JPH07151606A - Instrument for measuring temperature of substrate - Google Patents

Instrument for measuring temperature of substrate

Info

Publication number
JPH07151606A
JPH07151606A JP5329923A JP32992393A JPH07151606A JP H07151606 A JPH07151606 A JP H07151606A JP 5329923 A JP5329923 A JP 5329923A JP 32992393 A JP32992393 A JP 32992393A JP H07151606 A JPH07151606 A JP H07151606A
Authority
JP
Japan
Prior art keywords
substrate
temperature
heat transfer
light
optical waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5329923A
Other languages
Japanese (ja)
Inventor
Takatoshi Chiba
隆俊 千葉
Mitsukazu Takahashi
光和 高橋
Kiyobumi Nishii
清文 西井
Masaki Nishida
正樹 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dainippon Screen Manufacturing Co Ltd
Original Assignee
Dainippon Screen Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Screen Manufacturing Co Ltd filed Critical Dainippon Screen Manufacturing Co Ltd
Priority to JP5329923A priority Critical patent/JPH07151606A/en
Publication of JPH07151606A publication Critical patent/JPH07151606A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Of Individual Semiconductor Devices (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)
  • Radiation Pyrometers (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PURPOSE:To provide a measuring instrument which can accurately measure the temperature of a substrate heated by the irradiation with light with high response and has excellent durability at high temperatures and a long service life. CONSTITUTION:The front end section of a light guiding member 12 is inserted into a heat mediating member 14 which is formed of a light shielding material having fixed emissivity and has a closed front end section and the energy radiated from the heat mediating member 14 which is heated to the same temperature as that of a substrate 24 by thermal conduction from the substrate 24 is detected by transfer the energy to a radiation thermometer through the light guiding member 12.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、熱処理装置、例えば
ランプアニール装置により半導体ウエハや液晶表示装置
(LCD)用ガラス基板等の各種基板に対して各種の熱
処理を施す際に、加熱炉内に収容された熱処理中の基板
の温度を測定する温度測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat treatment apparatus, for example, a lamp annealing apparatus, which is provided in a heating furnace when various heat treatments are applied to various substrates such as semiconductor wafers and liquid crystal display (LCD) glass substrates. The present invention relates to a temperature measuring device that measures the temperature of a substrate that is being heat-treated.

【0002】[0002]

【従来の技術】熱処理装置により基板に対し加熱炉内で
各種の熱処理を施して半導体装置などを製造する場合、
その製造工程の複雑化に伴い、熱処理中の基板の表面温
度を正確に測定することが極めて重要である
2. Description of the Related Art When a semiconductor device is manufactured by subjecting a substrate to various heat treatments in a heating furnace by a heat treatment apparatus,
Accurate measurement of the surface temperature of the substrate during heat treatment is extremely important due to the complexity of the manufacturing process.

【0003】基板の表面温度を測定するには、熱電対等
の検出手段を基板の表面に直接に接触させて測温する方
法、並びに、加熱炉内に収容された基板の表面から放射
される熱エネルギーを、加熱炉外に配置された放射温度
計で検知することにより、基板に非接触で測温する方法
がある。これらのうち、加熱炉内に収容され光照射によ
って加熱される基板の温度を接触式で測温する方法を実
施するための装置として、特開平4−148545号公
報には、熱電対等の検出手段を被覆部材に内挿して被覆
し、その被覆部材の一部を平坦面に形成して、その被覆
部材の平坦面で基板の一部を支持するようにした温度測
定装置が開示されている。この温度測定装置を使用すれ
ば、基板の温度を接触式で測温するので、基板の温度を
正確に測定することができるとともに、検出手段が被覆
部材で覆われており、検出手段は、被覆部材を介して基
板と接触し、また被覆部材によって加熱炉内の加熱雰囲
気とも隔絶されているので、熱電対等の金属成分によっ
て基板表面を汚染する必要が無く、従ってダミーウエハ
などを別に用意しておいたりする必要も全く無い。
In order to measure the surface temperature of the substrate, a method of directly detecting the temperature of the substrate by means of detecting means such as a thermocouple and measuring the temperature, and heat radiated from the surface of the substrate housed in the heating furnace. There is a method of measuring the temperature of the substrate in a non-contact manner by detecting the energy with a radiation thermometer arranged outside the heating furnace. Among these, as a device for carrying out a method for contact-type temperature measurement of the temperature of a substrate housed in a heating furnace and heated by light irradiation, Japanese Patent Laid-Open No. 148545/1992 discloses a detecting means such as a thermocouple. There is disclosed a temperature measuring device in which is covered and covered with a covering member, a part of the covering member is formed into a flat surface, and a part of the substrate is supported by the flat surface of the covering member. When this temperature measuring device is used, the temperature of the substrate is measured by a contact method, so that the temperature of the substrate can be accurately measured, and the detecting means is covered with the covering member, and the detecting means is Since it is in contact with the substrate through the member and is also isolated from the heating atmosphere in the heating furnace by the covering member, it is not necessary to contaminate the substrate surface with metal components such as thermocouples, so a dummy wafer etc. must be prepared separately. There is no need to go out.

【0004】[0004]

【発明が解決しようとする課題】特開平4−14854
5号公報に開示された温度測定装置は、上記したように
多くの優れた点を有している。しかしながら、検出手
段、例えば熱電対は、加熱炉内に配置されて基板と同じ
温度に加熱されることになるため、1,100℃を超え
る高温下では、経年変化や断線といった問題点がある。
また、熱電対を被覆している被覆部材は、基板の表面と
面接触しているため、熱伝導によって速やかに基板の温
度と同一温度になるが、さらに被覆部材から熱伝導によ
って熱電対へ伝熱しなければならない分だけ、温度検出
に余計な時間がかかってしまうため、温度測定装置とし
ての応答性が悪くなる。このため、光照射加熱式の熱処
理装置のように基板を急速加熱して熱処理する装置に使
用しようとする場合には、温度制御の信頼性に欠ける、
といった問題点がある。さらに、被覆部材の検出点以外
の部分からも熱電対への熱伝導があり、このため、被覆
部材の検出点の温度を正確に測定することができず、測
温誤差を生じる、といった問題点もある。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
The temperature measuring device disclosed in Japanese Patent Publication No. 5 has many excellent points as described above. However, since the detection means, for example, the thermocouple, is placed in the heating furnace and heated to the same temperature as the substrate, there are problems such as secular change and disconnection at high temperatures exceeding 1,100 ° C.
Further, since the covering member covering the thermocouple is in surface contact with the surface of the substrate, the temperature quickly becomes the same as the temperature of the substrate due to heat conduction, but further the heat conduction from the covering member to the thermocouple occurs. Since it takes extra time to detect the temperature as much as it has to be heated, the responsiveness of the temperature measuring device deteriorates. Therefore, when it is intended to be used in a device for rapidly heating and heat-treating a substrate such as a light irradiation heating type heat treatment device, the temperature control lacks reliability.
There is a problem such as. Further, there is heat conduction to the thermocouple from a portion other than the detection point of the covering member, so that the temperature at the detection point of the covering member cannot be accurately measured, resulting in a temperature measurement error. There is also.

【0005】この発明は、以上のような事情に鑑みてな
されたものであり、光照射によって加熱される基板の温
度をより正確に、かつ応答性良く測定することができ、
しかも、高温下での耐久性に優れ、装置寿命も長い温度
測定装置を提供することを技術的課題とする。
The present invention has been made in view of the above circumstances, and it is possible to measure the temperature of a substrate heated by light irradiation more accurately and with good responsiveness.
Moreover, it is a technical subject to provide a temperature measuring device which has excellent durability at high temperatures and has a long device life.

【0006】[0006]

【課題を解決するための手段】この発明では、光照射に
よって加熱される基板の温度を接触式で測定するように
し、その場合の検出手段を次のように構成した。すなわ
ち、線状の光導波部材の少なくとも先端部分を、一定の
輻射率を有する遮光性材料で形成され閉塞された熱媒介
部材に内挿して、光導波部材の先端受光面を熱媒介部材
の内面に対向もしくは当接させるとともに、前記光導波
部材の末端部を直接にもしくは光ファイバー等の導光路
を介して放射温度計に光学的に接続することにより検出
手段を構成した。ここで、熱媒介部材を形成する遮光性
材料は、完全な遮光性を有している必要は必ずしも無
く、この検出手段によって基板の温度を測定する場合に
おいて、正確な温度測定の障害となる外乱光が熱媒介部
材内の光導波部材の先端受光面に入射するのを許容程度
以下に抑えることができればよい。また、物体の輻射率
は温度によって変化するものであり、上記における「一
定の輻射率」とは、各温度における輻射率が一定である
という意味であり、また、輻射率の数値自体が分かって
いる必要は無く、各温度における輻射率が一定であるこ
とが保証されていて、放射温度計で検知される輻射エネ
ルギーの値とそのときの熱媒介部材の温度とが常に一定
に対応付けられておればよい。そして、この検出手段の
熱媒介部材の外面を基板の一部に面接触させるようにし
た。この場合、熱媒介部材によって基板の一部を支持す
ることにより、熱媒介部材の外面を基板に面接触させる
ようにすることができる。尚、この検出手段では、放射
温度計を用いて測温するようにしているが、この検出手
段は、その一部を構成する熱媒介部材を基板の表面に直
接に接触させて基板の温度を測定するようにしており、
また、接触式に測温する検出手段としての特徴を備えて
いるので、この明細書では、接触式に測温する検出手段
であるとしている。
According to the present invention, the temperature of the substrate heated by light irradiation is measured by a contact method, and the detecting means in that case is constructed as follows. That is, at least the tip end portion of the linear optical waveguide member is inserted into the heat transfer medium member which is formed of a light shielding material having a constant emissivity and is closed, and the front end light receiving surface of the light guide member is the inner surface of the heat transfer medium member. The detection means is constituted by facing or abutting the optical waveguide member and optically connecting the end portion of the optical waveguide member to the radiation thermometer directly or through a light guide path such as an optical fiber. Here, the light-shielding material forming the heat-transmitting member does not necessarily have to have a perfect light-shielding property, and when the temperature of the substrate is measured by this detecting means, a disturbance that hinders accurate temperature measurement. It suffices that the light can be prevented from entering the tip light receiving surface of the optical waveguide member in the heat transfer member within an allowable level. The emissivity of an object changes with temperature, and the "constant emissivity" in the above means that the emissivity at each temperature is constant, and the emissivity value itself is known. The emissivity at each temperature is guaranteed to be constant, and the value of the radiant energy detected by the radiation thermometer and the temperature of the heat transfer medium member at that time are constantly associated with each other. You can go. The outer surface of the heat transfer member of the detection means is brought into surface contact with part of the substrate. In this case, by supporting a part of the substrate by the heat transfer member, the outer surface of the heat transfer member can be brought into surface contact with the substrate. In this detection means, a radiation thermometer is used to measure the temperature. However, in this detection means, the temperature of the substrate is measured by directly contacting the heat transfer medium forming a part thereof with the surface of the substrate. I try to measure
Further, since it has a feature as a contact type temperature measuring detection unit, in this specification, it is referred to as a contact type temperature measuring unit.

【0007】[0007]

【作用】上記した構成の温度測定装置においては、検出
手段の一部をなす熱媒介部材は、その外面が基板に面接
触しているので、基板からの熱伝導が効率良く行なわ
れ、その温度が基板の温度に忠実に追随して、基板と極
めて高い精度で近似した温度にある。そして、基板とほ
ぼ同一温度である熱媒介部材から放射されるエネルギー
が、熱媒介部材に内挿されて先端受光面が熱媒介部材の
内面に対向もしくは当接した光導波部材を通し、その光
導波部材の末端部に直接にもしくは導光路を介して光学
的に接続された放射温度計で検知されることにより、熱
媒介部材の温度が測定され、従って基板の表面温度が測
定されることになる。このように、直接に検出している
のは熱媒介部材の温度であるが、熱媒介部材と基板とは
上記した通り極めて高い精度で近似した温度にあるの
で、基板の温度が正確に測定されることになる。そし
て、この検出手段では、光導波部材の先端部分が内挿さ
れる熱媒介部材が遮光性材料で形成されかつ閉塞された
形状とされているので、光照射用光源や基板表面或いは
加熱炉の内壁面などから放射される外乱光が光導波部材
の先端受光面に入射することが阻止され、熱媒介部材か
らの輻射エネルギーだけを検知して正確な温度を測定す
ることが保障される。
In the temperature measuring device having the above-mentioned structure, since the outer surface of the heat transfer member forming a part of the detecting means is in surface contact with the substrate, the heat transfer from the substrate is efficiently performed and Closely follows the temperature of the substrate and is close to the substrate with extremely high accuracy. Then, the energy radiated from the heat transfer medium whose temperature is almost the same as that of the substrate passes through the light guide member whose tip light receiving surface is inserted into the heat transfer member and faces or abuts against the inner surface of the heat transfer member. That the temperature of the heat transfer member, and thus the surface temperature of the substrate, is measured by sensing with a radiation thermometer, which is optically connected to the end of the wave member or directly through a light guide. Become. Thus, it is the temperature of the heat transfer member that is directly detected, but since the heat transfer member and the substrate are close to each other with extremely high accuracy as described above, the temperature of the substrate can be accurately measured. Will be. In this detecting means, the heat mediating member into which the tip portion of the optical waveguide member is inserted is formed of a light-shielding material and has a closed shape, so that the light source for light irradiation, the substrate surface, or the heating furnace Ambient light emitted from the wall surface or the like is prevented from entering the light receiving surface at the tip of the optical waveguide member, and it is ensured that only the radiant energy from the heat transfer member is detected to accurately measure the temperature.

【0008】また、この検出手段の一部をなす熱媒介部
材は、上述した意味において一定の輻射率を有してお
り、このような熱媒介部材から放射されるエネルギーを
放射温度計で検知することにより、結果的に基板の温度
を測定するようにしているので、基板の表面から放射さ
れるエネルギーを直接的に放射温度計で検知して基板の
表面温度を測定する非接触式測温方法におけるような問
題点が無い。すなわち、様々な膜構造や不純物濃度をも
った基板においては、基板ごとに輻射率が異なり、正確
な温度測定を行なうためには、それぞれ異なる種類の基
板ごとに輻射率を予め求めておく必要があり、その作業
が非常に面倒になる。また、基板の輻射率は、基板の熱
処理中においても、膜が組成変化や粒径変化等を起こす
ような場合には変化を生じることになり、常に正確な温
度を測定することは殆んど不可能である。これに対し、
この発明に係る装置では、基板の表面から放射されるエ
ネルギーを測定するのではなく、基板とほぼ同一温度に
あり一定の輻射率を有している熱媒介部材から放射され
るエネルギーを放射温度計で検知することにより、間接
的に基板の温度を測定するようにしているので、基板の
種類やその表面状態、或いはそこに形成されている膜の
状態などの如何に拘らず、常に正確に基板の表面温度を
測定することが可能になる。
Further, the heat transfer medium forming a part of the detecting means has a constant emissivity in the above-mentioned sense, and the energy radiated from such heat transfer medium is detected by the radiation thermometer. As a result, the temperature of the substrate is measured, so the non-contact temperature measuring method in which the energy radiated from the surface of the substrate is directly detected by the radiation thermometer to measure the surface temperature of the substrate. There is no problem like in. That is, in substrates having various film structures and impurity concentrations, the emissivity differs for each substrate, and in order to perform accurate temperature measurement, it is necessary to obtain the emissivity for each different type of substrate in advance. Yes, the work is very troublesome. Further, the emissivity of the substrate changes even during the heat treatment of the substrate when the film undergoes a composition change, a particle size change, or the like, and an accurate temperature is almost never measured. It is impossible. In contrast,
In the device according to the present invention, the energy radiated from the surface of the substrate is not measured, but the energy radiated from the heat transfer medium having a constant emissivity at substantially the same temperature as the substrate is measured by a radiation thermometer. Since the temperature of the substrate is indirectly measured by detecting with, the substrate temperature is always accurately measured regardless of the type of the substrate, the surface state of the substrate, or the state of the film formed thereon. It becomes possible to measure the surface temperature of.

【0009】そして、この発明に係る温度測定装置で
は、熱電対などの検出手段を使用しておらず、光導波部
材を加熱炉内に配設しその光導波部材を通して加熱炉外
へ導かれる光を放射温度計で検知するようにしているの
で、高温下での耐久性に何ら問題が無く、寿命も長い。
また、熱媒介部材から光学的手段で導いた輻射エネルギ
ーを検知して温度測定を行なうので、応答性が良好であ
り、さらに、光導波部材の先端受光面に対向もしくは当
接した部位における熱媒介部材内面からの輻射エネルギ
ーを検知して温度測定を行なうので、熱電対を用いた装
置におけるように測温誤差を生じる心配が無く、正確な
温度測定を行なうことができる。
Further, in the temperature measuring device according to the present invention, a detecting means such as a thermocouple is not used, and the optical waveguide member is disposed inside the heating furnace, and the light guided to the outside of the heating furnace through the optical waveguide member. Since it is detected by a radiation thermometer, there is no problem in durability at high temperature and the service life is long.
Further, since the radiant energy guided by the optical means from the heat transfer medium is detected to measure the temperature, the responsiveness is good, and further, the heat transfer at the portion facing or abutting the light receiving surface at the tip of the optical waveguide member. Since the temperature is measured by detecting the radiant energy from the inner surface of the member, it is possible to perform accurate temperature measurement without the risk of temperature measurement error as in the device using the thermocouple.

【0010】[0010]

【実施例】以下、この発明の好適な実施例について図面
を参照しながら説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT A preferred embodiment of the present invention will be described below with reference to the drawings.

【0011】最初に、図5により、この発明に係る温度
測定装置が使用される光照射型熱処理装置の概略構成に
ついて説明しておく。図5は、光照射型熱処理装置の構
成の1例を示し、一部を縦断面で示した要部側面断面図
である。図において、40は、基板の挿入及び取出し用の
開口42を備えた加熱炉であり、この加熱炉40は、赤外線
透過性を有する石英ガラスによって形成されている。ま
た、加熱炉40の開口42に連接するように、筒状に形成さ
れた前室44が設けられている。この前室44の前端開口面
は、蓋体46によって閉塞されるようになっており、前室
44の前端面と蓋体46との当接面には樹脂製のパッキン48
が装着されていて、蓋体46による加熱炉40の密閉時に加
熱炉40内を気密に保持できるような構成となっている。
また、加熱炉40の上下方向にはそれぞれ、加熱炉40の上
壁面及び下壁面に対向してハロゲンランプ、セキノンア
ークランプ等の光照射用光源50が複数個列設されてい
る。また、各光源50の背後には、反射板52がそれぞれ配
設されている。
First, a schematic structure of a light irradiation type heat treatment apparatus in which the temperature measuring apparatus according to the present invention is used will be described with reference to FIG. FIG. 5 is a side sectional view of an essential part showing an example of the configuration of the light irradiation type heat treatment apparatus and showing a part thereof in a vertical section. In the figure, reference numeral 40 denotes a heating furnace having an opening 42 for inserting and removing a substrate, and the heating furnace 40 is made of quartz glass having infrared transparency. Further, a cylindrical front chamber 44 is provided so as to be connected to the opening 42 of the heating furnace 40. The front end opening surface of the front chamber 44 is configured to be closed by a lid 46,
A resin packing 48 is provided on the contact surface between the front end surface of 44 and the lid 46.
Is attached, and the inside of the heating furnace 40 can be kept airtight when the heating furnace 40 is sealed by the lid 46.
Further, in the vertical direction of the heating furnace 40, a plurality of light irradiation light sources 50 such as a halogen lamp and a sequinon arc lamp are arranged in line so as to face the upper wall surface and the lower wall surface of the heating furnace 40, respectively. Further, a reflecting plate 52 is arranged behind each light source 50.

【0012】蓋体46の内面側には、石英製のサセプタ
(基板支持器)66が固設されており、サセプタ66の支持
部68に半導体ウエハ(以下、基板と称す)24が載置され
て支持されている。また、蓋体46の外面側は支持ブロッ
ク62に固着されており、図示しない駆動機構により支持
ブロック62を矢印方向に直線移動させることにより、蓋
体46を開閉させるとともに、開口42を通して加熱炉40内
へ基板24を搬入し、また加熱炉40内から基板24を搬出す
る構成となっている。加熱炉40内に搬入された基板24
は、サセプタ66の円環状の支持部68に設けられた2本の
突出支持部70と温度測定装置の検出部10の先端との3個
所に載置支持される。検出部10は、サセプタ66と同様
に、蓋体46の内面側に固設されている。
A quartz susceptor (substrate support) 66 is fixedly provided on the inner surface side of the lid body 46, and a semiconductor wafer (hereinafter referred to as a substrate) 24 is placed on a support portion 68 of the susceptor 66. Supported. The outer surface side of the lid 46 is fixed to the support block 62, and the lid 46 is opened and closed by linearly moving the support block 62 in the direction of the arrow by a drive mechanism (not shown), and the heating furnace 40 is opened through the opening 42. The substrate 24 is loaded into the heating furnace 40, and the substrate 24 is unloaded from the heating furnace 40. Substrate 24 loaded into heating furnace 40
Are mounted and supported at three positions, that is, two projecting supporting portions 70 provided on the annular supporting portion 68 of the susceptor 66 and the tip of the detecting portion 10 of the temperature measuring device. Like the susceptor 66, the detection unit 10 is fixed to the inner surface side of the lid body 46.

【0013】以下、本発明に係る温度測定装置の検出部
10について詳細に説明する。
Hereinafter, the detection unit of the temperature measuring device according to the present invention
10 will be described in detail.

【0014】図1は、この発明の1実施例を示し、温度
測定装置の検出部10の先端部分を示す部分拡大縦断面図
である。この検出部10は、線状の光導波部材12を、先端
部が閉塞された細長い管状の熱媒介部材14に内挿して形
成されている。
FIG. 1 shows a first embodiment of the present invention and is a partially enlarged vertical sectional view showing a tip portion of a detecting portion 10 of a temperature measuring device. The detection unit 10 is formed by inserting a linear optical waveguide member 12 into a slender tubular heat transfer member 14 having a closed end.

【0015】光導波部材12は、例えば外径寸法が0.4
mm程度である石英棒或いはサファイア棒などによって形
成されている。この光導波部材12の先端は受光面となっ
ており、その先端受光面16が熱媒介部材14の管内面と
0.1mmの隙間をあけて対向している。そして、光導波
部材12の先端部の外周面と熱媒介部材14の管内側面との
間にも0.1mmの隙間が形成されている。ここで、光導
波部材12の先端受光面16と熱媒介部材14の管内面とは、
また光導波部材12の先端部の外周面と熱媒介部材14の管
内側面とは、それぞれ隙間をあけて対向させても或いは
隙間をあけずに当接させても、どちらでも差し支えな
い。一方、光導波部材12は蓋体46を貫通し、その末端部
は導光路、例えば光ファイバー74を介して放射温度計76
に光学的に接続されている。
The optical waveguide member 12 has an outer diameter of 0.4, for example.
It is formed of a quartz rod or a sapphire rod having a size of about mm. The tip of the optical waveguide member 12 is a light receiving surface, and the tip light receiving surface 16 faces the inner surface of the tube of the heat transfer member 14 with a gap of 0.1 mm. A gap of 0.1 mm is also formed between the outer peripheral surface of the tip of the optical waveguide member 12 and the inner surface of the tube of the heat transfer medium member 14. Here, the tip light receiving surface 16 of the optical waveguide member 12 and the tube inner surface of the heat transfer medium member 14 are
Further, the outer peripheral surface of the tip end portion of the optical waveguide member 12 and the inner surface of the tube of the heat transfer medium member 14 may be opposed to each other with a gap or may be brought into contact with each other without a gap. On the other hand, the optical waveguide member 12 penetrates the lid body 46, and the end portion thereof is guided by a light guide path, for example, an optical fiber 74, and a radiation thermometer 76.
Is optically connected to.

【0016】熱媒介部材14は、例えば先端部の外径寸法
が0.9mm、内径寸法が0.6mmで、200mm程度の長
さの管状に形成されており、閉塞された先端部の端面26
が、光導波部材12の軸心線に直交する小面積の平坦面に
加工形成され、先端部の端面26と連なる先端部の上面に
も、平坦面27が形成されている。この熱媒介部材14の管
壁は、図2に図1のA部分の拡大断面図を示すように、
CVD法(化学気相成長法)によってそれぞれ形成され
た高純度SiC(シリコンカーバイド)層18、20間にT
iN(チタンナイトライド)膜22を形成した3層構造を
有している。また、熱媒介部材14は、その管壁の厚みが
例えば0.2mm程度と薄くされており、基板に比べて熱
容量が極めて小さい。CVD法によって形成された高純
度SiC層18、20は、高耐熱性、高熱伝導性を有してお
り、一方、基板の表面に対する汚染源となるような不純
物質を含有していないため、基板に対する汚染性を有し
ない。また、TiN膜22は遮光性を有しており、このT
iN膜22により、熱処理装置の光照射用光源や基板表面
或いは加熱炉の内壁面などから放射される外乱光が、管
状の熱媒介部材14に内包された光導波部材12の先端受光
面に入射するのが阻止される。
The heat transfer member 14 is formed into a tubular shape having an outer diameter of 0.9 mm and an inner diameter of 0.6 mm, and a length of about 200 mm.
However, it is processed and formed on a flat surface of a small area orthogonal to the axis of the optical waveguide member 12, and a flat surface 27 is also formed on the upper surface of the tip portion that is continuous with the end surface 26 of the tip portion. The tube wall of the heat transfer medium member 14 has an enlarged sectional view of the portion A in FIG.
T between the high-purity SiC (silicon carbide) layers 18 and 20 formed by the CVD method (chemical vapor deposition method), respectively.
It has a three-layer structure in which an iN (titanium nitride) film 22 is formed. Further, the heat transfer member 14 has a thin tube wall having a thickness of, for example, about 0.2 mm, and has a very small heat capacity as compared with the substrate. The high-purity SiC layers 18 and 20 formed by the CVD method have high heat resistance and high thermal conductivity. On the other hand, since they do not contain impurities that may be a source of contamination on the surface of the substrate, Not polluting. Further, the TiN film 22 has a light-shielding property.
The iN film 22 causes disturbance light radiated from the light source for light irradiation of the heat treatment apparatus, the surface of the substrate, or the inner wall surface of the heating furnace to enter the light receiving surface of the tip of the optical waveguide member 12 enclosed in the tubular heat transfer member 14. Is prevented from doing.

【0017】また、光導波部材12の末端部に光ファイバ
ー74を介して光学的に接続される放射温度計76として
は、例えば0.5μmから2μmの波長の範囲の一部に分
光感度を有する、例えばSi(シリカ)やGe(ゲルマ
ニウム)の検出素子を用いたものが使用される。
The radiation thermometer 76 optically connected to the end portion of the optical waveguide member 12 via the optical fiber 74 has a spectral sensitivity in a part of the wavelength range of 0.5 μm to 2 μm, for example. For example, one using a detection element of Si (silica) or Ge (germanium) is used.

【0018】以上のように構成された温度測定装置にお
いて、光照射型熱処理装置により基板24が熱処理される
過程で、基板24が加熱されてその表面温度が上昇する
と、熱伝導により熱媒介部材14も加熱されて温度が上昇
する。このとき、熱媒介部材14は、上記した通り基板24
に比べて熱容量が極めて小さく、また基板24の下面に平
坦面27が面接触しているので、熱伝導効率が極めて高
く、このため、熱媒介部材14は速やかに基板24の温度と
同一温度になり、特に平坦面27と隣接して連なっている
端面26は、時間差なしに常に基板24の温度と同一温度に
なる。そして、基板24と同一温度に加熱された熱媒介部
材14の端面26からは、その温度に応じた輻射エネルギー
が放射され、その輻射エネルギーが光導波部材12にその
先端受光面16から入射する。光導波部材12に入射した輻
射エネルギーは、光導波部材12の末端部に光ファイバー
を介して光学的に接続された放射温度計76によって検知
され、その検知された輻射エネルギーから熱媒介部材14
の温度が算定される。このようにして、熱媒介部材14と
同一温度である基板24の温度が求められる。尚、78は加
熱制御回路であり、放射温度計76によって検出された温
度に基づいて光源50への供給電力を制御する。
In the temperature measuring device constructed as described above, when the substrate 24 is heated and its surface temperature rises in the process of heat-treating the substrate 24 by the light irradiation type heat treatment device, the heat mediating member 14 is generated by heat conduction. Is also heated and the temperature rises. At this time, the heat transfer medium 14 is transferred to the substrate 24 as described above.
The heat transfer efficiency is extremely high because the heat capacity is extremely small as compared with the above, and the flat surface 27 is in surface contact with the lower surface of the substrate 24. Therefore, the heat transfer member 14 quickly reaches the same temperature as the temperature of the substrate 24. In particular, the end surface 26 that is adjacent to and continues to the flat surface 27 is always at the same temperature as the temperature of the substrate 24 without any time difference. Then, the radiant energy corresponding to the temperature is radiated from the end surface 26 of the heat transfer medium member 14 heated to the same temperature as the substrate 24, and the radiant energy enters the optical waveguide member 12 from the tip light receiving surface 16 thereof. The radiant energy incident on the optical waveguide member 12 is detected by a radiation thermometer 76 optically connected to the end portion of the optical waveguide member 12 via an optical fiber, and the heat transfer member 14 is detected from the detected radiant energy.
Temperature is calculated. In this way, the temperature of the substrate 24, which is the same temperature as the heat transfer member 14, is obtained. A heating control circuit 78 controls the electric power supplied to the light source 50 based on the temperature detected by the radiation thermometer 76.

【0019】上記実施例では、光導波部材12の先端受光
面16と熱媒介部材14の管内面及び光導波部材12の先端部
の外側面と熱媒介部材14の管内側面との間に隙間が形成
されているので、次のような効果がある。すなわち、光
導波部材12と熱媒介部材14との間に隙間が形成されてい
るので、熱媒介部材14より熱容量の大きい光導波部材12
への、熱媒介部材14を介した基板24からの熱伝導はほと
んど生じない。従って、基板24の熱媒介部材14との接触
部近傍から熱が奪われることはなく、加熱される基板24
の面内温度分布を乱さずに温度測定できる。
In the above embodiment, a gap is provided between the tip light receiving surface 16 of the optical waveguide member 12, the tube inner surface of the heat transfer medium member 14, and the outer surface of the tip end of the optical waveguide member 12 and the tube inner side surface of the heat transfer member 14. Since it is formed, it has the following effects. That is, since the gap is formed between the optical waveguide member 12 and the heat transfer medium member 14, the light guide member 12 having a larger heat capacity than the heat transfer medium member 14.
There is almost no heat conduction from the substrate 24 to the substrate via the heat transfer member 14. Therefore, heat is not taken from the vicinity of the contact portion of the substrate 24 with the heat transfer member 14, and the substrate 24 to be heated is heated.
The temperature can be measured without disturbing the in-plane temperature distribution of.

【0020】この発明に係る温度測定装置は上記したよ
うに構成されているが、この発明の範囲は、上記説明並
びに図面の内容によって限定されるものではなく、要旨
を逸脱しない範囲で種々の変形例を包含し得る。例え
ば、図3及び図4(図3のB部分の拡大断面図)にそれ
ぞれ示すように、加熱炉40の下側内面に検出部10を上向
きに立設し、また基板支持部材(図示せず)を2本立設
して、検出部10の端面26とそれら基板支持部材との3個
所で基板24を支持するように構成してもよい。また、検
出部10は、必ずしも基板24を支持するものでなくてもよ
く、熱媒介部材14が基板24と熱的に緊密に接触していれ
ばよく、光導波部材12の先端受光面16が対向もしくは当
接している部分或いはその近傍が基板24と面接触してい
ることが望ましい。また、光ファイバー74を用いること
なく、光導波部材12の末端部に直接的に放射温度計を接
続してもよい。さらに、検出部の熱媒介部材の形状は、
管状である必要は無く、筒状や中空の扁平板状等であっ
てもよい。また、熱媒介部材の形状材料についても、C
VD法による高純度SiCとTiN以外の適当な材料を
用いるようにしてもよく、また、上記実施例では遮光性
材料としてTiNを用いたが、TiNほど高い遮光性を
持っていない材料であっても、正確な温度測定の障害と
なる外乱光の影響を許容程度以下に抑えることができる
ものであれば、使用可能である。
The temperature measuring device according to the present invention is configured as described above, but the scope of the present invention is not limited by the above description and the contents of the drawings, and various modifications are made without departing from the scope of the invention. Examples may be included. For example, as shown in FIGS. 3 and 4 (enlarged cross-sectional view of portion B in FIG. 3), the detection unit 10 is erected upward on the lower inner surface of the heating furnace 40, and a substrate support member (not shown) is provided. 2) may be provided upright, and the substrate 24 may be supported at three points, that is, the end face 26 of the detection unit 10 and the substrate supporting members. Further, the detection unit 10 does not necessarily support the substrate 24, as long as the heat medium member 14 is in thermal close contact with the substrate 24, the tip light receiving surface 16 of the optical waveguide member 12 is. It is desirable that the facing or abutting portion or its vicinity is in surface contact with the substrate 24. Further, the radiation thermometer may be directly connected to the end portion of the optical waveguide member 12 without using the optical fiber 74. Furthermore, the shape of the heat transfer member of the detection unit is
It does not have to be tubular, and may be tubular or hollow flat plate. Also, regarding the shape material of the heat transfer medium member, C
An appropriate material other than high-purity SiC and TiN by the VD method may be used. Further, although TiN is used as the light-shielding material in the above-mentioned embodiment, it is a material that does not have a high light-shielding property as TiN. However, any one can be used as long as it can suppress the influence of ambient light, which hinders accurate temperature measurement, to an allowable level or less.

【0021】[0021]

【発明の効果】この発明は以上説明したように構成され
かつ作用するので、この発明に係る温度測定装置を使用
すれば、光照射によって加熱される基板の温度を従来の
接触式の温度測定装置に比べてより正確に測定すること
ができるとともに、応答性良く基板の温度を測定するこ
とができて、温度制御の信頼性を向上させることができ
る。また、この発明に係る温度測定装置は、熱電対など
を使用していないので、高温下での耐久性に優れ、装置
寿命も長い。このように、この発明は、光照射加熱式の
熱処理装置のように基板を急速加熱して熱処理する装置
における温度制御用として優れた性能を持った温度測定
装置を提供し得たものである。
Since the present invention is constructed and operates as described above, if the temperature measuring device according to the present invention is used, the temperature of the substrate heated by the light irradiation is measured by the conventional contact type temperature measuring device. The temperature of the substrate can be measured more accurately and the reliability of temperature control can be improved. Moreover, since the temperature measuring device according to the present invention does not use a thermocouple or the like, the temperature measuring device has excellent durability at high temperatures and has a long device life. As described above, the present invention can provide a temperature measurement device having excellent performance for temperature control in a device for rapidly heating and heat-treating a substrate such as a light irradiation heating type heat treatment device.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の1実施例に係る基板の温度測定装置
の検出部の先端部分を示す部分拡大縦断面図である。
FIG. 1 is a partially enlarged vertical sectional view showing a tip portion of a detection unit of a substrate temperature measuring device according to an embodiment of the present invention.

【図2】図1のA部分の拡大断面図である。FIG. 2 is an enlarged cross-sectional view of a portion A of FIG.

【図3】図1に示した検出部を基板に面接触させた状態
を示す部分拡大縦断面図である。
3 is a partially enlarged vertical cross-sectional view showing a state in which the detection unit shown in FIG. 1 is brought into surface contact with a substrate.

【図4】図3のB部分の拡大断面図である。FIG. 4 is an enlarged cross-sectional view of portion B of FIG.

【図5】この発明に係る温度測定装置が使用される光照
射型熱処理装置の要部側面断面図である。
FIG. 5 is a side sectional view of a main part of a light irradiation type heat treatment apparatus in which the temperature measuring apparatus according to the present invention is used.

【符号の説明】[Explanation of symbols]

10 温度測定装置の検出部 12 光導波部材 14 熱媒介部材 16 光導波部材の先端受光面 24 基板 26 熱媒介部材先端の端面 10 Detection unit of temperature measuring device 12 Optical waveguide member 14 Heat transfer medium member 16 Light receiving surface of tip of light guide member 24 Substrate 26 End face of heat transfer medium member

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 21/66 T 7630−4M // H01L 21/22 501 N 9278−4M (72)発明者 西井 清文 京都市伏見区羽束師古川町322番地 大日 本スクリーン製造株式会社洛西工場内 (72)発明者 西田 正樹 京都市伏見区羽束師古川町322番地 大日 本スクリーン製造株式会社洛西工場内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Office reference number FI Technical indication location H01L 21/66 T 7630-4M // H01L 21/22 501 N 9278-4M (72) Inventor Nishii Kiyofumi 322 Hazushi Furukawa-cho, Fushimi-ku, Kyoto City Dainichi Honshu Screen Manufacturing Co., Ltd.Rakusai Factory (72) Masaki Nishida 322 Hazushi-Furukawa-cho Fushimi-ku, Kyoto City Dainichi Screen Manufacturing Co., Ltd. Rakusai Factory

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 加熱炉内に収容され、加熱手段からの光
照射によって加熱される基板の温度を、接触式に測温す
る検出手段で測定する、基板の温度測定装置において、
前記検出手段を、線状の光導波部材の少なくとも先端部
分を、一定の輻射率を有する遮光性材料で形成され閉塞
された熱媒介部材に内挿して、光導波部材の先端受光面
を熱媒介部材の内面に対向もしくは当接させるととも
に、前記光導波部材の末端部を直接にもしくは導光路を
介して放射温度計に光学的に接続することにより構成
し、前記熱媒介部材の外面を基板の一部に面接触させた
ことを特徴とする基板の温度測定装置。
1. A substrate temperature measuring device for measuring the temperature of a substrate, which is housed in a heating furnace and heated by irradiation of light from a heating means, with a detection means for contact-type temperature measurement,
At least the tip portion of the linear optical waveguide member is inserted into a heat transfer medium member formed of a light-shielding material having a constant emissivity and closed, so that the light receiving surface of the front end of the optical wave guide member is thermally transferred. While being opposed to or in contact with the inner surface of the member, the end portion of the optical waveguide member is configured to be optically connected to the radiation thermometer directly or via a light guide path, and the outer surface of the heat transfer medium member is formed of the substrate. An apparatus for measuring a temperature of a substrate, which is in partial surface contact.
【請求項2】 熱媒介部材によって少なくとも基板の一
部を支持するようにした請求項1記載の基板の温度測定
装置。
2. The temperature measuring device for a substrate according to claim 1, wherein at least a part of the substrate is supported by the heat transfer member.
JP5329923A 1993-11-29 1993-11-29 Instrument for measuring temperature of substrate Pending JPH07151606A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5329923A JPH07151606A (en) 1993-11-29 1993-11-29 Instrument for measuring temperature of substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5329923A JPH07151606A (en) 1993-11-29 1993-11-29 Instrument for measuring temperature of substrate

Publications (1)

Publication Number Publication Date
JPH07151606A true JPH07151606A (en) 1995-06-16

Family

ID=18226784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5329923A Pending JPH07151606A (en) 1993-11-29 1993-11-29 Instrument for measuring temperature of substrate

Country Status (1)

Country Link
JP (1) JPH07151606A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6572265B1 (en) 2001-04-20 2003-06-03 Luxtron Corporation In situ optical surface temperature measuring techniques and devices
US7080940B2 (en) 2001-04-20 2006-07-25 Luxtron Corporation In situ optical surface temperature measuring techniques and devices
JP2012509575A (en) * 2008-11-19 2012-04-19 アプライド マテリアルズ インコーポレイテッド High temperature measurement method for substrate processing.
CN106885476A (en) * 2017-03-08 2017-06-23 合肥鑫晟光电科技有限公司 A kind of substrate furnace temp monitoring system and method
US11131504B2 (en) 2017-03-08 2021-09-28 Boe Technology Group Co., Ltd. Temperature monitoring system and method for a substrate heating furnace

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6572265B1 (en) 2001-04-20 2003-06-03 Luxtron Corporation In situ optical surface temperature measuring techniques and devices
US7080940B2 (en) 2001-04-20 2006-07-25 Luxtron Corporation In situ optical surface temperature measuring techniques and devices
US7374335B2 (en) 2001-04-20 2008-05-20 Luxtron Corporation In situ optical surface temperature measuring techniques and devices
JP2012509575A (en) * 2008-11-19 2012-04-19 アプライド マテリアルズ インコーポレイテッド High temperature measurement method for substrate processing.
DE112009004402B4 (en) 2008-11-19 2020-06-04 Applied Materials, Inc. Pyrometry for substrate processing
CN106885476A (en) * 2017-03-08 2017-06-23 合肥鑫晟光电科技有限公司 A kind of substrate furnace temp monitoring system and method
US11131504B2 (en) 2017-03-08 2021-09-28 Boe Technology Group Co., Ltd. Temperature monitoring system and method for a substrate heating furnace

Similar Documents

Publication Publication Date Title
JP2780866B2 (en) Light irradiation heating substrate temperature measurement device
KR101624217B1 (en) Apparatus including heating source reflective filter for pyrometry
KR101047088B1 (en) Device temperature control and pattern compensation device method
US6226453B1 (en) Temperature probe with fiber optic core
KR100396423B1 (en) Method and apparatus for measuring substrate temperatures
WO1998038673A1 (en) Substrate temperature measuring instrument, method of measuring substrate temperature, substrate heating method and heat treatment device
US8367983B2 (en) Apparatus including heating source reflective filter for pyrometry
KR20080055972A (en) Film formation apparatus and methods including temperature and emissivity/pattern compensation
JP5647502B2 (en) Heat treatment apparatus, semiconductor device manufacturing method, and substrate processing method.
KR20020077118A (en) Method for monitoring thickness of thin film and method for measuring temperature of substrate
WO2009081748A1 (en) Radiometric temperature measuring method and radiometric temperature measuring system
EP1930707A2 (en) Optical path improvement, focus length change compensation, and stray light reduction for temperature measurement system of rtp tool
US6035100A (en) Reflector cover for a semiconductor processing chamber
JPH07151606A (en) Instrument for measuring temperature of substrate
JPS6037116A (en) Optical irradiating furnace
KR100413646B1 (en) Temperature-detecting element
JPS6294925A (en) Heat treatment device
JP2982026B2 (en) Temperature measuring device and temperature measuring device for body to be heated using the same
JPH02298829A (en) Heat treatment apparatus
JPH05299428A (en) Method and apparatus for heat-treatment of semiconductor wafer
Timans Temperature measurement in rapid thermal processing
US5921680A (en) Sensor for radiation pyrometric temperature measurement at high ambient temperature
KR100337109B1 (en) Apparatus for rapid thermal processing
WO2009119418A1 (en) Temperature-measuring apparatus, and mounting table structure and heat treatment apparatus having the same
Kimes et al. In situ calibration of lightpipe radiometers for rapid thermal processing between 300/spl deg/C to 700/spl deg/C