting portion, which also functions as a supporting pin of a semiconductor substrate or a glass substrate, with a tip portion (hereinafter referred to as a cap) made of a material having high thermal conductivity. 2) is formed flat, the base cross-sectional area is made small with an inorganic material having a lower thermal conductivity than the substrate, and the contact of the thermocouple is fixed to the cap through the hole provided in the base. As the material of the cap having such characteristics, aluminum or alumina is preferable for low temperature treatment, and alumina is preferable for high temperature treatment.
Alternatively, silicon carbide or the like is also possible. The material of the base is
Preference is given to quartz glass or compounds of magnesium oxide and silicon oxide, such as steatite, or compounds of zirconium oxide and silicon oxide.

【0006】[0006]

【作用】測温体(熱電対の接点)はキャップを介して基
板に接触している。この時、測温体と基板の測温部との
温度差は、キャップと基板との接触部の熱抵抗,キャッ
プの熱抵抗,キャップと測温体との熱抵抗、及び基部
(測温体支持部)の熱抵抗で左右される。
[Function] The temperature sensing element (contact of the thermocouple) is in contact with the substrate through the cap. At this time, the temperature difference between the temperature measuring unit and the temperature measuring unit of the substrate is the thermal resistance of the contact portion between the cap and the substrate, the thermal resistance of the cap, the thermal resistance of the cap and the temperature measuring unit, and the base (temperature measuring unit). It depends on the thermal resistance of the support).

【0007】本発明によれば、キャップ先端を平坦にす
ることによりキャップと基板との接触部の熱抵抗を減少
させ、キャップの材質を熱伝導率の高いものとし、基部
の熱伝導率を低いものとすることにより、キャップの熱
抵抗を減少させ、基部の熱抵抗を増大させている。ま
た、測温体を基部の管を通してキャップに固着させるこ
とにより、キャップと測温体との熱抵抗を減少させてい
る。従って、本発明の温度検出装置では測温体と基板と
の熱抵抗が少なく、測温体と半導体基板の測温部との温
度差は極めて少なくなる。また同時に、基部を熱伝導率
の低い材料で構成し、かつ、基部のキャップ側断面積を
小さくすることにより、基部の熱抵抗を大きくし、基板
から失われる熱流を少なくすることが出来、基板の測温
部の温度低下を減少させ、基板の温度の均一性を確保で
きる。更に、熱電対を支持ピン内部に閉じ込め、且つ、
支持ピン基部を無機材質で構成することにより、半導体
基板、或いはガラス基板が有害金属で汚染されることを
防止できる。
According to the present invention, by making the tip of the cap flat, the thermal resistance of the contact portion between the cap and the substrate is reduced, the material of the cap has high thermal conductivity, and the thermal conductivity of the base is low. By doing so, the thermal resistance of the cap is reduced and the thermal resistance of the base is increased. Further, by fixing the temperature measuring element to the cap through the tube at the base, the thermal resistance between the cap and the temperature measuring element is reduced. Therefore, in the temperature detecting device of the present invention, the thermal resistance between the temperature measuring element and the substrate is small, and the temperature difference between the temperature measuring element and the temperature measuring portion of the semiconductor substrate is extremely small. At the same time, the base is made of a material having a low thermal conductivity, and the cross-sectional area of the base on the cap side is made small, so that the thermal resistance of the base can be increased and the heat flow lost from the substrate can be reduced. It is possible to reduce the temperature drop of the temperature measuring unit and ensure the uniformity of the substrate temperature. Furthermore, the thermocouple is confined inside the support pin, and
By configuring the support pin base portion with an inorganic material, it is possible to prevent the semiconductor substrate or the glass substrate from being contaminated with harmful metals.

【0008】[0008]

【実施例】本発明に係る半導体製造装置の一実施例を図
1に示す。装置本体1は、図に示すように中空構造とな
っており、その中央部分に石英ガラス製の反応容器2が
配設されている。反応容器2の上側空間及び下側空間に
は、複数の熱線照射ランプ3(例えばハロゲンランプ)
が上下交差するような形で平行に並べて配置されてい
る。装置本体1内部の天井及び床面には、金コートを施
したアルミ合金製の樋状凹面反射鏡が配設されており、
熱線照射ランプ3から照射された加熱用熱線が効率良く
反応容器2に向けて集光するようになっている。
FIG. 1 shows an embodiment of a semiconductor manufacturing apparatus according to the present invention. The apparatus main body 1 has a hollow structure as shown in the figure, and a reaction vessel 2 made of quartz glass is arranged in the central portion thereof. A plurality of heat ray irradiation lamps 3 (for example, halogen lamps) are provided in the upper space and the lower space of the reaction vessel 2.
Are arranged side by side in parallel so that they intersect vertically. A trough-shaped concave reflecting mirror made of aluminum alloy coated with gold is disposed on the ceiling and floor inside the apparatus main body 1,
The heating heat ray emitted from the heat ray irradiation lamp 3 is efficiently focused toward the reaction container 2.

【0009】外部熱線吸収板4は、熱線照射ランプ3と
反応容器2との間の上下空間(熱線透過空間)にそれぞ
れ配置されている。本実施例の場合、同吸収板は、熱線
拡散用の磨りガラス面を表面に形成した石英ガラス製の
ものを使用し、かつ、その全面には、冷却用窒素ガスを
流すための多数の通気口5を形成した。被加工物である
半導体基板6は、反応容器2の底部に設置した熱線透過
性支持台7上にガードリング8を添えて装填した。一
方、内部熱線吸収板9は、石英ガラス製のものを使用
し、半導体基板6に接近させてその下側の熱線透過空間
に配置した。同吸収板は、必要に応じて基板6の両側に
配設することも可能である。
The external heat ray absorbing plates 4 are arranged in the upper and lower spaces (heat ray transmitting space) between the heat ray irradiating lamp 3 and the reaction vessel 2, respectively. In the case of the present embodiment, the absorbing plate is made of quartz glass having a ground glass surface for heat ray diffusion formed on the surface, and a large number of ventilations for flowing cooling nitrogen gas are provided on the entire surface. Mouth 5 was formed. The semiconductor substrate 6, which is the workpiece, was loaded on the heat ray permeable support base 7 installed at the bottom of the reaction vessel 2 with the guard ring 8 attached. On the other hand, the internal heat ray absorbing plate 9 was made of quartz glass, and was placed close to the semiconductor substrate 6 in the heat ray transmitting space therebelow. The absorbing plate can be arranged on both sides of the substrate 6 as required.

【0010】反応ガス及びパージガスは、図面左側のガ
ス導入系(図示せず)から反応容器2内に導入し、同容
器を通過させた後、図面右側のガス排気系(図示せず)
を用いて排気した。また、装置本体1の壁の内部には通
水路が設けられており、装置の使用中、当該通水路に冷
却水を通すことによって装置本体1を冷却した。
The reaction gas and the purge gas are introduced into the reaction vessel 2 from a gas introduction system (not shown) on the left side of the drawing, and after passing through the same vessel, a gas exhaust system (not shown) on the right side of the drawing.
Was evacuated using. Further, a water passage is provided inside the wall of the device body 1, and the device body 1 was cooled by passing cooling water through the water passage while the device was in use.

【0011】基板6の温度は、装置本体1の下側に放射
温度計10を配置し、観測窓11,透孔13を介して測
定した。測定データは、電力制御装置12に転送し、同
データに基づいて熱線照射ランプ3に供給する電力を制
御した。或いはまた、基板6の温度は、図2に示す要部
拡大断面図のように、熱線透過性支持台7の支持ピン1
4に内装した熱電対15で測定した。支持ピン14は直
径4mmのアルミナからなる平坦な頂部を持つキャップ1
6と直径3.5mm の石英ガラス管からなる基部17とか
らなり、基部17の頂部は直径2.5mm と絞られて基部
頸部17aとなっている。熱電対15はその接合部が無
機接着剤によりキャップ16に固着されている。放射温
度計の場合と同じく、測定データは、電力制御装置12
に転送し、同データに基づいて熱線照射ランプ3に供給
する電力を制御した。放射温度計10と熱電対15とは
適宜切り替えて用いた。
The temperature of the substrate 6 was measured through an observation window 11 and a through hole 13 by disposing a radiation thermometer 10 below the apparatus body 1. The measurement data was transferred to the power control device 12, and the power supplied to the heat ray irradiation lamp 3 was controlled based on the data. Alternatively, the temperature of the substrate 6 is set such that the support pin 1 of the heat ray transmissive support base 7 is as shown in the enlarged sectional view of the main part shown in FIG.
The measurement was performed using a thermocouple 15 installed in No. 4. The support pin 14 is a cap 1 having a flat top made of alumina having a diameter of 4 mm.
6 and a base 17 made of a quartz glass tube having a diameter of 3.5 mm, and the top of the base 17 is narrowed to a diameter of 2.5 mm to form a base neck 17a. The joint portion of the thermocouple 15 is fixed to the cap 16 with an inorganic adhesive. As in the case of the radiation thermometer, the measured data is the power control device 12
And the power supplied to the heat ray irradiation lamp 3 was controlled based on the data. The radiation thermometer 10 and the thermocouple 15 were appropriately switched and used.

【0012】このほか、装置の使用中、各部材が許容温
度を越えて高温になることを防ぐため、装置本体1と反
応容器2との間の間隙に冷却用の窒素ガスを吹き込み、
これらの部材を冷却した。
In addition, in order to prevent the temperature of each member from exceeding the allowable temperature and becoming high during use of the apparatus, nitrogen gas for cooling is blown into the gap between the apparatus main body 1 and the reaction vessel 2,
These parts were cooled.

【0013】このような製造装置により、未加工の半導
体基板(シリコン基板)6を反応容器2内に装填して1
000℃の温度でアニール処理を行ったところ、基板ご
との温度のばらつきは約1℃と良好な結果を得た。ポリ
シリコン膜を表面に形成したシリコン基板、及びイオン
ドープを表面に施したシリコン基板を用いて同様のアニ
ール処理を行ったところ、熱電対15を用いた温度制御
ではばらつきは約1℃と良好であったが、放射温度計1
0を用いた温度制御ではばらつきの値は約10℃と大き
くなった。また、シリコン基板6の温度と熱電対15に
よる検出温度との誤差は約4℃と一定であり、シリコン
基板6の温度制御には、この誤差4℃を補正して用いる
ことにより、精度良く制御できることが明らかになっ
た。さらに、熱電対15を埋め込んだ支持ピン14の近
傍のシリコン基板温度とその周辺の基板温度との差は約
2℃と少なく、基板の温度は均一であった。
With such a manufacturing apparatus, a raw semiconductor substrate (silicon substrate) 6 is loaded into the reaction vessel 2 and
When the annealing treatment was performed at a temperature of 000 ° C., the temperature variation among the substrates was about 1 ° C., which was a good result. When the same annealing treatment was performed using a silicon substrate having a polysilicon film formed on its surface and a silicon substrate having its surface doped with ions, the temperature control using the thermocouple 15 showed a good variation of about 1 ° C. There was, but radiation thermometer 1
In the temperature control using 0, the variation value increased to about 10 ° C. Further, the error between the temperature of the silicon substrate 6 and the temperature detected by the thermocouple 15 is constant at about 4 ° C., and the temperature of the silicon substrate 6 is accurately controlled by correcting the error of 4 ° C. It became clear that it could be done. Furthermore, the difference between the temperature of the silicon substrate in the vicinity of the support pin 14 in which the thermocouple 15 was embedded and the temperature of the substrate in the vicinity thereof was as small as about 2 ° C., and the temperature of the substrate was uniform.

【0014】比較のために、支持ピンのキャップ16を
直径4mmのアルミナで形成し、基部を同じく直径4mmの
石英ガラス管で形成し、上記の条件と同じで実験を行っ
たところ、シリコン基板6の温度と熱電対15による検
出温度との誤差は約7℃となり、さらに、熱電対15を
埋め込んだ支持ピン14の近傍のシリコン基板温度とそ
の周辺の基板温度との差は約10℃と不均一となった。
この原因は石英ガラスの熱伝導率は低いものの、その断
面積が広いために半導体基板6から多量の熱が支持ピン
の方へ流れ込んだためと推測される。したがって、支持
ピン14の太さは、細いほど温度測定に適しているが、
機械的強度が弱まることから、応力が集中し難い頸部を
細くすることが熱的にも好都合である。
For comparison, the support pin cap 16 was formed of alumina having a diameter of 4 mm, and the base portion was also formed of a quartz glass tube having a diameter of 4 mm, and an experiment was conducted under the same conditions as above. The difference between the temperature of the silicon substrate and the temperature detected by the thermocouple 15 is about 7 ° C., and the difference between the temperature of the silicon substrate near the support pin 14 in which the thermocouple 15 is embedded and the substrate temperature around it is about 10 ° C. Became uniform.
It is speculated that this is because quartz glass has a low thermal conductivity, but a large amount of heat flows into the support pins from the semiconductor substrate 6 because of its large cross-sectional area. Therefore, the thinner the support pin 14 is, the more suitable it is for temperature measurement.
Since the mechanical strength is weakened, it is also thermally convenient to narrow the neck where stress is less likely to concentrate.

【0015】さらに比較のために、支持ピンのキャップ
16、並びに基部17を共に直径4mmのアルミナで形成
し、上記の条件と同じで実験を行ったところ、シリコン
基板6の温度と熱電対15による検出温度との誤差は約
15℃と大きく、しかもその値は一定ではなく、さら
に、熱電対15を埋め込んだ支持ピン14の近傍のシリ
コン基板温度とその周辺の基板温度との差は約40℃と
大きく、基板の温度は不均一であった。この原因も程度
の差は有るものの上記の原因と同じく、基部22の熱抵
抗が低いためと推測される。
For comparison, the support pin cap 16 and the base portion 17 were both made of alumina having a diameter of 4 mm, and an experiment was conducted under the same conditions as above. The temperature of the silicon substrate 6 and the thermocouple 15 were used. The error from the detected temperature is as large as about 15 ° C., and the value is not constant. Further, the difference between the temperature of the silicon substrate in the vicinity of the support pin 14 in which the thermocouple 15 is embedded and the temperature of the periphery thereof is about 40 ° C. And the substrate temperature was non-uniform. It is presumed that the thermal resistance of the base portion 22 is low, like the above-mentioned cause, although this cause also varies to some extent.

【0016】このように、熱抵抗の低い支持ピンで半導
体基板温度を測定した場合に、基板温度が不均一となる
原因を調べるために、図1に示した半導体製造装置の支
持台7,ガードリング8および内部熱線吸収板9を取外
し、代りに、セラミックスヒータ上に半導体基板を直接
載せ、そのヒータで半導体基板を加熱し、基板温度をキ
ャップ16および基部17を共に直径4mmのアルミナで
形成した支持ピンに設けた熱電対15で測定した。その
結果、支持ピン14の近傍のシリコン基板温度とその周
辺の基板温度との差は約5℃と減少した。したがって、
半導体基板6を接触方式で加熱する場合、基板が加熱体
から受け取る熱量は、加熱体と基板との温度差に比例す
るため、基板に温度差が生じた場合、その温度差を減ず
る作用が生じるのに対して、半導体基板6を非接触方
式、例えば、赤外線ランプで加熱する場合には、基板が
受け取る熱量は均等であるため、部分的に熱の流出が生
じるとその周りに温度差が生じて、特に、半導体基板6
の温度が高く、支持ピンの熱抵抗が低い場合、支持ピン
の周りでは半導体基板の温度変化が大きくなるものと結
論される。
As described above, when the semiconductor substrate temperature is measured with the support pins having a low thermal resistance, in order to investigate the cause of the nonuniform substrate temperature, the support base 7 and the guard of the semiconductor manufacturing apparatus shown in FIG. The ring 8 and the internal heat ray absorbing plate 9 were removed, and instead, the semiconductor substrate was placed directly on the ceramics heater, the semiconductor substrate was heated by the heater, and the substrate temperature was formed by alumina with a diameter of 4 mm for both the cap 16 and the base 17. The measurement was performed with a thermocouple 15 provided on the support pin. As a result, the difference between the temperature of the silicon substrate in the vicinity of the support pin 14 and the temperature of the substrate in the vicinity thereof was reduced to about 5 ° C. Therefore,
When the semiconductor substrate 6 is heated by the contact method, the amount of heat that the substrate receives from the heating body is proportional to the temperature difference between the heating body and the substrate. Therefore, when the temperature difference occurs between the substrates, an action of reducing the temperature difference occurs. On the other hand, when the semiconductor substrate 6 is heated by a non-contact method, for example, an infrared lamp, the amount of heat received by the substrate is equal, and therefore, if heat is partially discharged, a temperature difference occurs around it. In particular, the semiconductor substrate 6
It is concluded that when the temperature is high and the thermal resistance of the support pin is low, the temperature change of the semiconductor substrate becomes large around the support pin.

【0017】図3は、シリコン基板の上にシリコン酸化
膜を形成する場合の本発明の別の実施例を示す。本実施
例では、反応容器2の上側空間に低圧水銀ランプ18
(紫外線ランプ)を配置し、反応容器2の下側空間にハ
ロゲンランプ3(熱線照射ランプ)を配置した。キャッ
プ16はアルミニウムであり、その他の構造は、実施例
1の場合と実質的に同一である。なお、内部熱線吸収板
9は、取り外してある。
FIG. 3 shows another embodiment of the present invention for forming a silicon oxide film on a silicon substrate. In this embodiment, the low pressure mercury lamp 18 is provided in the upper space of the reaction vessel 2.
A (ultraviolet lamp) was arranged, and a halogen lamp 3 (heat ray irradiation lamp) was arranged in the lower space of the reaction vessel 2. The cap 16 is aluminum, and the other structures are substantially the same as those in the first embodiment. The internal heat ray absorbing plate 9 has been removed.

【0018】モノシランガス及び笑気ガスからなる反応
ガスを反応容器2に導入し、150℃の温度に維持した
シリコン基板6に波長185nmの紫外線を照射するこ
とによって、シリコン基板6の上にシリコン酸化膜を形
成した。熱電対による温度制御,放射温度計による温度
制御、共に、基板温度のばらつき(再現性),均一性、
並びに温度誤差は、極めて良好であって、所望の高品質
を有するシリコン酸化膜を形成することが出来た。
A reaction gas composed of monosilane gas and laughing gas is introduced into the reaction vessel 2, and the silicon substrate 6 maintained at a temperature of 150 ° C. is irradiated with ultraviolet rays having a wavelength of 185 nm to form a silicon oxide film on the silicon substrate 6. Was formed. Both temperature control by thermocouple and temperature control by radiation thermometer, substrate temperature variation (reproducibility), uniformity,
Moreover, the temperature error was extremely good, and a silicon oxide film having a desired high quality could be formed.

【0019】また、図3と同様な装置構成で、反応ガス
としてオゾンガスを用い、基板上のレジストを除去し
た。基板は250℃に維持し、基板上の紫外線強度は約
100mW/cm2とした。基板表面との間隙0.5mmの間
に流量10リットル/分のオゾン含有酸化性ガスを流
し、レジストを酸化した。この時のレジストの酸化速度
(処理速度)は基板温度の変化1℃に対して約2%変化
した。基板温度が低いと反応速度は遅くなるため、支持
ピン部分での基板温度が低い場合にはその部分だけ未反
応の残滓が残ることとなる。本発明の支持ピンを用いた
場合のレジスト処理速度は遅い部分の早い部分に対する
比が0.95 以上となり、均一性は問題ないことが確認
出来た。
Further, with the same device configuration as in FIG. 3, ozone gas was used as a reaction gas, and the resist on the substrate was removed. The substrate was maintained at 250 ° C., and the ultraviolet intensity on the substrate was about 100 mW / cm 2 . Ozone-containing oxidizing gas was flowed at a flow rate of 10 liters / minute in a gap of 0.5 mm from the surface of the substrate to oxidize the resist. At this time, the resist oxidation rate (processing rate) was changed by about 2% with respect to the substrate temperature change of 1 ° C. When the substrate temperature is low, the reaction speed becomes slow. Therefore, when the substrate temperature at the support pin portion is low, unreacted residue remains only in that portion. The resist processing speed when the support pin of the present invention was used was 0.95 or more in the ratio of the slow portion to the fast portion, and it was confirmed that the uniformity was not a problem.

【0020】図4は、支持ピン14と基板6との接触角
(キャップ16の面と基板6の面とがなす角)を調整す
る機構19を設けた本発明の別の実施例を示す構成図で
ある。支持ピン14は角度調節機構19によりその周り
に回転可能となっており、基板6が傾いた場合でも、キ
ャップ16が基板6と面接触(接触角0度)すべく調節
される。支持ピン14のキャップ16は基板6との熱抵
抗を小さくするためにその頂部が平坦となっているが、
基板6に反り等により傾きが生じていると、基板6と支
持ピン14との接触面積は十分でなくなり、従って、検
出温度誤差は大きくなる。この場合、検出される温度は
基板6の実際の温度よりも低くなるため、角度調節機構
19により支持ピンの角度をわずか動かし、検出される
温度が最大となった位置での温度をもって検出温度とし
加熱電力を制御する。この角度調節を行っている間は、
他の測定温度データに基づき温度制御を行うか、又は、
温調を一定とする。特に、基板6を真空中で加熱する場
合には、接触角による検出温度の変化が大きく、接触角
が1度の場合、基板温度と検出温度との誤差が約10℃
であったものが、接触角を調整して、0度とした場合、
4℃と少なくなった。
FIG. 4 shows another embodiment of the present invention in which a mechanism 19 for adjusting the contact angle between the support pin 14 and the substrate 6 (the angle formed by the surface of the cap 16 and the surface of the substrate 6) is provided. It is a figure. The support pin 14 can be rotated around it by an angle adjusting mechanism 19, and even if the substrate 6 is tilted, the cap 16 is adjusted so as to make surface contact (contact angle 0 degree) with the substrate 6. The top of the cap 16 of the support pin 14 is flat in order to reduce the thermal resistance with the substrate 6,
If the substrate 6 is tilted due to warpage or the like, the contact area between the substrate 6 and the support pins 14 becomes insufficient, and thus the detected temperature error increases. In this case, since the detected temperature becomes lower than the actual temperature of the substrate 6, the angle of the support pin is slightly moved by the angle adjusting mechanism 19, and the temperature at the position where the detected temperature becomes maximum is taken as the detected temperature. Control heating power. While doing this angle adjustment,
Perform temperature control based on other measured temperature data, or
Keep the temperature control constant. In particular, when the substrate 6 is heated in a vacuum, the change in the detected temperature due to the contact angle is large, and when the contact angle is 1 degree, the error between the substrate temperature and the detected temperature is about 10 ° C.
If the contact angle was adjusted to 0 degrees,
It decreased to 4 ° C.

【0021】なお、実施例では、シリコン基板を加熱す
るための熱線照射ランプ3としてハロゲンランプを使用
したが、赤外線ランプやセラミックヒータを非接触式に
使用することも可能である。また、実施例では、被加熱
基板として半導体基板を用いた場合について説明した
が、ガラス基板を用いた場合も同様である。但し、ガラ
ス基板を用いた場合には、その基板の熱伝導率がシリコ
ン基板の熱伝導率よりも低いため、より一層基板の温度
の均一性は悪くなる。また更に、支持ピンの基部22の
材質として石英ガラスを用いた場合について説明した
が、基部22の材質は、MgO・SiO2,2MgO・
SiO2,ZrO2・SiO2等の酸化珪素含有のセラミ
ックスが適している。何れにしても、基部22の材質の
熱伝導率が基板およびキャップ16の熱伝導率よりも十
分に低い無機材質であればよい。
In the embodiment, the halogen lamp is used as the heat ray irradiation lamp 3 for heating the silicon substrate, but it is also possible to use an infrared lamp or a ceramic heater in a non-contact type. Further, in the embodiment, the case where the semiconductor substrate is used as the substrate to be heated has been described, but the same applies when the glass substrate is used. However, when the glass substrate is used, the thermal conductivity of the substrate is lower than the thermal conductivity of the silicon substrate, so that the temperature uniformity of the substrate is further deteriorated. Furthermore, although the case where quartz glass is used as the material of the base portion 22 of the support pin has been described, the material of the base portion 22 is MgO.SiO 2 , 2MgO.
Ceramics containing silicon oxide such as SiO 2 and ZrO 2 · SiO 2 are suitable. In any case, an inorganic material whose thermal conductivity of the material of the base portion 22 is sufficiently lower than that of the substrate and the cap 16 may be used.

【0022】[0022]

【発明の効果】本発明の半導体製造装置の温度検出装置
では、測温体とその周りの熱抵抗を下げ、支持部の熱抵
抗を上げることにより、半導体基板、或いはガラス基板
の温度を正確に測定し、かつ、これら基板の温度むらを
少なくすることができ、支持ピンの基部を無機材質で構
成することにより有害な金属汚染を防止することが出来
る。
According to the temperature detecting device of the semiconductor manufacturing apparatus of the present invention, the temperature of the semiconductor substrate or the glass substrate is accurately measured by lowering the thermal resistance of the temperature sensing element and its surroundings and increasing the thermal resistance of the supporting portion. The temperature unevenness of these substrates can be measured and reduced, and harmful metal contamination can be prevented by forming the base of the support pin from an inorganic material.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の半導体製造装置の第一の実施例を示す
断面図。
FIG. 1 is a sectional view showing a first embodiment of a semiconductor manufacturing apparatus of the present invention.

【図2】本発明の半導体製造装置の温度検出装置の要部
の断面図。
FIG. 2 is a sectional view of a main part of a temperature detection device of a semiconductor manufacturing apparatus according to the present invention.

【図3】本発明の半導体製造装置の第二の実施例を示す
断面図。
FIG. 3 is a sectional view showing a second embodiment of the semiconductor manufacturing apparatus of the present invention.

【図4】本発明の半導体製造装置の温度検出装置の要部
の説明図。
FIG. 4 is an explanatory diagram of a main part of a temperature detection device of a semiconductor manufacturing apparatus of the present invention.

【符号の説明】[Explanation of symbols]

14…支持ピン、15…熱電対、16…キャップ、17
…基部、17a…基部頸部。
14 ... Support pin, 15 ... Thermocouple, 16 ... Cap, 17
... base, 17a ... base neck.

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 21/324 D Continuation of front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location H01L 21/324 D

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】半導体基板またはガラス基板を非接触で温
度処理する半導体製造装置の温度検出装置において、前
記半導体基板または前記ガラス基板を支持する支持ピン
の少なくとも一つに熱電対を埋め込み、前記支持ピンの
先端部を前記支持ピンの基部よりも熱伝導率の高い材料
で平坦に構成し、前記支持ピンの基部を前記基板よりも
熱伝導率の低い無機材料で構成したことを特徴とする温
度検出装置。
1. A temperature detection device for a semiconductor manufacturing apparatus, which processes a semiconductor substrate or a glass substrate in a non-contact manner, wherein a thermocouple is embedded in at least one of support pins for supporting the semiconductor substrate or the glass substrate, and the support is provided. A temperature characterized in that the tip of the pin is made flat with a material having a higher thermal conductivity than the base of the support pin, and the base of the support pin is made of an inorganic material having a lower heat conductivity than the substrate. Detection device.
【請求項2】請求項1において、前記支持ピンの基部を
管状とし、管内先端部に接点が位置すべく前記熱電対を
挿入し、該接点近傍を支持ピン先端部に固着したことを
特徴とする温度検出装置。
2. The support pin according to claim 1, wherein the base of the support pin is tubular, the thermocouple is inserted so that the contact is located at the distal end of the pipe, and the vicinity of the contact is fixed to the distal end of the support pin. Temperature detection device.
【請求項3】請求項1または2において、前記支持ピン
の基部の先端部の断面積を他端の断面積よりも小さくし
た温度検出装置。
3. The temperature detecting device according to claim 1, wherein the cross-sectional area of the tip of the base of the support pin is smaller than the cross-sectional area of the other end.
【請求項4】請求項1,2または3において、上記支持
ピンの先端部と上記基板との接触角を可変とする角度調
節機構を設けたことを特徴とする温度検出装置。
4. The temperature detecting device according to claim 1, further comprising an angle adjusting mechanism for varying a contact angle between the tip of the support pin and the substrate.
【請求項5】請求項1,2,3または4において、前記
半導体基板、又は前記ガラス基板を収納するための熱線
透過型の反応容器と、前記反応容器の外側から基板の少
なくとも一方の表面に加熱用熱線を照射するための熱線
源とを備えた半導体製造装置に、前記温度検出装置を備
えた半導体製造装置。
5. The heat ray transmissive reaction container for accommodating the semiconductor substrate or the glass substrate according to claim 1, 2, 3 or 4, and at least one surface of the substrate from the outside of the reaction container. A semiconductor manufacturing apparatus including the temperature detecting device in a semiconductor manufacturing apparatus including a heat ray source for irradiating a heating heat ray.
JP1332594A 1994-02-07 1994-02-07 Temperature detector and semiconductor manufacturing device Pending JPH07221154A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1332594A JPH07221154A (en) 1994-02-07 1994-02-07 Temperature detector and semiconductor manufacturing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1332594A JPH07221154A (en) 1994-02-07 1994-02-07 Temperature detector and semiconductor manufacturing device

Publications (1)

Publication Number Publication Date
JPH07221154A true JPH07221154A (en) 1995-08-18

Family

ID=11830007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1332594A Pending JPH07221154A (en) 1994-02-07 1994-02-07 Temperature detector and semiconductor manufacturing device

Country Status (1)

Country Link
JP (1) JPH07221154A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998038673A1 (en) * 1997-02-27 1998-09-03 Sony Corporation Substrate temperature measuring instrument, method of measuring substrate temperature, substrate heating method and heat treatment device
JP2001215156A (en) * 2000-02-02 2001-08-10 Sharp Corp Contact type temperature-measuring apparatus
US6497767B1 (en) 1999-05-14 2002-12-24 Tokyo Electron Limited Thermal processing unit for single substrate
US6635852B1 (en) * 1997-06-12 2003-10-21 Nec Corporation Method and apparatus for lamp anneal
WO2006003798A1 (en) * 2004-07-01 2006-01-12 Ulvac, Inc. Substrate temperature measuring apparatus and processor
US8191792B2 (en) 2006-07-06 2012-06-05 Komatsu Ltd. Temperature sensor, temperature control device, temperature controller and temperature-control method
JP2012181870A (en) * 2006-07-06 2012-09-20 Komatsu Ltd Temperature control device and method
JP2012222259A (en) * 2011-04-13 2012-11-12 Koyo Thermo System Kk Wafer with thermocouple, wafer support pin, and wafer support structure
JP2014033148A (en) * 2012-08-06 2014-02-20 Ulvac Japan Ltd Light irradiation device
WO2014158370A2 (en) * 2013-03-14 2014-10-02 Applied Materials, Inc. Temperature measurement in multi-zone heater
JP2016076529A (en) * 2014-10-03 2016-05-12 東京エレクトロン株式会社 Support member for temperature measurement and heat treatment apparatus
JP2016114498A (en) * 2014-12-16 2016-06-23 株式会社シバソク Testing apparatus

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998038673A1 (en) * 1997-02-27 1998-09-03 Sony Corporation Substrate temperature measuring instrument, method of measuring substrate temperature, substrate heating method and heat treatment device
DE19880398B4 (en) * 1997-02-27 2008-09-04 Sony Corp. Substrate temperature measuring instrument with substrate heating method and heat treatment device - heats substrate by light, uses thermocouple with cover partly of high heat- and partly of high light-conductivity materials
US6635852B1 (en) * 1997-06-12 2003-10-21 Nec Corporation Method and apparatus for lamp anneal
US6497767B1 (en) 1999-05-14 2002-12-24 Tokyo Electron Limited Thermal processing unit for single substrate
JP2001215156A (en) * 2000-02-02 2001-08-10 Sharp Corp Contact type temperature-measuring apparatus
WO2006003798A1 (en) * 2004-07-01 2006-01-12 Ulvac, Inc. Substrate temperature measuring apparatus and processor
KR100789286B1 (en) * 2004-07-01 2008-01-02 가부시키가이샤 아루박 Substrate temperature measuring apparatus and processor
JPWO2006003798A1 (en) * 2004-07-01 2008-04-17 株式会社アルバック Substrate temperature measuring apparatus and processing apparatus
US7604401B2 (en) 2004-07-01 2009-10-20 Ul Vac, Inc. Substrate temperature measurement apparatus and processing apparatus
JP2012181870A (en) * 2006-07-06 2012-09-20 Komatsu Ltd Temperature control device and method
US8191792B2 (en) 2006-07-06 2012-06-05 Komatsu Ltd. Temperature sensor, temperature control device, temperature controller and temperature-control method
JP2012222259A (en) * 2011-04-13 2012-11-12 Koyo Thermo System Kk Wafer with thermocouple, wafer support pin, and wafer support structure
JP2014033148A (en) * 2012-08-06 2014-02-20 Ulvac Japan Ltd Light irradiation device
WO2014158370A2 (en) * 2013-03-14 2014-10-02 Applied Materials, Inc. Temperature measurement in multi-zone heater
WO2014158370A3 (en) * 2013-03-14 2014-11-20 Applied Materials, Inc. Temperature measurement in multi-zone heater
CN104995726A (en) * 2013-03-14 2015-10-21 应用材料公司 Temperature measurement in multi-zone heater
TWI618168B (en) * 2013-03-14 2018-03-11 應用材料股份有限公司 Temperature measurement in multi-zone heater
US10153185B2 (en) 2013-03-14 2018-12-11 Applied Materials, Inc. Substrate temperature measurement in multi-zone heater
US10720349B2 (en) 2013-03-14 2020-07-21 Applied Materials, Inc. Temperature measurement in multi-zone heater
JP2016076529A (en) * 2014-10-03 2016-05-12 東京エレクトロン株式会社 Support member for temperature measurement and heat treatment apparatus
JP2016114498A (en) * 2014-12-16 2016-06-23 株式会社シバソク Testing apparatus

Similar Documents

Publication Publication Date Title
EP2279519B1 (en) Apparatus and method including heating source reflective filter for pyrometry
JP4948701B2 (en) Heating apparatus, heat treatment apparatus having the heating apparatus, and heat treatment control method
US8787741B2 (en) Heat treatment method and heat treatment apparatus for heating substrate by light irradiation
JP2780866B2 (en) Light irradiation heating substrate temperature measurement device
US6359263B2 (en) System for controlling the temperature of a reflective substrate during rapid heating
JPH07221154A (en) Temperature detector and semiconductor manufacturing device
JPH10239165A (en) Method and apparatus for measuring temperature of substrate, and heating method for substrate
JP2002539622A (en) How to determine the temperature in the heat treatment chamber
JP2781616B2 (en) Semiconductor wafer heat treatment equipment
CN107818925B (en) Heat treatment apparatus
JPH08148502A (en) Temperature and semiconductor production system
JP4346208B2 (en) Temperature measuring method, heat treatment apparatus and method, and computer-readable medium
JP2009004410A (en) Heat treatment apparatus
JP2002208591A (en) Heat treatment apparatus
JP2009004427A (en) Heat treatment equipment and method of manufacturing heat treatment equipment
JPH10144618A (en) Heater for manufacturing semiconductor device
JPH05299428A (en) Method and apparatus for heat-treatment of semiconductor wafer
JP2002261038A (en) Heat treatment device
JP2001196322A (en) Auxiliary heating plate
JP3151022B2 (en) Heat treatment equipment
JP4410472B2 (en) Semiconductor manufacturing apparatus and semiconductor device manufacturing method
JPH07151606A (en) Instrument for measuring temperature of substrate
JP4646354B2 (en) Heat treatment apparatus and method
JPH11163070A (en) Temperature control method for heat treatment process in production of semiconductor device
JP4422525B2 (en) Semiconductor manufacturing equipment