JPH08148502A - Temperature and semiconductor production system - Google Patents

Temperature and semiconductor production system

Info

Publication number
JPH08148502A
JPH08148502A JP28628394A JP28628394A JPH08148502A JP H08148502 A JPH08148502 A JP H08148502A JP 28628394 A JP28628394 A JP 28628394A JP 28628394 A JP28628394 A JP 28628394A JP H08148502 A JPH08148502 A JP H08148502A
Authority
JP
Japan
Prior art keywords
substrate
temperature
support pin
base
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28628394A
Other languages
Japanese (ja)
Inventor
Hisashi Miyashita
恒 宮下
Mitsuo Tokuda
光雄 徳田
Kotaro Koizumi
浩太郎 小泉
Sukeyoshi Tsunekawa
助芳 恒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP28628394A priority Critical patent/JPH08148502A/en
Publication of JPH08148502A publication Critical patent/JPH08148502A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To control the temperature of a semiconductor substrate or a glass substrate uniformly and accurately by forming the forward end part of a temperature detecting part, also serving as a supporting pin, of semiconductor or glass substrate of a material having high thermal conductivity and the base part thereof of an inorganic material having thermal conductivity lower than that of the substrate. CONSTITUTION: A supporting pin 14 comprises an alumina cap 16 of 4mm diameter having flat top, and a base part 17 made of a quartz glass tube of 3.5mm diameter. The top of the base part 17 is constricted to provide a neck part 17a of 2.5mm diameter. A silicon carbide film 18 is formed in the form of a plurality of rings on the surface of the base part 17 made of a quartz glass tube. A thermocouple 15 is bonded, at the bonding part thereof, to the cap 16 through an inorganic adhesive. This structure realizes accurate measurement of temperature of semiconductor or glass substrate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体製造装置、特に
赤外線ランプ,セラミックヒータ等の熱線源を使用する
半導体製造装置(例えば、アニール装置,化学蒸着(C
VD)装置,アッシャー、或いは、ガラス表面に多数の
半導体素子を形成する装置等)およびそれらに用いられ
る温度検出装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor manufacturing apparatus, particularly a semiconductor manufacturing apparatus using a heat source such as an infrared lamp or a ceramic heater (for example, an annealing apparatus, a chemical vapor deposition (C
VD) device, asher, or device for forming a large number of semiconductor elements on a glass surface) and a temperature detection device used therefor.

【0002】[0002]

【従来の技術】半導体素子の性能を高め、かつ、そのば
らつきを少なくするためには、半導体素子の製造過程
中、半導体基板、或いはガラス基板の温度を均一かつ正
確に制御することが必要であり、既に幾つかの対策が提
案されている。
2. Description of the Related Art In order to improve the performance of a semiconductor device and reduce its variation, it is necessary to uniformly and accurately control the temperature of a semiconductor substrate or glass substrate during the manufacturing process of the semiconductor device. , Some measures have already been proposed.

【0003】例えば、特開平4−98135号公報に記載の温
度の検出方法では、測温体を熱伝導率の高い材質からな
るキャップで被覆し、熱抵抗を低減している。或いはま
た、文献(JICST E91121096 )ではアルミナ管を支持ピ
ンとし、その内部に熱電対を埋め込んだ例が示されてい
る。
For example, in the temperature detecting method described in Japanese Patent Laid-Open No. 4-98135, the temperature measuring element is covered with a cap made of a material having a high thermal conductivity to reduce the thermal resistance. Alternatively, the literature (JICST E91121096) shows an example in which an alumina tube is used as a support pin and a thermocouple is embedded inside the support pin.

【0004】これら従来例では、被測定基板と測温体と
の間の熱抵抗を少なくしているものの、測温体と支持基
盤との間の熱抵抗には十分な考慮がなされていない。従
って、温度測定部を通り、多量の熱が被測定基板から流
れ出すことにより、測定部の基板そのものの温度低下、
並びに、測温体と被測定基板との温度差が増加する欠点
が有った。また、測温体がSUS等の金属支持体を有す
るものでは、被測定基板にとって有害な金属汚染(例え
ば、Fe,Crによる汚染)を発生する欠点が有った。
In these conventional examples, the thermal resistance between the substrate to be measured and the temperature measuring body is reduced, but the thermal resistance between the temperature measuring body and the support base is not sufficiently taken into consideration. Therefore, a large amount of heat flows out from the substrate to be measured through the temperature measuring unit, which lowers the temperature of the substrate itself in the measuring unit.
In addition, there is a drawback that the temperature difference between the temperature measuring element and the substrate to be measured increases. Further, in the case where the temperature measuring element has a metal support such as SUS, there is a drawback that metal contamination (for example, Fe and Cr contamination) harmful to the substrate to be measured is generated.

【0005】また、特開平4−148545 号公報に記載の温
度測定装置では、測温体を被覆部材に内挿する例が示さ
れているものの、被測定基板からの熱流には十分な配慮
がなされていない。さらに、特開平4−363026 号公報で
は、温度測定用熱電対を加熱した例が示されているが、
その為の加熱源、並びに、制御系が必要となり、構成が
複雑化することは否めなかった。
Further, in the temperature measuring device described in Japanese Patent Laid-Open No. 4-148545, an example in which the temperature measuring element is inserted into the covering member is shown, but sufficient consideration should be given to the heat flow from the substrate to be measured. Not done. Further, Japanese Patent Laid-Open No. 4-363026 discloses an example in which a thermocouple for temperature measurement is heated.
For that reason, a heating source and a control system are required, and it cannot be denied that the configuration becomes complicated.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、半導
体基板、或いはガラス基板の温度を均一かつ正確に制御
することが出来、有害な金属汚染の生じない改良された
半導体製造装置およびその簡便な温度検出装置を提供す
ることに有る。
SUMMARY OF THE INVENTION It is an object of the present invention to provide an improved semiconductor manufacturing apparatus which can control the temperature of a semiconductor substrate or a glass substrate uniformly and accurately and which does not cause harmful metal contamination. Providing a simple temperature detecting device.

【0007】[0007]

【課題を解決するための手段】上記課題は、半導体基
板、或いはガラス基板の支持ピンを兼ねる温度検出部
を、熱伝導率の高い材質でその先端部(以下キャップと
称する)を平坦に形成し、基板よりも熱伝導率の低い無
機材質でその基部を形成し、熱電対の接点を前記基部に
設けられた孔を通して前記キャップに固着すると共に、
キャップ近傍に、1ないし3μmの波長範囲で平均的な
放射率が熱処理する被加熱物よりも高い材質からなる赤
外線受容体を設けことにより解決することが出来る。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, a temperature detecting portion which also functions as a supporting pin of a semiconductor substrate or a glass substrate is formed by a material having a high thermal conductivity so that its tip (hereinafter referred to as a cap) is flat. The base is formed of an inorganic material having a lower thermal conductivity than the substrate, and the contact of the thermocouple is fixed to the cap through a hole provided in the base,
This can be solved by providing an infrared ray acceptor made of a material having a higher average emissivity in the wavelength range of 1 to 3 μm in the vicinity of the cap than the object to be heat-treated to be heat-treated.

【0008】キャップの材質は、低温処理にはアルミニ
ウム又はアルミナが、高温処理にはアルミナが好都合で
あり、窒化珪素、或いは炭化珪素等も可能である。赤外
線受容体の材質は炭化珪素,炭素、またはこれらの複合
体が適している。また、基部の材質は、石英ガラス、又
はステアタイト等の酸化マグネシウムと酸化珪素との化
合物、或いは、酸化ジルコニウムと酸化珪素との化合物
が好適である。
The material of the cap is preferably aluminum or alumina for low temperature treatment, and alumina for high temperature treatment, and silicon nitride, silicon carbide or the like is also possible. Suitable materials for the infrared receptor are silicon carbide, carbon, and composites thereof. The material of the base is preferably quartz glass, a compound of magnesium oxide and silicon oxide such as steatite, or a compound of zirconium oxide and silicon oxide.

【0009】[0009]

【作用】本発明によれば、測温体(熱電対の接点)はキ
ャップを介して基板に接触している。この時、測温体と
基板の測温部との温度差は、キャップと基板との接触部
の熱抵抗,キャップの熱抵抗,キャップと測温体との熱
抵抗、及び基部(測温体支持部)の熱抵抗で左右され
る。しかるに、本発明によれば、キャップ先端を平坦に
することによりキャップと基板との接触部の熱抵抗を減
少させ、キャップの材質を熱伝導率の高いものとし、基
部の熱伝導率を低いものとすることにより、キャップの
熱抵抗を減少させ、基部の熱抵抗を増大させている。
According to the present invention, the temperature sensing element (the contact point of the thermocouple) is in contact with the substrate through the cap. At this time, the temperature difference between the temperature measuring unit and the temperature measuring unit of the substrate is the thermal resistance of the contact portion between the cap and the substrate, the thermal resistance of the cap, the thermal resistance of the cap and the temperature measuring unit, and the base (temperature measuring unit). It depends on the thermal resistance of the support). However, according to the present invention, by making the tip of the cap flat, the thermal resistance of the contact portion between the cap and the substrate is reduced, the material of the cap has a high thermal conductivity, and the thermal conductivity of the base is low. By doing so, the thermal resistance of the cap is reduced and the thermal resistance of the base is increased.

【0010】また、測温体を基部の管を通してキャップ
に固着させることにより、キャップと測温体との熱抵抗
を減少させている。従って、本発明の温度検出装置では
測温体と基板との熱抵抗が少なく、測温体と半導体基板
の測温部との温度差は極めて少なくなる。また同時に、
基部を熱伝導率の低い材料で構成し、かつ、基部に頸部
を設け、キャップ側の断面を小さくすることにより、基
部の熱抵抗を大きくし、基板から失われる熱流を少なく
することが出来、基板の測温部の温度低下を減少させ、
基板の温度の均一性を確保できる。
Further, by fixing the temperature measuring element to the cap through the tube of the base, the thermal resistance between the cap and the temperature measuring element is reduced. Therefore, in the temperature detecting device of the present invention, the thermal resistance between the temperature measuring element and the substrate is small, and the temperature difference between the temperature measuring element and the temperature measuring portion of the semiconductor substrate is extremely small. At the same time,
By constructing the base with a material with low thermal conductivity, providing a neck on the base, and reducing the cross section on the cap side, the thermal resistance of the base can be increased and the heat flow lost from the substrate can be reduced. , Reduce the temperature drop of the temperature measuring part of the board,
The temperature uniformity of the substrate can be ensured.

【0011】更に、キャップ近傍に1ないし3μmの波
長範囲で平均的な放射率が熱処理する被加熱物よりも高
い材質からなる赤外線受容体を設けることにより、この
1ないし3μmの波長範囲に主に放射される赤外線ラン
プ,セラミックヒータ等からの熱線を受けて支持ピンが
被加熱物と同様に加熱され、支持ピンの温度は被加熱物
の温度に近づくことから、基板から失われる熱流をより
一層少なくすることが出来、基板の温度の均一性を確保
しつつ、正確な基板温度を測定することが出来る。
Further, by providing an infrared ray receptor made of a material having an average emissivity higher than that of the object to be heat-treated in the wavelength range of 1 to 3 μm in the vicinity of the cap, the wavelength range of 1 to 3 μm is mainly measured. The support pins are heated in the same manner as the object to be heated by receiving the heat rays from the infrared lamp, the ceramic heater, etc. that are radiated, and the temperature of the support pins approaches the temperature of the object to be heated, so that the heat flow lost from the substrate is further enhanced. It is possible to reduce the number, and it is possible to accurately measure the substrate temperature while ensuring the uniformity of the substrate temperature.

【0012】一方、赤外線受容体を、例えば、炭化珪素
のように熱伝導率の高い材質を用いて一体的に構成し、
支持ピンの表面の大方を被うならば、赤外線受容体を通
して、被加熱物からの熱流が生じることから、赤外線受
容体は互いに接触していない複数の部分から構成すると
効果が高まる。また、熱電対を支持ピン内部に閉じ込
め、且つ、支持ピン基部を無機材質で構成することによ
り、半導体基板、或いはガラス基板が有害金属で汚染さ
れることを防止できる。
On the other hand, the infrared receptor is integrally formed of a material having a high thermal conductivity such as silicon carbide,
If most of the surface of the support pin is covered, a heat flow from the object to be heated will occur through the infrared receptor, so that the infrared receptor is more effective when it is composed of a plurality of parts which are not in contact with each other. Further, by confining the thermocouple inside the support pin and forming the support pin base by an inorganic material, it is possible to prevent the semiconductor substrate or the glass substrate from being contaminated with harmful metal.

【0013】[0013]

【実施例】本発明の半導体製造装置の一実施例を図1に
示す。装置本体1は、図に示すように中空構造となって
おり、その中央部分に石英ガラス製の反応容器2が配設
されている。反応容器2の上側空間及び下側空間には、
複数の熱線照射ランプ3(例えばハロゲンランプ)が上
下交差するような形で平行に並べて配置されている。図
示しないが、装置本体1内部の天井及び床面には、金コ
ートを施したアルミ合金製の樋状凹面反射鏡が配設され
ており、熱線照射ランプ3から照射された加熱用熱線が
効率良く反応容器2に向けて集光するようになってい
る。
FIG. 1 shows an embodiment of the semiconductor manufacturing apparatus of the present invention. The apparatus main body 1 has a hollow structure as shown in the figure, and a reaction vessel 2 made of quartz glass is arranged in the central portion thereof. In the upper space and the lower space of the reaction vessel 2,
A plurality of heat ray irradiation lamps 3 (for example, halogen lamps) are arranged in parallel so as to vertically intersect. Although not shown, a trough-shaped concave reflecting mirror made of aluminum alloy coated with gold is disposed on the ceiling and floor inside the apparatus main body 1, so that the heating heat rays emitted from the heat ray irradiation lamp 3 are efficiently supplied. It is designed to collect light well toward the reaction container 2.

【0014】外部熱線吸収板4は、熱線照射ランプ3と
反応容器2との間の上下空間(熱線透過空間)にそれぞ
れ配置されている。本実施例の場合、同吸収板は、熱線
拡散用のすりガラス面を表面に形成した石英ガラス製の
ものを使用し、かつ、その全面には、冷却用窒素ガスを
流すための多数の通気口5を形成した。非加工物である
半導体基板6は、反応容器2の底部に設置した熱線透過
性支持台7上にガードリング8を添えて装填した。一
方、内部熱線吸収板9は、石英ガラス製のものを使用
し、半導体基板6に接近させてその下側の熱線透過空間
に配置した。同吸収板は、必要に応じて基板6の両側に
配設することも可能である。
The external heat ray absorbing plates 4 are arranged in the upper and lower spaces (heat ray transmitting space) between the heat ray irradiation lamp 3 and the reaction vessel 2, respectively. In the case of the present embodiment, the absorption plate is made of quartz glass having a ground glass surface for heat ray diffusion formed on the surface, and a large number of vent holes for flowing cooling nitrogen gas are provided on the entire surface. 5 was formed. The semiconductor substrate 6, which is a non-processed product, was loaded on the heat ray permeable support base 7 installed at the bottom of the reaction vessel 2 with the guard ring 8 attached. On the other hand, the internal heat ray absorbing plate 9 was made of quartz glass, and was placed close to the semiconductor substrate 6 in the heat ray transmitting space therebelow. The absorbing plate can be arranged on both sides of the substrate 6 as required.

【0015】反応ガス及びパージガスは、図面左側のガ
ス導入系(図示せず)から反応容器2内に導入し、同容
器を通過させた後、図面右側のガス排気系(図示せず)
を用いて排気した。また、図示せざるも、装置本体1の
壁の内部には通水路が設けられており、装置の使用中、
通水路に冷却水を通すことによって装置本体1を冷却し
た。
The reaction gas and the purge gas are introduced into the reaction vessel 2 from a gas introduction system (not shown) on the left side of the drawing, and after passing through the same vessel, a gas exhaust system (not shown) on the right side of the drawing.
Was evacuated using. Further, although not shown, a water passage is provided inside the wall of the apparatus main body 1, and during use of the apparatus,
The apparatus body 1 was cooled by passing cooling water through the water passage.

【0016】基板6の温度は、装置本体1の下側に放射
温度計10を配置し、観測窓11,透孔13を介して測
定した。測定データは、電力制御装置12に転送し、同
データに基づいて熱線照射ランプ3に供給する電力を制
御した。或いはまた、基板6の温度は、要部拡大断面で
示す図2に示すように、熱線透過性支持台7の支持ピン
14に内装した熱電対15で測定した。
The temperature of the substrate 6 was measured through the observation window 11 and the through hole 13 by disposing the radiation thermometer 10 below the apparatus body 1. The measurement data was transferred to the power control device 12, and the power supplied to the heat ray irradiation lamp 3 was controlled based on the data. Alternatively, the temperature of the substrate 6 was measured by a thermocouple 15 incorporated in the support pin 14 of the heat ray transmissive support base 7, as shown in FIG.

【0017】支持ピン14は図2(a)のように構成さ
れており、直径4mmのアルミナからなる平坦な頂部を持
つキャップ16と直径3.5mm の石英ガラス管からなる
基部17とからなり、基部17の頂部は直径2.5mm と
絞られて基部頸部17aとなっている。石英ガラス管か
らなる基部17表面には、長さ約1cmの範囲に渡り、複
数のリング状に炭化珪素膜18が化学気相反応で形成し
てある。熱電対15はその接合部が無機接着剤によりキ
ャップ16に固着されている。放射温度計の場合と同じ
く、測定データは、電力制御装置12に転送し、同デー
タに基づいて熱線照射ランプ3に供給する電力を制御し
た。放射温度計10と熱電対15とは適宜切り替えて用
いた。
The support pin 14 is constructed as shown in FIG. 2 (a) and comprises a cap 16 having a flat top made of alumina having a diameter of 4 mm and a base 17 made of a quartz glass tube having a diameter of 3.5 mm. The top of the base 17 is narrowed to a diameter of 2.5 mm to form a base neck 17a. On the surface of the base 17 made of a quartz glass tube, a plurality of ring-shaped silicon carbide films 18 are formed by chemical vapor reaction over a range of about 1 cm in length. The joint portion of the thermocouple 15 is fixed to the cap 16 with an inorganic adhesive. As in the case of the radiation thermometer, the measurement data was transferred to the power control device 12, and the power supplied to the heat ray irradiation lamp 3 was controlled based on the data. The radiation thermometer 10 and the thermocouple 15 were appropriately switched and used.

【0018】このほか、装置の使用中、各部材が許容温
度を越えて高温になることを防ぐため、装置本体1と反
応容器2との間の間隙に冷却用の窒素ガスを吹き込み、
これらの部材を冷却した。
Besides, in order to prevent the temperature of each member from exceeding the allowable temperature and becoming high during use of the apparatus, nitrogen gas for cooling is blown into the gap between the apparatus main body 1 and the reaction vessel 2,
These parts were cooled.

【0019】このような製造装置により、未加工の半導
体基板(シリコン基板)6を反応容器2内に装填して
1,000℃ の温度でアニール処理を行ったところ、基
板ごとの温度のばらつきは約1℃と良好な結果を得た。
ポリシリコン膜を表面に形成したシリコン基板、及びイ
オンドープを表面に施したシリコン基板を用いて同様の
アニール処理を行ったところ、熱電対15を用いた温度
制御ではばらつきは約1℃と良好であったが、放射温度
計10を用いた温度制御ではばらつきの値は約10℃と
大きくなった。また、シリコン基板6の温度と熱電対1
5による検出温度との誤差は約3℃と一定であり、シリ
コン基板6の温度制御には、この誤差3℃を補正して用
いることにより、精度良く制御できることが明らかにな
った。さらに、熱電対15を埋め込んだ支持ピン14の
近くのシリコン基板温度とその周辺の基板温度との差は
約2℃と少なく、基板の温度は均一であり、且つまた、
基板温度と検出温度との時間遅れもなく良好であった。
When an unprocessed semiconductor substrate (silicon substrate) 6 was loaded into the reaction vessel 2 and annealed at a temperature of 1,000 ° C. by using such a manufacturing apparatus, the temperature variation among the substrates was found to be small. Good results were obtained at about 1 ° C.
When the same annealing treatment was performed using a silicon substrate having a polysilicon film formed on its surface and a silicon substrate having its surface doped with ions, the temperature control using the thermocouple 15 showed a good variation of about 1 ° C. However, in the temperature control using the radiation thermometer 10, the variation value was as large as about 10 ° C. Also, the temperature of the silicon substrate 6 and the thermocouple 1
The error from the temperature detected by No. 5 is about 3 ° C. which is constant, and it has been clarified that the temperature of the silicon substrate 6 can be accurately controlled by correcting this error of 3 ° C. Furthermore, the difference between the temperature of the silicon substrate near the support pin 14 in which the thermocouple 15 is embedded and the temperature of the substrate around it is as small as about 2 ° C., and the temperature of the substrate is uniform.
There was no time delay between the substrate temperature and the detected temperature, which was good.

【0020】比較のために、支持ピンとして、基部17
の表面に炭化珪素リングを形成してない支持ピンを用い
た場合には、シリコン基板6の温度と熱電対15による
検出温度との誤差は約4℃であり、基板温度と検出温度
との時間遅れは約3秒であった。検出温度との誤差約4
℃は良好に補正することが出来たが、時間遅れは予め予
測して補正せざるをえず、昇温スピード等条件が異なる
毎に補正量が変わり、はなはだ煩雑なプログラムを組ま
ざるをえなかった。
For comparison, the base 17 is used as a support pin.
When a support pin having no silicon carbide ring formed on its surface is used, the error between the temperature of the silicon substrate 6 and the temperature detected by the thermocouple 15 is about 4 ° C., and the time between the substrate temperature and the detected temperature is The delay was about 3 seconds. Error about 4 with detected temperature
℃ was able to be corrected well, but the time delay had to be predicted and corrected in advance, and the correction amount changed each time the conditions such as the temperature rising speed changed, and there was no choice but to compose a very complicated program. It was

【0021】更に比較のために、支持ピンのキャップ1
6を直径4mmのアルミナで形成し、基部を同じく直径4
mmの石英ガラス管で形成し、条件と同じ実験を行ったと
ころ、シリコン基板6の温度と熱電対15による検出温
度との誤差は約7℃となり、さらに、熱電対15を埋め
込んだ支持ピン14の近傍のシリコン基板温度とその周
辺の基板温度との差は約10℃と不均一となった。この
原因は石英ガラスの熱伝導率は低いものの、その断面積
が広いために半導体基板6から多量の熱が支持ピンの方
へ流れ込んだためと推測される。したがって、支持ピン
14の太さは、細いほど温度測定に適しているが、機械
的強度が弱まることから、応力が集中し難い頸部を細く
することが熱的にも好都合である。
For further comparison, the support pin cap 1
6 is made of alumina with a diameter of 4 mm, and the base is also 4 mm in diameter.
When a quartz glass tube of mm was used and the same experiment as the conditions was performed, the error between the temperature of the silicon substrate 6 and the temperature detected by the thermocouple 15 was about 7 ° C., and the support pin 14 in which the thermocouple 15 was embedded was used. The difference between the temperature of the silicon substrate in the vicinity of and the temperature of the substrate in the vicinity was about 10 ° C., which was nonuniform. It is speculated that this is because quartz glass has a low thermal conductivity, but a large amount of heat flows into the support pins from the semiconductor substrate 6 because of its large cross-sectional area. Therefore, the thinner the support pin 14 is, the more suitable it is for temperature measurement. However, since the mechanical strength is weakened, it is also thermally convenient to thin the neck portion where stress is hard to concentrate.

【0022】また更に比較のために、この支持ピンのキ
ャップ16、並びに基部17を共に直径4mmのアルミナ
で形成し、この条件と同じ実験を行ったところ、シリコ
ン基板6の温度と熱電対15による検出温度との誤差は
約15℃と大きく、しかもその値は一定ではなく、さら
に、熱電対15を埋め込んだ支持ピン14の近傍のシリ
コン基板温度とその周辺の基板温度との差は約40℃と
大きく、基板の温度は不均一であった。この原因も程度
の差は有るものの原因と同じく、基部22の熱抵抗が低
いためと推測される。
Further, for comparison, both the cap 16 and the base 17 of the support pin were made of alumina having a diameter of 4 mm, and the same experiment as this condition was conducted. The temperature of the silicon substrate 6 and the thermocouple 15 were used. The error from the detected temperature is as large as about 15 ° C., and the value is not constant. Further, the difference between the temperature of the silicon substrate in the vicinity of the support pin 14 in which the thermocouple 15 is embedded and the temperature of the periphery thereof is about 40 ° C. And the substrate temperature was non-uniform. It is presumed that this is due to the low thermal resistance of the base portion 22 as well as the cause of the difference in degree.

【0023】このように、熱抵抗の低い支持ピンで半導
体基板温度を測定した場合に、基板温度が不均一となる
原因を調べるために、図1に示した半導体製造装置の支
持台7,ガードリング8、並びに、内部熱線吸収板9を
取外し、代りに、セラミックスヒータ上に半導体基板を
直接載せ、そのヒータで半導体基板を加熱し、基板温度
をキャップ16、並びに基部17を共に直径4mmのアル
ミナで形成した支持ピンに設けた熱電対15で測定し
た。
As described above, in order to investigate the cause of non-uniformity of the substrate temperature when the semiconductor substrate temperature is measured with the support pins having low thermal resistance, the support base 7 and the guard of the semiconductor manufacturing apparatus shown in FIG. The ring 8 and the internal heat ray absorbing plate 9 are removed, and instead, the semiconductor substrate is directly placed on a ceramics heater, and the semiconductor substrate is heated by the heater, and the substrate temperature is set to 16 mm for both the cap 16 and the base 17 by alumina. The measurement was performed with the thermocouple 15 provided on the support pin formed in.

【0024】その結果、支持ピン14の近くのシリコン
基板温度とその周辺の基板温度との差は約5℃と減少し
た。したがって、半導体基板6を接触方式で加熱する場
合、基板が加熱体から受け取る熱量は、加熱体と基板と
の温度差に比例するため、基板に温度差が生じた場合、
その温度差を減ずる作用が生じるのに対して、半導体基
板6を非接触方式、例えば赤外線ランプで加熱する場合
には、基板が受け取る熱量は均等であることから、部分
的に熱の流出が生じるとその周りに温度差が生じて、特
に、半導体基板6の温度が高く、支持ピンの熱抵抗が低
い場合、支持ピンの周りでは半導体基板の温度変化が大
きくなるものと結論される。
As a result, the difference between the temperature of the silicon substrate near the support pin 14 and the temperature of the substrate around it was reduced to about 5 ° C. Therefore, when the semiconductor substrate 6 is heated by the contact method, the amount of heat received from the heating body by the substrate is proportional to the temperature difference between the heating body and the substrate.
In contrast to the effect of reducing the temperature difference, when the semiconductor substrate 6 is heated by a non-contact method, for example, an infrared lamp, the amount of heat received by the substrate is equal, so that the heat partially flows out. Therefore, it is concluded that a temperature difference occurs around the support pin, and particularly when the temperature of the semiconductor substrate 6 is high and the thermal resistance of the support pin is low, the temperature change of the semiconductor substrate becomes large around the support pin.

【0025】図3は、シリコン基板の上にシリコン酸化
膜を形成する場合の本発明の別の実施例を示す。本実施
例では、反応容器2の上側空間に低圧水銀ランプ20
(紫外線ランプ)を配置し、反応容器2の下側空間にハ
ロゲンランプ3(熱線照射ランプ)を配置した。
FIG. 3 shows another embodiment of the present invention for forming a silicon oxide film on a silicon substrate. In this embodiment, the low pressure mercury lamp 20 is provided in the upper space of the reaction vessel 2.
A (ultraviolet lamp) was arranged, and a halogen lamp 3 (heat ray irradiation lamp) was arranged in the lower space of the reaction vessel 2.

【0026】支持ピン14は図2(b)のようであり、キ
ャップ16はアルミニウムであり、石英ガラス管からな
る基部17の頂部は直径2.5mm と絞られて基部頸部1
7aとなっており、基部17aには長さ約6mmの炭化珪
素からなるリングがはめられている。その他の構造は、
実施例1の場合と実質的に同一である。なお、内部熱線
吸収板9は、取り外してある。
The support pin 14 is as shown in FIG. 2 (b), the cap 16 is made of aluminum, and the top of the base 17 made of a quartz glass tube is squeezed to have a diameter of 2.5 mm.
7a, and a ring made of silicon carbide having a length of about 6 mm is fitted to the base 17a. Other structures are
It is substantially the same as the case of the first embodiment. The internal heat ray absorbing plate 9 has been removed.

【0027】モノシランガス及び笑気ガスからなる反応
ガスを反応容器2に導入し、150℃の温度に維持した
シリコン基板6に波長185nmの紫外線を照射するこ
とによって、シリコン基板6の上にシリコン酸化膜を形
成した。熱電対による温度制御,放射温度計による温度
制御、共に、基板温度のばらつき(再現性)、均一性、
並びに温度誤差は、極めて良好であって、所望の高品質
を有するシリコン酸化膜を形成することが出来た。
A reaction gas composed of monosilane gas and laughing gas is introduced into the reaction vessel 2, and the silicon substrate 6 maintained at a temperature of 150 ° C. is irradiated with ultraviolet rays having a wavelength of 185 nm to form a silicon oxide film on the silicon substrate 6. Was formed. Both temperature control by thermocouple and temperature control by radiation thermometer, substrate temperature variation (reproducibility), uniformity,
Moreover, the temperature error was extremely good, and a silicon oxide film having a desired high quality could be formed.

【0028】また、図3と同様な装置構成で、反応ガス
としてオゾンガスを用い、基板上のレジストを除去し
た。基板は250℃に維持し、基板上の紫外線強度は約
100mW/cm2とした。基板表面との間隙0.5mmの間
に流量10リットル/分のオゾン含有酸化性ガスを流
し、レジストを酸化した。この時のレジストの酸化速度
(処理速度)は基板温度の変化1℃に対して約2%変化
した。基板温度が低いと反応速度は遅くなるため、支持
ピン分部での基板温度が低い場合にはその部分だけ未反
応の残滓が残る。
Further, with the same apparatus configuration as that of FIG. 3, ozone gas was used as a reaction gas, and the resist on the substrate was removed. The substrate was maintained at 250 ° C., and the ultraviolet intensity on the substrate was about 100 mW / cm 2 . Ozone-containing oxidizing gas was flowed at a flow rate of 10 liters / minute in a gap of 0.5 mm from the surface of the substrate to oxidize the resist. At this time, the resist oxidation rate (processing rate) was changed by about 2% with respect to the substrate temperature change of 1 ° C. When the substrate temperature is low, the reaction speed becomes slow, so when the substrate temperature is low at the support pin portion, unreacted residue remains only at that portion.

【0029】図2(c)に示す本発明の支持ピンを用い
た場合のレジスト処理速度は遅い部分の早い部分に対す
る比が0.95 以上となり、均一性は問題ないことが確
認出来た。なお、本実施例で用いた支持ピン14は、キ
ャップ16は炭化珪素からなり、石英ガラス管からなる
基部17に挿入されて機械的に保持されている。基部1
7には、長さ約5mmの範囲に渡り、リング状に炭化珪素
膜18が化学気相反応で形成してある。熱電対15はそ
の接合部がアルミ管21によって被覆され、キャップ1
6内に挿入され機械的に保持されている。その他の構造
は、実施例1の場合と実質的に同一である。
When the support pin of the present invention shown in FIG. 2 (c) was used, the resist processing speed was 0.95 or more in the ratio of the slow portion to the fast portion, and it was confirmed that there was no problem in uniformity. In the support pin 14 used in this embodiment, the cap 16 is made of silicon carbide and is mechanically held by being inserted into the base 17 made of a quartz glass tube. Base 1
7, a ring-shaped silicon carbide film 18 is formed by chemical vapor reaction over a range of about 5 mm in length. The thermocouple 15 is covered with an aluminum tube 21 at its joint, and the cap 1
6 and is mechanically held. The other structure is substantially the same as that of the first embodiment.

【0030】図4は、支持ピン14と基板6との接触角
(キャップ16の面と基板6の面とがなす角)を調整す
る機構19を設けた本発明の別の実施例を示す説明図で
ある。支持ピン14は角度調節機構19によりその周り
に回転可能となっており、基板6が傾いた場合でも、キ
ャップ16が基板6と面接触(接触角0度)すべく調節
される。
FIG. 4 shows another embodiment of the present invention in which a mechanism 19 for adjusting the contact angle between the support pin 14 and the substrate 6 (angle formed by the surface of the cap 16 and the surface of the substrate 6) is provided. It is a figure. The support pin 14 can be rotated around it by an angle adjusting mechanism 19, and even if the substrate 6 is tilted, the cap 16 is adjusted so as to make surface contact (contact angle 0 degree) with the substrate 6.

【0031】支持ピン14のキャップ16は基板6との
熱抵抗を小さくするためにその頂部が平坦となっている
が、基板6に反り等により傾きが生じていると、基板6
と支持ピン14との接触面積は十分でなくなり、従って
検出温度誤差は大きくなる。この場合、検出される温度
は基板6の実際の温度よりも低くなるため、角度調節機
構19により支持ピンの角度をわずか動かし、検出され
る温度が最大となった位置での温度をもって検出温度と
し加熱電力を制御する。この角度調節を行っている間
は、他の測定温度データに基づき温度制御を行うか、又
は、温調を一定とする。
The cap 16 of the support pin 14 has a flat top portion in order to reduce the thermal resistance with the substrate 6, but if the substrate 6 is tilted due to warping or the like, the substrate 6 is
The contact area between the support pin 14 and the support pin 14 is not sufficient, and the detected temperature error increases. In this case, since the detected temperature becomes lower than the actual temperature of the substrate 6, the angle of the support pin is slightly moved by the angle adjusting mechanism 19, and the temperature at the position where the detected temperature becomes maximum is taken as the detected temperature. Control heating power. While this angle adjustment is being performed, temperature control is performed based on other measured temperature data, or the temperature control is kept constant.

【0032】特に、基板6を真空中で加熱する場合に
は、接触角による検出温度の変化が大きく、接触角が1
度の場合、基板温度と検出温度との誤差が約10℃であ
ったものが、接触角を調整して、0度とした場合、3℃
と少なくなった。
In particular, when the substrate 6 is heated in vacuum, the change in the detected temperature due to the contact angle is large and the contact angle is 1 or less.
When the contact angle was adjusted to 0 degrees, the difference between the substrate temperature and the detected temperature was about 10 degrees Celsius.
And decreased.

【0033】なお、実施例では、シリコン基板を加熱す
るための熱線照射ランプ3としてハロゲンランプを使用
したが、赤外線ランプやセラミックヒータを非接触式に
使用することも可能である。また、実施例では、被加熱
基板として半導体基板を用いた場合について説明した
が、ガラス基板を用いた場合も同様である。但し、ガラ
ス基板を用いた場合には、その基板の熱伝導率がシリコ
ン基板の熱伝導率よりも低いため、より一層基板の温度
の均一性は悪くなる。また更に、支持ピンの基部22の
材質として石英ガラスを用いた場合について説明した
が、基部22の材質は、MgO・SiO2 ,2MgO・
SiO2 ,ZrO2 ・SiO2 等の酸化珪素含有のセラ
ミックスが適している。何れにしても、基部17の材質
の熱伝導率が基板、並びに、キャップ16の熱伝導率よ
りも十分に低い無機材質であれば本発明の効果を得るこ
とが出来る。また、実施例では赤外線受容体として炭化
珪素を用いたが、炭素、または炭素素材上に炭化珪素を
形成しても、赤外線を吸収する機能が同じことから同様
な効果が期待できる。
In the embodiment, the halogen lamp is used as the heat ray irradiation lamp 3 for heating the silicon substrate, but an infrared lamp or a ceramic heater may be used in a non-contact type. Further, in the embodiment, the case where the semiconductor substrate is used as the substrate to be heated has been described, but the same applies when the glass substrate is used. However, when the glass substrate is used, the thermal conductivity of the substrate is lower than the thermal conductivity of the silicon substrate, so that the temperature uniformity of the substrate is further deteriorated. Furthermore, although the case where quartz glass is used as the material of the base portion 22 of the support pin has been described, the material of the base portion 22 is MgO.SiO 2 , 2MgO.
Ceramics containing silicon oxide such as SiO 2 and ZrO 2 · SiO 2 are suitable. In any case, the effects of the present invention can be obtained as long as the thermal conductivity of the material of the base 17 is sufficiently lower than the thermal conductivity of the substrate and the cap 16. Further, although silicon carbide was used as the infrared acceptor in the examples, even if silicon carbide is formed on carbon or a carbon material, the same effect can be expected because the infrared absorbing function is the same.

【0034】[0034]

【発明の効果】本発明の半導体製造装置の温度検出装置
では、測温体とその周りの熱抵抗を下げ、支持部の熱抵
抗を上げ、更に、支持部の温度を被加熱物の温度に近付
けることにより、半導体基板、或いはガラス基板の温度
を正確に測定し、かつ、これら基板の温度ムラを少なく
することができ、支持ピンの基部を無機材質で構成する
ことにより有害な金属汚染を防止することが出来る。
According to the temperature detecting device of the semiconductor manufacturing apparatus of the present invention, the thermal resistance of the temperature sensing element and its surroundings is lowered, the thermal resistance of the supporting portion is increased, and the temperature of the supporting portion is set to the temperature of the object to be heated. By bringing them close to each other, the temperature of the semiconductor substrate or the glass substrate can be accurately measured, and the temperature unevenness of these substrates can be reduced, and the base of the support pin is made of an inorganic material to prevent harmful metal contamination. You can do it.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の半導体製造装置の第一の実施例を示す
断面図。
FIG. 1 is a sectional view showing a first embodiment of a semiconductor manufacturing apparatus of the present invention.

【図2】本発明の半導体製造装置の温度検出装置の要部
の断面図。
FIG. 2 is a sectional view of a main part of a temperature detection device of a semiconductor manufacturing apparatus according to the present invention.

【図3】本発明の半導体製造装置の第二の実施例を示す
断面図。
FIG. 3 is a sectional view showing a second embodiment of the semiconductor manufacturing apparatus of the present invention.

【図4】本発明の半導体製造装置の温度検出装置の第二
の要部の説明図。
FIG. 4 is an explanatory diagram of a second main part of the temperature detecting device of the semiconductor manufacturing apparatus of the present invention.

【符号の説明】[Explanation of symbols]

14…支持ピン、15…熱電対、16…キャップ、17
…基部、17a…基部頸部、18…赤外線受容体。
14 ... Support pin, 15 ... Thermocouple, 16 ... Cap, 17
... base, 17a ... base neck, 18 ... infrared receptor.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 恒川 助芳 東京都青梅市藤橋888番地 株式会社日立 製作所熱器ライティング事業部内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Sukeyoshi Tsunekawa 888 Fujihashi, Ome City, Tokyo Hitachi Ltd. Heater Lighting Division

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】半導体基板、またはガラス基板を非接触で
熱処理する半導体製造装置の温度検出装置において、こ
れら基板を支持する支持ピンの少なくとも一つに熱電対
を埋め込み、前記支持ピンの先端部を前記支持ピンの基
部よりも熱伝導率の高い材料で平坦に構成し、前記支持
ピンの基部を前記基板よりも熱伝導率の低い無機材料で
構成すると共に、前記支持ピンの先端部近くに、1ない
し3μmの波長範囲で平均的な放射率が熱処理する被加
熱物よりも高い材質からなる赤外線受容体を設けたこと
を特徴とする温度検出装置。
1. In a temperature detecting device of a semiconductor manufacturing apparatus for heat-treating a semiconductor substrate or a glass substrate in a non-contact manner, a thermocouple is embedded in at least one of support pins for supporting these substrates, and a tip portion of the support pin is provided. The support pin is flatly configured with a material having a higher thermal conductivity than the base portion, and the base portion of the support pin is configured with an inorganic material having a lower thermal conductivity than the substrate, and near the tip portion of the support pin, A temperature detecting device comprising an infrared receptor made of a material having an average emissivity higher than that of the object to be heat-treated in the wavelength range of 1 to 3 μm.
【請求項2】請求項1において、前記赤外線受容体を炭
化珪素,炭素、またはこれらの複合体で構成した温度検
出装置。
2. The temperature detecting device according to claim 1, wherein the infrared receptor is composed of silicon carbide, carbon, or a composite thereof.
【請求項3】請求項1または2において、前記支持ピン
の基部を管状とし、管内先端部に接点が位置すべく熱電
対を挿入し、前記接点近傍を前記支持ピンの先端部に固
着した温度検出装置。
3. The temperature according to claim 1, wherein the base of the support pin is tubular, a thermocouple is inserted so that the contact is located at the tip of the tube, and the vicinity of the contact is fixed to the tip of the support pin. Detection device.
【請求項4】請求項1,2または3において、前記支持
ピンの先端部と前記基板との接触角を可変とする角度調
節機構を設けた温度検出装置。
4. The temperature detecting device according to claim 1, further comprising an angle adjusting mechanism for varying a contact angle between the tip of the support pin and the substrate.
【請求項5】半導体基板、又はガラス基板を収納するた
めの熱線透過型の反応容器と、前記反応容器の外側から
前記基板の少なくとも一方の表面に加熱用熱線を照射す
るための熱線源と、請求項1,2,3、または4の温度
検出装置とを備えた半導体製造装置。
5. A heat ray transmissive reaction container for accommodating a semiconductor substrate or a glass substrate, and a heat ray source for irradiating at least one surface of the substrate with a heat ray for heating from the outside of the reaction vessel, A semiconductor manufacturing apparatus comprising the temperature detecting device according to claim 1, 2, 3, or 4.
JP28628394A 1994-11-21 1994-11-21 Temperature and semiconductor production system Pending JPH08148502A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28628394A JPH08148502A (en) 1994-11-21 1994-11-21 Temperature and semiconductor production system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28628394A JPH08148502A (en) 1994-11-21 1994-11-21 Temperature and semiconductor production system

Publications (1)

Publication Number Publication Date
JPH08148502A true JPH08148502A (en) 1996-06-07

Family

ID=17702370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28628394A Pending JPH08148502A (en) 1994-11-21 1994-11-21 Temperature and semiconductor production system

Country Status (1)

Country Link
JP (1) JPH08148502A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001110881A (en) * 1999-07-01 2001-04-20 Applied Materials Inc Silicon carbide sleeve for substrate support assembly
JP2002532897A (en) * 1998-12-11 2002-10-02 シュテアク エルテーペー システムズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Gas-driven rotary susceptor for rapid thermal processing (RTP) systems
JP2008071787A (en) * 2006-09-12 2008-03-27 Ushio Inc Heating device of light irradiation type and heating method of light irradiation type
JP2008218971A (en) * 2007-03-07 2008-09-18 Tdk Corp Device for processing resist pattern, and method of processing resist pattern
WO2012060562A2 (en) * 2010-11-03 2012-05-10 순천향대학교 산학협력단 Insertion type infrared optical fiber probe for measuring temperature of nuclear reactor cooling system, and temperature measuring system using same
JP2014033148A (en) * 2012-08-06 2014-02-20 Ulvac Japan Ltd Light irradiation device
JP2016076529A (en) * 2014-10-03 2016-05-12 東京エレクトロン株式会社 Support member for temperature measurement and heat treatment apparatus

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002532897A (en) * 1998-12-11 2002-10-02 シュテアク エルテーペー システムズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Gas-driven rotary susceptor for rapid thermal processing (RTP) systems
JP4705244B2 (en) * 1998-12-11 2011-06-22 シュテアク エルテーペー システムズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Gas-driven rotating susceptor for rapid thermal processing (RTP) system and method for rapid thermal processing
JP2001110881A (en) * 1999-07-01 2001-04-20 Applied Materials Inc Silicon carbide sleeve for substrate support assembly
JP2008071787A (en) * 2006-09-12 2008-03-27 Ushio Inc Heating device of light irradiation type and heating method of light irradiation type
JP2008218971A (en) * 2007-03-07 2008-09-18 Tdk Corp Device for processing resist pattern, and method of processing resist pattern
WO2012060562A2 (en) * 2010-11-03 2012-05-10 순천향대학교 산학협력단 Insertion type infrared optical fiber probe for measuring temperature of nuclear reactor cooling system, and temperature measuring system using same
WO2012060562A3 (en) * 2010-11-03 2012-06-28 순천향대학교 산학협력단 Insertion type infrared optical fiber probe for measuring temperature of nuclear reactor cooling system, and temperature measuring system using same
JP2014033148A (en) * 2012-08-06 2014-02-20 Ulvac Japan Ltd Light irradiation device
JP2016076529A (en) * 2014-10-03 2016-05-12 東京エレクトロン株式会社 Support member for temperature measurement and heat treatment apparatus

Similar Documents

Publication Publication Date Title
KR101624217B1 (en) Apparatus including heating source reflective filter for pyrometry
JP4948701B2 (en) Heating apparatus, heat treatment apparatus having the heating apparatus, and heat treatment control method
JP6688865B2 (en) Support cylinder for heat treatment chamber
CN105374717B (en) Transparent reflective plate for rapid thermal processing chamber
US8367983B2 (en) Apparatus including heating source reflective filter for pyrometry
US6359263B2 (en) System for controlling the temperature of a reflective substrate during rapid heating
JPH10239165A (en) Method and apparatus for measuring temperature of substrate, and heating method for substrate
JPH07221154A (en) Temperature detector and semiconductor manufacturing device
JP2781616B2 (en) Semiconductor wafer heat treatment equipment
JPH08148502A (en) Temperature and semiconductor production system
CN108598017B (en) Pyrometric filter for thermal processing chamber
JP4502220B2 (en) Heat treatment equipment
JP4346208B2 (en) Temperature measuring method, heat treatment apparatus and method, and computer-readable medium
JPH0778830A (en) Semiconductor manufacturing equipment
JPS6294925A (en) Heat treatment device
JP2002208591A (en) Heat treatment apparatus
JPH10144618A (en) Heater for manufacturing semiconductor device
JPH05299428A (en) Method and apparatus for heat-treatment of semiconductor wafer
JP2001196322A (en) Auxiliary heating plate
JP2002261038A (en) Heat treatment device
JPH10170343A (en) Temperature measuring apparatus
JPH0992624A (en) Heat treatment oven
JP2000323486A (en) Wafer heat treatment device and method therefor
TWI545654B (en) Transparent reflector plate for rapid thermal processing chamber
JPH07151606A (en) Instrument for measuring temperature of substrate