JPH0217944B2 - - Google Patents

Info

Publication number
JPH0217944B2
JPH0217944B2 JP60502505A JP50250585A JPH0217944B2 JP H0217944 B2 JPH0217944 B2 JP H0217944B2 JP 60502505 A JP60502505 A JP 60502505A JP 50250585 A JP50250585 A JP 50250585A JP H0217944 B2 JPH0217944 B2 JP H0217944B2
Authority
JP
Japan
Prior art keywords
layer
inp
current
active region
doped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60502505A
Other languages
English (en)
Other versions
JPS61502434A (ja
Inventor
Uirubaa Dekisutaa Junya Jonsuton
Judeisu An Rongu
Danieru Hooru Uiruto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AT&T Corp
Original Assignee
AT&T Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AT&T Corp filed Critical AT&T Corp
Publication of JPS61502434A publication Critical patent/JPS61502434A/ja
Publication of JPH0217944B2 publication Critical patent/JPH0217944B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • H01L33/24Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate of the light emitting region, e.g. non-planar junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/0004Devices characterised by their operation
    • H01L33/002Devices characterised by their operation having heterojunctions or graded gap
    • H01L33/0025Devices characterised by their operation having heterojunctions or graded gap comprising only AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/24Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a grooved structure, e.g. V-grooved, crescent active layer in groove, VSIS laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/223Buried stripe structure
    • H01S5/2237Buried stripe structure with a non-planar active layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S438/00Semiconductor device manufacturing: process
    • Y10S438/914Doping
    • Y10S438/918Special or nonstandard dopant

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Geometry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Description

請求の範囲 1 半導体基体、前記基体に電流を印加するため
の電極手段、及び前記基体の領域を貫く実質的な
電流を防止するための手段からなる半導体デバイ
スにおいて、 前記防止手段は、前記領域に含まれ、Fe−ド
ープInP−ベースMOCVD層の物理特性を有する
InP−ベースエピタキシヤル層からなることを特
徴とする半導体デバイス。
2 請求の範囲第1項に記載されたデバイスにお
いて、 前記防止手段は前記領域に含まれる高抵抗率の
Fe−ドープInP−ベースエピタキシヤル層からな
ることを特徴とする半導体デバイス。
3 請求の範囲第1項又は第2項に記載されたデ
バイスにおいて、 前記InP−ベースエピタキシヤル層は1μm以上
の厚さをもつことを特徴とする半導体デバイス。
4 請求の範囲第1項、第2項又は第3項に記載
されたデバイスにおいて、 前記InP−ベースエピタキシヤル層は103Ω−cm
以上の抵抗率をもつことを特徴とする半導体デバ
イス。
5 請求の範囲第1項ないし第4項のいずれかに
記載されたデバイスにおいて、 前記デバイスは活性領域を含み、前記電極手段
は前記デバイスに電流を印加し、前記防止手段
は、前記チヤンネルがそれを貫いて延びる開口を
有するInP−ベースエピタキシヤル層によつて、
前記電流を活性領域を貫くチヤンネル中に流れる
ように限定することを特徴とする半導体デバイ
ス。
6 請求の範囲第5項に記載されたデバイスにお
いて、 前記活性領域は前記InPベース層の厚さの範囲
内にあることを特徴とする半導体デバイス。
7 請求の範囲第5項ないし第6項のいずれかに
記載されたデバイスにおいて、 半導体デバイスはInP基体と、InP及び
InGaAsP層を含み、その限定された領域で前記
活性領域が光放射を生じるようポンピング電流を
受けるヘテロ構造とからなる光放射デバイスであ
り、 前記防止手段は前記基体上に形成される高抵抗
率のFe−ドープMOCVD InP−ベース層からな
ることを特徴とする半導体デバイス。
8 請求の範囲第7項に記載されたデバイスにお
いて、 前記半導体デバイスはレーザであり、前記活性
領域が細長いストライプの形を有するものであ
り、光学軸が前記ストライプの細長い方向と本質
的に平行な光空胴共振器を形成する手段を含むこ
とを特徴とする半導体デバイス。
9 請求の範囲第8項に記載されたデバイスにお
いて、 前記活性領域のその細長い方向に直角な方向の
断面は三日月の形をもつことを特徴とする半導体
デバイス。
10 請求の範囲第9項に記載されたデバイスに
おいて、 前記Fe−ドープMOCVD InP−ベース層は、
本質的に長方形の開口により2分割され、その中
に前記ストライプ状の活性領域があることを特徴
とする半導体デバイス。
11 請求の範囲第10項に記載されたデバイス
において、 前記開口は前記Fe−ドープMOCVD層を貫き、
前記基体中に延びる溝により形成され、前記ヘテ
ロ構造の一部は前記溝を満たし、前記ストライプ
状の活性領域は前記溝の中、前記Fe−ドープ層
下約1μm以上にはならない位置におかれること
を特徴とする半導体デバイス。
12 請求の範囲第11項に記載されたデバイス
において、 前記活性領域は前記Fe−ドープ層の厚さの範
囲内にあることを特徴とする半導体デバイス。
13 請求の範囲第8項ないし第12項のいずれ
かに記載されたデバイスにおいて、 前記Fe−ドープ層はInPからなり、その抵抗率
は約106Ω−cmを超えることを特徴とする半導体
デバイス。
14 請求の範囲第5項ないし第6項のいずれか
に記載されたデバイスにおいて、 半導体デバイスは、少なくとも1区域で区切ら
れたメサの形に形成され、ポンピング電流に応答
して光放射を発生する前記活性層を含むInP及び
InGaAsP層のヘテロ構造からなる光放射デバイ
スであり、前記防止手段は、前記少なくとも1区
域中に形成された高抵抗Fe−ドープMOCVD
InP−ベース層からなることを特徴とする半導体
デバイス。
15 請求の範囲第14項に記載されたデバイス
において、 前記Fe−ドープ層はInPからなり、その抵抗率
は約106Ω−cmを超えることを特徴とする半導体
デバイス。
発明の背景 本発明は半導体デバイス、特にレーザおよび
LEDのような埋込みヘテロ構造半導体発光デバ
イスに係る。
InGaAsP/InP材料系において、低閾値埋込み
ヘテロ構造(BH)レーザの製作に共通の問題
は、漏れ電流(すなわち、デバイスの活性領域を
バイパスする電流)の制御である。これらの電流
は、高レーザ発振閾値、低微分量子効率、閾値電
流の異常な温度依存性、および光−電流(L−
I)特性の揺れを発生させる。これらのすべての
要因は、フアイバ光通信システム用の送信機に
BHレーザを用いる上で、著しく負の影響をもた
らす。
埋込みヘテロ構造レーザ中の漏れ電流の問題に
対する1つの可能な解は、デバイス構造中に高抵
抗材料を制御良く導入することである。この高抵
抗材料は、好ましくない漏れ電流路を通しての電
流を阻止するために用いることができる。以前
は、高抵抗液相エピタキシヤル(LPE)
Al0.65Ga0.35As(低Ge−ドープ)材料が、
AlGaAs/GaAs埋込みヘテロ構造レーザ中の電
流閉じ込め用に用いられていたが、その後の目的
のために高抵抗LPEInP材料を生成しようとする
試みは成功しなかつた。重陽子照射もまたp形
InPから高抵抗材料を生成することが示されてき
たが、この材料はその後の加工中高抵抗を保つと
は期待されない。特に、高抵抗は重陽子注入損傷
に関連しているため、抵抗はその後のLPE成長
に必要な温度(たとえば約600℃以上)において
焼きなまされてしまう。
加えて、二つに分かれた逆バイアスp−n接合
もまたInGaAsP/InPレーザの活性領域を貫いて
流れる電流を制限するためのものとして報告され
ている。これらの阻止接合は、n−InP基板にBe
を注入すること、n−InP基板中にCdを拡散させ
ること及びn−InP基板上にp−InP層をエピタ
キシヤル成長させることにより製作されてきた。
しかし、これらデバイスのすべては、逆バイアス
接合の不完全な阻止特性のため漏れ電流により或
る程度そこなわれる。
より最近、D.P.Wilt(デイー・ピー・ウイルト)
らは、Applied Physics Letters(アプライド・フ
イジツクス・レターズ)第44巻、第3号、290頁
(1984年2月)に、比較的低漏れ電流および低レ
ーザ発振閾値を有するInP/InGaAsP.CSBHレ
ーザが、活性領域を貫くポンピング電流を閉じ込
める高抵抗Fe−イオン注入層を構造中に導入す
ることによつて製作できることを報告した。高抵
抗層は、n形InP基板中にFe−イオンを注入し、
それにつづきLPE成長前にアニーリング処理を
行なうことにより生成される。Fe−イオン−注
入層の抵抗率は、LPE成長の高温特性を受けた
後ですら安定であるが、Fe注入層の薄さ(約0.4μ
m)のため、薄い活性層(約0.1−0.2μmの厚さ)
をそれに隣接して配置することは困難である。活
性層がそのように配置されなかつたとき分枝路が
生成し、それが活性層の周囲の漏れ電流を可能に
する。従つて、高性能(低閾値、高効率)デバイ
スを再現性よく製作することは困難である。
発明の要約 低漏れ電流、低レーザ発振閾値、優れた高周波
応答および良い信頼性を有する再現性あるBHレ
ーザが、フエロセンを基礎とした又は鉄ペンタカ
ルボニルを基礎としたドーパントプリカーサを用
いた有機金属化学気相堆積(MOCVD)により
成長させた比較的厚い高抵抗Fe−ドープのInPを
基礎とした層を構造中に導入することにより製作
できる。重要なことは、比較的厚く(たとえば、
1−4μm)高抵抗(たとえば、103−103Ω−cm)
のInP:Fe層がこのプロセスにより実現され、そ
の特性は漏れ電流を減らし、各種のデバイスの再
現性を増すのに重大である。
たとえば、室温(23℃)で11mAもの低いパル
ス閾値電流を有するInP/InGaAsP CSBHレー
ザが、本発明に従い実現された。これらのデバイ
スはまた、2.4GHzを越える小信号帯域により明
らかな優れた高周波特性と、2.0Gb/sもの高い
変調速度を有した。
同様にして、後に述べるように、二重チヤネル
プレーナ埋込みヘテロ構造レーザ(DC−DBH)
の電流阻止層としてInP:FeMOCVD層を用いて
もよい。
加えて、本発明は電流がデバイスの活性領域を
貫くチヤネル中に流れを限定するLED、フオト
ダイオード及び他のInPデバイスに用いるのにも
適している。
【図面の簡単な説明】
本発明は、その各種の特徴および利点ととも
に、添付した図面と関連づけた以下の詳細な説明
から容易に理解できる。図において、明確にする
ため、図面の各部の相対的な比率は実際と異なつ
ている。
第1図は、本発明の一実施例に従うCSBH発光
デバイスの透視図、 第2図は、本発明に従うCSBHデバイスの別の
実施例の側面図、 第3図は、本発明の更に別の実施例に従うDC
−PBHデバイスの側面図である。
詳細な記述 第1図に示された半導体発光デバイスは、レー
ザまたは端面放射LEDとして使用できる。いず
れの場合も、デバイス10は活性領域12を含
み、その中での電子と正孔の再結合が、活性領域
の半導体材料の禁制帯の波長特性(たとえば、混
晶の具体的な組成に依存して、InGaAsPの場合
は約1.0−1.65μm)で放出される放射を発生させ
る。放射は一般に軸14に沿つた方向を向き、レ
ーザの場合は基本的には刺激放射で、LEDの場
合は基本的に自然放射である。
この再結合放射は、活性領域中に注入される少
数キヤリヤを発生させる順方向バイアスのp−n
接合により生じる。たとえば、電流を限定する抵
抗器と直列になつた電池として描かれているよう
な電源16が、順方向バイアス電圧を供給し、加
えて所望の光出力パワーと同程度のレベルで、ポ
ンピング電流を供給する。レーザにおいては、ポ
ンピング電流はレーザ発振電流閾値を越える。
一般に、デバイスはポンピング電流が活性領域
12を貫き、比較的狭いチヤネル中を流れるよう
限定する手段を含む。図示されているように、こ
の限定手段は二分割の高抵抗Fe−ドープ
MOCVD InP層20を含み、活性領域12は二
分割層20の長方形開口中にあるストライプの形
を有する。表面放射LEDの場合、層20はに二
分割ではなく、円筒またはメサ状活性領域を囲む
環の形をとつてもよい。
第1図中に示された構造は、チヤネル−基板埋
込みヘテロ構造(CSBH)レーザとして知られ、
それはn−InP基板22および溝20により二分
割されたFe−ドープMOCVD高抵抗InP層20を
含む。溝はエツチされるか、層20を貫き基板2
2中に形成される。Vの形に溝を制御よくエツチ
ングする好ましい技術には(100)InP表面上に
形成されたそれ自身の薄い(たとえば1.8−2.2n
m)酸化物層と、それ自身の酸化物上にプラズマ
堆積させたSiO2層から成る合成エツチマスクの
使用を含む。それ自身の酸化層は、プラズマ補助
または熱的方法を用いて成長させてよい。マスク
は標準的なフオトリソグラフイとプラズマエツチ
ングを用い、マスク開口(011)に平行になる
(幅は2.2μm)ように、パターン形成される。
(111)B方向の側壁のみを有する3.0μmの深さの
V溝が、3:1HCl:H3PO4のようなHCl過剰エ
ツチヤント中での室温エツチングにより形成され
る。
以下の本質的に格子整合されたエピタキシヤル
層を、エツチされたウエハ上にLPEにより成長
させる。n−InPの第1のクラツド層26(溝2
4の少なくとも底面部分を満たす中心部分);故
意にはドープしてないInGaAsP層28;p−InP
の第2のクラツド層30;28はクレセント形活
性領域12を含み、それは溝24の最上部の端部
に沿つてはエピタキシヤル成長が起こらないた
め、層28の残りの部分から分離される。高抵抗
層20との界面における非発光再結合が著しくな
い限り、漏れ電流を減らすため、活性層は高抵抗
層20の厚さ内に垂直方向に配置するのが好まし
い。しかし、活性層が層20以下で、十分それに
近い(すなわち、離れた距離は1μm)ならば、
漏れ電流は著しく減少し、層20界面における非
発光再結合は、問題になる値よりはるかに小さく
なる。
高抵抗InP:Fe層20は、基板22上に直接形
成されるが、基板上に成長させた(図示されてい
ない)エピタキシヤルバツフア層上に形成しても
よい。いずれの場合も、層20の高抵抗率は
MOCVDプロセスにより、最もよく得られ、そ
のプロセスはフエロセンを基礎とした、あるいは
鉄ペンタカルボニルを基礎としたドーパントプリ
カーサ(または、そのようなプリカーサの組合
せ)を、アルキルインジウムのような有機インジ
ウム材料と組み合わせて用いることを含む。有機
インジウムとアルキルホスフインとの間で、最初
に付加体が形成されると有利である。付加体は、
それを含むバブラを通して、ガス(たとえば水素
または不活性ガス)を流すことにより、ガス流と
して導入される。リンの原料(たとえばフオスフ
イン)もガス流に導入される。ガス流中のインジ
ウムに対する鉄のモル比が1.2×10-4ないし1×
10-5の範囲になるよう、ドーパントプリカーサが
導入される。
1×103Ω−cmもの高い抵抗率を有する比較的
厚い(たとえば1−4μm)InP:Fe層がこのプロ
セスにより得られ、このプロセスは他のInPを基
礎とした組成(たとえばInGaP、InAsP、
InGaAsP、InGaAlP)にも適用される。しかし、
CSBHInP/InGaAsPレーザの場合、約1×106
Ω−cmを越える抵抗率が望ましい。
そのように作られた高抵抗層は、その後の
LPEプロセス工程の高温を経た後ですら、その
高い抵抗率を保つ。
それぞれ、層32および基板22上の金属電極
34および36を通して、デバイスへの電気的接
触が作られる。電源16が電極34および36間
に接続される。
第1図中には、層32および34による広い面
積の電極が描かれているが、第2図中に示される
ようなストライプ状の電極にすることも可能であ
る。ここで、第2図中でプライムをつけて示した
要素は、第1図中の同じ参照数字に対応する。従
つて、電極補助層32′はストライプを形成する
ようエツチされ、SiO2層33のストライプ状開
口と位置合わせされる。ストライプ状の金属電極
35は、SiO2層33の開口中の層32′上に形成
され、次に大面積電極34′がデバイスの最上部
上に形成される。この形の電極形状はデバイス容
量を減らし、従つて高速特性を増す。
CBSHレーザは、刺激放射の光帰還を起こす手
段を含む。典型的な場合、それは一対の分離され
た平行なヘき開フアセツト38および40で、そ
れらは第1図に示されるような光空胴共振器を形
成する。共振器の光学軸およびストライプ状活性
領域12の長い方の方向は、一般に相互に平行で
ある。しかし、たとえば周知の分布帰還回折格子
を含む他の帰還技術も適している。
例 以下の例では、本発明の一実施例にしたがう
InP/InGaAsP CSBHレーザの製作について述
べる。特にことわらなければ、各種の材料、大き
さ、濃度、動作パラメータ等が例を示すという目
的のみ示されるが、本発明の視野を限定するもの
ではない。
この例では、InGaAsP/InP CSBHレーザの
ベース構造として、MOCVDにより成長させた
高抵抗Fe−ドープInP層を使用することを、初め
て示す。11mAもの低い閾値電流と100mAの電
流で14mWもの高いパルス光出力が、良好な歩留
りとデバイスの均一性とともに、この構造で得ら
れた。半絶縁性ベース構造を有するデバイスに期
待される優れた高周波応答が、2.4GHzを越える
小信号帯域で実証された。加えて、2.0Gb/sも
の高い変調速度が得られた。
第2図に示される形のCSBHレーザが、以下の
ように製作された。MOCVDエピタキシヤル反
応装置を用い、Fe−ドープInPの単一層20を、
名目上100面に沿つた(故意に方向をずらすこ
とはしなかつた)n形InP基板22(S−ドープ
LEC材料)上に成長させた。
Fe−ドープ層は1ないし4μmの厚さで、抵抗
率は少なくとも1×106Ω−cmであつた。次に、
それ自身の酸化物/SiO2合成エツチングマスク
を、層20上に堆積させた。マスクは、2.0μm幅
の窓にパターン形成され、3:1HCl:H3PO4
合液中で、その後のLPE成長のため、V溝24
をエツチした。次に、マスクはHF中で除去さ
れ、ウエハをLPE反応装置中にセツトした。
LPE成長に先だち、ウエハは飽和Sn−In−P溶
液を含む外部容器中で保護された。次に、約630
℃におけるLPEにより、DH[層26,28およ
び30]を成長させた。これらの層には、n形
InP(Sn−ドープ)層26、名目上ドープしてな
いInGaAsP(λg1.3μm)層28およびp形InP
(Zn−ドープ)層30が含まれた。DH上には、
電極補助p形InGaAsP(λg1.2μm、Zn−ドー
プ)層を成長させ、後に以下に述べるようにエツ
チした。クレセント形活性領域12の幅および厚
さは、典型的な場合、それぞれ2.5μmおよび0.2μ
mであつた。漏れ電流と分枝容量を減らすため、
チヤネル中と高抵抗層20の厚さの範囲内で、活
性領域を成長させるように注意を払つた。しか
し、活性層が層20の下にあり、その約1μm以
内にあるときですら、レーザ特性は従来の設計
(すなわち、Cd−拡散ベース構造またはFe−イオ
ン注入ベース構造を有するもの)によるものより
優れていた。
LPE成長が完了した後、標準的なチヤネル基
板埋込みヘテロ構造レーザ加工工程を行なつた。
最初SiO2をウエハの表面全体上に堆積させ、埋
込み活性領域上に直接ストライプをパターン形成
させ、埋込み構造を明らかにするため、ウエハエ
ツジのエツチングにより、位置合わせを行なつ
た。次に、InGaAsPストライプ32′を第2図に
示すように残すため、構造の電極補助層を10:
1:1(H2SO4:H2O2:H2O)中でエツチし、
HF中でSiO2エツテマスクを除去した。次にもう
一つのSiO2層33を堆積させ、層32′のストラ
イプ上に窓を形成するためパターン形成した。
SiO2層33のパターン形成に使用したフオトレ
ジストは、蒸着したAuZnAu電極35用のリフト
オフマスクとして用いた。AuZnAu電極35を合
金化した後、ウエハ(基板)を研磨し、AuGeの
裏面(n側)電極を堆積させ、同様のリフトオフ
技術を用いて合金化した。前面(p側)TiPt金
属部(図示されていない)を堆積させ、シンター
し、ウエハの前面および裏面の両方に、電極およ
びボンデイングパツドとして働くAu層34′およ
び36をメツキした。最後にウエハを切断し、長
さ250μm、幅500μmの各チツプにへき開した。
レーザのパルス光−電流(L−I)およびdL/dI 特性を測定した。レーザの一つは、30℃で21mA
の閾値電流を有し、85mAの電流で10mWの出力
パワーを達成した。100mAにおける光出力は
11.8mWであつた。ピーク傾斜効率は0.18mW/
mAで、良好な電流閉じ込めを有する他のレーザ
についての最善の結果に等しい。ピーク効率はこ
の範囲を通して良く保たれ、恐らく活性領域の端
部周囲を流れる電流または刺激放射に寄与しない
活性層の領域(たとえばクレセント形活性領域の
“ウイング”)中に流れる電流により、より高いパ
ワーレベルでわずかに落ちた。このデバイスのI
dV/dI飽和は、閾値において理想に近く、良好な電 流閉じ込めであることを示した。
この形のデバイスで得られる良好なウエハ内の
均一性が、閾値電流の小さなばらつきと、パルス
条件下での100mAにおける光出力で示された。
このウエハからの25個のボンデイングしていない
任意の試料の場合、平均閾値電流は20.1mAで、
中間閾値電流は19.2mA、分布の標準偏差は4.6
mAであつた。100mWにおける平均光出力は
9.93mWで、中間値は11.4mW、標準偏差は1.8m
Wであつた。
60℃、3mWの自動パワー制御バーン−イン条
件下における、この構造を有する一連のレーザの
バーン−イン特性は、それらの良好な安定性を示
した。ボンデイングし、浄化したレーザで測定さ
れた劣化速度は、60℃−3mWのバーン−インの
条件下において、1000時間当り1mAと低かつ
た。この劣化速度は、光通信システムで用いるべ
き、これらのレーザとしては十分低い。
3mW CW出力パワーにおいて、遠視野放射
パターンを測定した。測定したパワーのビームの
半値幅は、接合面に平行および垂直な方向で、そ
れぞれ17゜および28゜であつた。光放射スペクトル
は、1.2925μmの波長に中心をおく、数個の縦モ
ードを示した。
このレーザの変調応答は、特に良好であつた。
高速ドライバで測定した立上りおよび立下り時間
は、約0.3nsで、良好なアイパターンで2Gb/s
もの高い速度の高速変調が得られた。小信号応答
を、光パワー出力の関数としてプロツトした。
3dB遮断周波数はレーザ閾値における2.1GHzか
ら、1mWの光パワーにおける2.4GHz以上の最
大値まで変化した。その後、この遮断周波数は2
mWにおける2.0GHzおよび3mWにおける1.8G
Hzまで落ちた。
上で述べた構成は、本発明の原理の応用を表わ
すために考えられる多くの可能な具体例の単なる
例にすぎないことを理解すべきである。多くの、
かつ各種の他の構成が、本発明の精神および視野
を離れることなく、これらの原理に従い当業者に
は考案できる。特に、本発明について、レーザお
よびLEDを参照して述べてきたが、電流が活性
領域を貫くチヤネル中を流れるよう限定される他
の半導体デバイス(たとえばフオトダイオード)
にも適用できることが当業者には認識されよう。
本発明の一つの別のレーザについての実施例に
は、ダブルチヤネル・プレーナ埋込みヘテロ構造
(DCPBH)が含まれる。通常のDCPBHレーザ
については、I.Mito(アイ.ミト)らにより、
Journal of Lightwave Technology(ジヤーナ
ル・オブ・・ライトウエーブ・テクノロジー)第
LT−1巻、第1号、195頁(1983)中に、一般的
に述べられている。それは活性層を含む長いメサ
を貫いて流れるよう電流を制限する逆バイアス阻
止接合を形成するため、チヤネル中へのLPE再
成長を用いる。しかし、第3図に示した本発明の
DCPBH実施例に従うと、阻止接合のLPE再生長
はメサの各側の上のInP:Fe領域40のMOCVD
成長に置きかえられる。限定された(たとえばス
トライプ状の)電極42が、パターン形成された
誘電体層44(たとえばSiO2)により、メサの
最上部に規定され、電極46がデバイスの最上部
にある。このようにして、電流はInP:Fe領域4
0および誘電体層44により、本質的にメサのみ
を通るように、したがつて活性層50のみを通る
ように制約される。
最後に、上で述べたデバイスの活性領域は、単
一の活性層か、少なくとも一つが(発光という意
味で)活性である合成されたいくつかの層を含む
ことは、よく知られている。従つて、1.55μm
InP/InGaAsPレーザにおいて、活性領域は
InGaAsP層を含み、それはLPE成長中メルトバ
ツク防止の働きをする別のInGaAsP層(λ=
1.3μm)の付近で、1.55μmにおいて発光する。
さらに、異なる波長で発光するいくつかの活性層
もまた、活性領域の規定の中に含まれる。
JP60502505A 1984-06-15 1985-05-16 埋込みへテロ構造を有する半導体デバイス Granted JPS61502434A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US06/621,071 US4660208A (en) 1984-06-15 1984-06-15 Semiconductor devices employing Fe-doped MOCVD InP-based layer for current confinement
US621071 1984-06-15

Publications (2)

Publication Number Publication Date
JPS61502434A JPS61502434A (ja) 1986-10-23
JPH0217944B2 true JPH0217944B2 (ja) 1990-04-24

Family

ID=24488596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60502505A Granted JPS61502434A (ja) 1984-06-15 1985-05-16 埋込みへテロ構造を有する半導体デバイス

Country Status (6)

Country Link
US (1) US4660208A (ja)
EP (1) EP0185051B1 (ja)
JP (1) JPS61502434A (ja)
CA (1) CA1262768C (ja)
DE (1) DE3579130D1 (ja)
WO (1) WO1986000172A1 (ja)

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60192380A (ja) * 1984-03-13 1985-09-30 Mitsubishi Electric Corp 半導体レ−ザ装置
US4888624A (en) * 1984-06-15 1989-12-19 American Telephone And Telegraph Company, At&T Bell Laboratories Semiconductor devices employing high resistivity in-based compound group III-IV epitaxial layer for current confinement
EP0208209B1 (en) * 1985-06-27 1994-04-27 Nec Corporation A buried heterostructure semiconductor laser
US4839900A (en) * 1985-08-21 1989-06-13 Sharp Kabushiki Kaisha Buried type semiconductor laser device
JPS62283686A (ja) * 1986-05-31 1987-12-09 Mitsubishi Electric Corp 半導体レ−ザの製造方法
US4870468A (en) * 1986-09-12 1989-09-26 Kabushiki Kaisha Toshiba Semiconductor light-emitting device and method of manufacturing the same
US4891093A (en) * 1986-09-18 1990-01-02 Eastman Kodak Company Processes for the manufacture of laser including monolithically integrated planar devices
US4888085A (en) * 1986-09-18 1989-12-19 Eastman Kodak Company Processes for their manufacture of monolithically integrated planar lasers differing in emission wavelengths
GB8622767D0 (en) * 1986-09-22 1986-10-29 British Telecomm Semiconductor structures
US4729963A (en) * 1986-11-21 1988-03-08 Bell Communications Research, Inc. Fabrication method for modified planar semiconductor structures
US4774554A (en) * 1986-12-16 1988-09-27 American Telephone And Telegraph Company, At&T Bell Laboratories Semiconductor devices employing Ti-doped Group III-V epitaxial layer
JPS63198320A (ja) * 1987-02-13 1988-08-17 Mitsubishi Electric Corp 結晶成長方法
EP0314372A3 (en) * 1987-10-29 1989-10-25 AT&T Corp. Current confinement and blocking region for semiconductor devices
JPH0231488A (ja) * 1988-07-20 1990-02-01 Mitsubishi Electric Corp 半導体レーザ装置及びその製造方法
FR2636176B1 (fr) * 1988-09-08 1990-12-07 France Etat Procede de realisation d'un laser a semi-conducteur a forte puissance d'emission et a grande bande passante a partir d'une structure a ruban enterre du type brs, et laser ainsi obtenu
US4980314A (en) * 1989-06-06 1990-12-25 At&T Bell Laboratories Vapor processing of a substrate
JP2827326B2 (ja) * 1989-09-27 1998-11-25 住友電気工業株式会社 半導体レーザの製造方法
US5038356A (en) * 1989-12-04 1991-08-06 Trw Inc. Vertical-cavity surface-emitting diode laser
US5048038A (en) * 1990-01-25 1991-09-10 The United States Of America As Represented By The United States Department Of Energy Ion-implanted planar-buried-heterostructure diode laser
US5319661A (en) * 1990-12-27 1994-06-07 The Furukawa Electric Co., Ltd. Semiconductor double heterostructure laser device with InP current blocking layer
US6036769A (en) * 1994-06-29 2000-03-14 British Telecommunications Public Limited Company Preparation of semiconductor substrates
JPH10505947A (ja) * 1994-07-15 1998-06-09 ザ ウィタカー コーポレーション 半絶縁性面発光素子
US5789772A (en) * 1994-07-15 1998-08-04 The Whitaker Corporation Semi-insulating surface light emitting devices
JPH0851250A (ja) * 1994-08-09 1996-02-20 Mitsubishi Electric Corp 半導体レーザ
DE4432410B4 (de) * 1994-08-31 2007-06-21 ADC Telecommunications, Inc., Eden Prairie Optoelektronisches Multi-Wellenlängen-Bauelement
JPH0897498A (ja) * 1994-09-26 1996-04-12 Mitsubishi Electric Corp 半導体装置および半導体レーザ装置
US5629232A (en) * 1994-11-14 1997-05-13 The Whitaker Corporation Method of fabricating semiconductor light emitting devices
US5608234A (en) * 1994-11-14 1997-03-04 The Whitaker Corporation Semi-insulating edge emitting light emitting diode
JP3386261B2 (ja) * 1994-12-05 2003-03-17 三菱電機株式会社 光半導体装置、及びその製造方法
GB2312783B (en) * 1996-05-01 2000-12-13 Epitaxial Products Internat Lt Opto-electronic device with transparent high lateral conductivity current spreading layer
US5960024A (en) 1998-03-30 1999-09-28 Bandwidth Unlimited, Inc. Vertical optical cavities produced with selective area epitaxy
US6487231B1 (en) 1998-04-14 2002-11-26 Bandwidth 9, Inc. Vertical cavity apparatus with tunnel junction
US6535541B1 (en) 1998-04-14 2003-03-18 Bandwidth 9, Inc Vertical cavity apparatus with tunnel junction
US6760357B1 (en) 1998-04-14 2004-07-06 Bandwidth9 Vertical cavity apparatus with tunnel junction
US6493372B1 (en) 1998-04-14 2002-12-10 Bandwidth 9, Inc. Vertical cavity apparatus with tunnel junction
US6487230B1 (en) 1998-04-14 2002-11-26 Bandwidth 9, Inc Vertical cavity apparatus with tunnel junction
US6493371B1 (en) 1998-04-14 2002-12-10 Bandwidth9, Inc. Vertical cavity apparatus with tunnel junction
US5991326A (en) 1998-04-14 1999-11-23 Bandwidth9, Inc. Lattice-relaxed verticle optical cavities
US6493373B1 (en) 1998-04-14 2002-12-10 Bandwidth 9, Inc. Vertical cavity apparatus with tunnel junction
US6055257A (en) * 1998-04-27 2000-04-25 Lucent Technologies Inc. Quantum cascade laser
US6226425B1 (en) 1999-02-24 2001-05-01 Bandwidth9 Flexible optical multiplexer
US6275513B1 (en) 1999-06-04 2001-08-14 Bandwidth 9 Hermetically sealed semiconductor laser device
US6233263B1 (en) 1999-06-04 2001-05-15 Bandwidth9 Monitoring and control assembly for wavelength stabilized optical system
US6245144B1 (en) 1999-12-06 2001-06-12 Lucent Technologies Inc. Doping control in selective area growth (SAG) of InP epitaxy in the fabrication of solid state semiconductor lasers
US6891202B2 (en) * 2001-12-14 2005-05-10 Infinera Corporation Oxygen-doped Al-containing current blocking layers in active semiconductor devices
US9640703B2 (en) * 2004-10-25 2017-05-02 Mitsubishi Electric Corporation Avalanche photodiode
JPWO2015011858A1 (ja) * 2013-07-23 2017-03-02 パナソニックIpマネジメント株式会社 窒化物半導体レーザ素子
KR20230130201A (ko) * 2022-03-02 2023-09-12 삼성디스플레이 주식회사 발광 소자 및 이를 포함한 표시 장치, 및 발광 소자의 제조 방법

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5347765A (en) * 1976-10-13 1978-04-28 Matsushita Electric Ind Co Ltd Semiconductor crystal growth method
JPS58170089A (ja) * 1982-03-31 1983-10-06 Fujitsu Ltd 半導体発光装置の製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4193335A (en) * 1977-03-17 1980-03-18 General Electric Company Gun misfire control

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5347765A (en) * 1976-10-13 1978-04-28 Matsushita Electric Ind Co Ltd Semiconductor crystal growth method
JPS58170089A (ja) * 1982-03-31 1983-10-06 Fujitsu Ltd 半導体発光装置の製造方法

Also Published As

Publication number Publication date
EP0185051B1 (en) 1990-08-08
JPS61502434A (ja) 1986-10-23
EP0185051A1 (ja) 1986-06-25
CA1262768A (en) 1989-11-07
WO1986000172A1 (en) 1986-01-03
CA1262768C (en) 1989-11-07
US4660208A (en) 1987-04-21
DE3579130D1 (de) 1990-09-13

Similar Documents

Publication Publication Date Title
JPH0217944B2 (ja)
US4888624A (en) Semiconductor devices employing high resistivity in-based compound group III-IV epitaxial layer for current confinement
US8451875B2 (en) Vertical cavity surface emitting laser having strain reduced quantum wells
US4425650A (en) Buried heterostructure laser diode
EP0002827B1 (en) Strip buried heterostructure laser and method for producing same
US4928285A (en) Impurity-doped semiconductor laser device for single wavelength oscillation
EP0132081A2 (en) Semiconductor laser device
US8193019B2 (en) Vertical cavity surface emitting laser having multiple top-side contacts
US4999315A (en) Method of controlling dopant incorporation in high resistivity In-based compound Group III-V epitaxial layers
US4545057A (en) Window structure of a semiconductor laser
Kishino et al. Fabrication and lasing properties of mesa substrate buried heterostructure GaInAsP/InP lasers at 1.3 µm wavelength
US4514896A (en) Method of forming current confinement channels in semiconductor devices
US4447905A (en) Current confinement in semiconductor light emitting devices
Iga et al. GaInAsP/InP DH lasers and related fabricating techniques for integration
US4517674A (en) Zinc-diffused narrow stripe AlGaAs/GaAs double heterostructure laser
Botez Single-mode AlGaAs diode lasers
GB2095474A (en) Semiconductor light emitting devices
US4521887A (en) W-shaped diffused stripe GaAs/AlGaAs laser
CA1282874C (en) Semiconductor devices employing high resistivity in p-based epitaxial layer forcurrent confinement
JP2003060309A (ja) 半導体レーザ
CA1125897A (en) Strip buried heterostructure laser
Cheng et al. High speed 1.3 µm InGaAsP Buried Crescent Injection Lasers With Semi-Insulating Current Confinement Layer
Nelson Long-Wavelength Lasers For Optical Communications
Adams Heterostructure injection lasers
Fu et al. High Performance 1.3 pm Buried Crescent Lasers And LEDs For Fiber Optic Links