JPH02164074A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH02164074A
JPH02164074A JP32124888A JP32124888A JPH02164074A JP H02164074 A JPH02164074 A JP H02164074A JP 32124888 A JP32124888 A JP 32124888A JP 32124888 A JP32124888 A JP 32124888A JP H02164074 A JPH02164074 A JP H02164074A
Authority
JP
Japan
Prior art keywords
film
metal
electrode
polysilicon
metal silicide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32124888A
Other languages
Japanese (ja)
Inventor
Akiyoshi Yamamori
山守 秋喜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP32124888A priority Critical patent/JPH02164074A/en
Publication of JPH02164074A publication Critical patent/JPH02164074A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To improve a problem of deterioration in a dielectric breakdown characteristic of an insulating film by interposing a conductive nitriding metal film between a polysilicon film and a metal silicide film. CONSTITUTION:After forming a field oxide film 2 in a desired region on a silicon substrate 1, a gate insulating film 3 is formed. Next, after forming a polysilicon film 4 as an electrode, this polysilicon film 4 is doped, then a nitriding metal film 6 and a metal silicide film 5 are laminated followed by forming an electrode film in a desired region. By providing a nitriding metal film, a high melting point metal, which is a constituent of the metal silicide film 5, is prevented from reaching the gate insulating film 3 from the metal silicide film 5 passing through the polysilicon film 4 so that MOS capacity excellent in breakdown strength can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、MIS型半導体装置に関し、ゲート絶縁膜ま
たはMO8容量の耐圧特性および長期信頼性を向上させ
た半導体装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a MIS type semiconductor device, and more particularly to a semiconductor device in which the withstand voltage characteristics and long-term reliability of a gate insulating film or an MO8 capacitor are improved.

〔従来の技術〕[Conventional technology]

従来、半導体装置のゲート電極材料としては、ポリシリ
コン膜が用いられており、信頼性が高いことから広く使
われている。しかし、層抵抗が20〜30Ω/口と高い
ため、半導体装置の動作速度を速くできない欠点がある
。高速化には、配線抵抗の低抵抗化が不可欠であり、従
来ポリシリコン膜上に層抵抗の低いWSix、TiSi
xなどの金属シリサイド膜を積層した電極、即ちポリサ
イド電極が用いられていた。
Conventionally, polysilicon films have been used as gate electrode materials for semiconductor devices, and are widely used because of their high reliability. However, since the layer resistance is as high as 20 to 30 Ω/hole, there is a drawback that the operating speed of the semiconductor device cannot be increased. In order to increase the speed, it is essential to reduce the wiring resistance, and conventionally, low resistance layers such as WSix and TiSi are used on the polysilicon film.
An electrode in which metal silicide films such as x are laminated, that is, a polycide electrode has been used.

すなわち、第3図は、従来用いられるポリサイド電極を
用いたMO3容量の構造を説明する断面図である。図に
おいて、1はシリコン基板、5は金属シリサイド膜、4
はポリシリコン膜、2はフィールド酸化膜、3はゲート
絶縁膜を示す。
That is, FIG. 3 is a cross-sectional view illustrating the structure of an MO3 capacitor using a conventionally used polycide electrode. In the figure, 1 is a silicon substrate, 5 is a metal silicide film, and 4 is a silicon substrate.
2 is a polysilicon film, 2 is a field oxide film, and 3 is a gate insulating film.

ゲート絶縁膜3の上にポリシリコン膜4と金属シリサイ
ド膜5が順次積層され、シリコン基板1との間にMO8
容量が構成される。
A polysilicon film 4 and a metal silicide film 5 are sequentially laminated on the gate insulating film 3, and an MO8 film is formed between the gate insulating film 3 and the silicon substrate 1.
capacity is configured.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した、従来のポリサイド電極は、ポリシリコン膜上
に直接、金属シリサイド膜を形成した構造の電極膜を用
いていた金属シリサイド膜を電極に用いた場合、ポリシ
リコン電極に比べMIS構造に用いるゲート絶縁膜が耐
圧不良を起したり、絶縁破壊に対する長期信頼性を低下
させる欠点があった。例えば、通常のポリシリコン電極
の場合、耐圧のヒストグラムは第4図であるのに対して
、ポリサイド電極の場合には、第5図に示すように耐圧
特性が劣化する。この原因は、金属シリサイド膜の構成
元素であるWやTiなどの高融点金属が、下地ポリシリ
コン膜中を通り抜はゲート絶縁膜表面にまで到達し、絶
縁膜に損傷を与えるためと推定される。
The conventional polycide electrode mentioned above uses an electrode film with a structure in which a metal silicide film is directly formed on a polysilicon film.When a metal silicide film is used as an electrode, the gate used in an MIS structure is smaller than a polysilicon electrode. This has the disadvantage that the insulating film may have a breakdown voltage problem and its long-term reliability against dielectric breakdown may be reduced. For example, in the case of a normal polysilicon electrode, the withstand voltage histogram is as shown in FIG. 4, whereas in the case of a polycide electrode, the withstand voltage characteristics deteriorate as shown in FIG. The reason for this is presumed to be that high-melting point metals such as W and Ti, which are constituent elements of the metal silicide film, pass through the underlying polysilicon film and reach the surface of the gate insulating film, damaging the insulating film. Ru.

〔課題を解決するための手段〕[Means to solve the problem]

従来、半導体装置の電極としてポリサイド電極を用いる
と、金属シリサイド膜の構成元素である高融点金属がポ
リシリコン膜を通り抜はゲート絶縁膜表面に到達し絶縁
膜と反応し、MIS型半導体装置の信頼性を低下させる
という問題に対し、本発明では、金属シリサイド膜から
その構成元素である高融点金属がポリシリコン膜を通り
抜けてゲート絶縁膜に到達するのを防ぐため、金属シリ
サイド膜とポリシリコン膜の間に導電性のある窒化金属
膜を設けることにより歩留りが高く、かつ長期信頼性に
も優れたMIS型半導体装置を実現するものである。
Conventionally, when a polycide electrode is used as an electrode in a semiconductor device, a high-melting point metal, which is a constituent element of the metal silicide film, passes through the polysilicon film and reaches the surface of the gate insulating film, where it reacts with the insulating film, causing problems in MIS semiconductor devices. To address the problem of reduced reliability, in the present invention, in order to prevent the high melting point metal from the metal silicide film, which is a constituent element thereof, from passing through the polysilicon film and reaching the gate insulating film, the metal silicide film and the polysilicon film are By providing a conductive metal nitride film between the films, an MIS type semiconductor device with high yield and excellent long-term reliability is realized.

〔実施例〕〔Example〕

つぎに本発明を実施例により説明する。 Next, the present invention will be explained by examples.

第1図は本発明の一実施例のMO8容量部を示す断面図
である。第1図において、これを第3図の従来例と比べ
ると、本実施例では、ポリシリコン膜4と金属シリサイ
ド膜5との間に、第3図ではなかった、窒化金属膜6を
有することに違いがある。図のようなMO8容量を形成
する手順としては、まず、周知の選択酸化法を用いてシ
リコン基板1上の所望の領域にフィールド酸化膜2を形
成した後に、ゲート絶縁膜3を形成する。次に、電極と
してポリシリコン膜4を形成した後に、このポリシリコ
ン膜に不純物拡散法によりドーピングを行い、次に窒化
金属膜6、金属シリサイド膜5を積層した後に、フォト
エツチング技術を用いて所望の領域に電極膜を形成し、
MO8容量が完成する。窒化金属膜6としては、TiN
などを数100人程変形膜厚とすること、金属シリサイ
ド膜5としてWSix、TiSix、MoSixなどの
シリサイドを1000〜4000人程度設けるのが変形
、このような構造の電極を用いることにより、第4図に
示すようなポリシリコン電極の場合の耐圧のヒストグラ
ムと同様な優れた耐圧のMO3容量を実現することがで
きた。
FIG. 1 is a sectional view showing an MO8 capacitor section according to an embodiment of the present invention. Comparing this with the conventional example shown in FIG. 3 in FIG. 1, this example has a metal nitride film 6 between the polysilicon film 4 and the metal silicide film 5, which is not shown in FIG. There is a difference. The procedure for forming the MO8 capacitor as shown in the figure is to first form a field oxide film 2 in a desired region on a silicon substrate 1 using a well-known selective oxidation method, and then to form a gate insulating film 3. Next, after forming a polysilicon film 4 as an electrode, this polysilicon film is doped by an impurity diffusion method, and then a metal nitride film 6 and a metal silicide film 5 are laminated, and then a desired pattern is formed using a photoetching technique. Form an electrode film in the area of
MO8 capacity is completed. As the metal nitride film 6, TiN
By using an electrode with such a structure, it is possible to make the thickness of the metal silicide film 5 about 1000 to 4000. It was possible to realize an MO3 capacitor with an excellent breakdown voltage similar to the histogram of breakdown voltage in the case of a polysilicon electrode as shown in the figure.

第2図は、本発明の他の実施例の断面図であり、MOS
トランジスタのゲート電極に適用した場合である。第2
図において、9は絶縁膜、7はアルミ電極、8はソース
、ドレイン領域である。このMOS)ランジスタの形成
をする手順としては、まず選択酸化法によりシリコン基
板1の所望の領域にフィールド酸化膜2を形成した後、
ゲート絶縁膜3を形成する。次に、ポリシリコン膜4を
形成した後に、ポリシリコン膜4に不純物をドーピング
し、次に、スパッタ法等で、窒化金属膜6を数100人
程変形成した後、金属シリサイド膜5を形成し、しかる
後にバターニングを行ない電極を形成する。次にイオン
注入などの手法を用いて、ソース、ドレインとなる不純
物領域8を形成した後に、絶縁膜9を形成し、次にソー
ス、ドレイン領域の表面の一部の絶縁膜を除去した後に
、アルミ配線7を形成し、MOS)ランジスタが完成す
る。このような構造の電極を用いることにより耐圧不良
が極めて少く長期信頼性の優れたMOSトランジスタを
実現することができる。
FIG. 2 is a cross-sectional view of another embodiment of the present invention, in which a MOS
This is a case where it is applied to a gate electrode of a transistor. Second
In the figure, 9 is an insulating film, 7 is an aluminum electrode, and 8 is a source and drain region. The procedure for forming this MOS transistor is to first form a field oxide film 2 in a desired region of a silicon substrate 1 by selective oxidation, and then
A gate insulating film 3 is formed. Next, after forming a polysilicon film 4, impurities are doped into the polysilicon film 4, and then a metal nitride film 6 is formed by several hundred layers by sputtering or the like, and then a metal silicide film 5 is formed. After that, patterning is performed to form electrodes. Next, using a technique such as ion implantation, an impurity region 8 that will become the source and drain is formed, and then an insulating film 9 is formed, and then a part of the insulating film on the surface of the source and drain region is removed. Aluminum wiring 7 is formed, and a MOS transistor is completed. By using an electrode having such a structure, it is possible to realize a MOS transistor with extremely few breakdown voltage defects and excellent long-term reliability.

C発明の効果〕 以上説明したように本発明は、MIS型半導体装置にポ
リサイド電極を用いる場合、ポリシリコン膜と金属シリ
サイド膜との間に、導電性のある窒化金属膜をはさむこ
とにより、金属シリサイドの構成元素である高融点金属
がポリシリコン中を通り抜けてゲート絶縁膜表面に、到
達することによる絶縁膜の絶縁破壊特性の劣化の問題を
改善することができる。
C. Effects of the Invention] As explained above, when using a polycide electrode in an MIS type semiconductor device, the present invention provides a metal It is possible to improve the problem of deterioration of the dielectric breakdown characteristics of the insulating film caused by the high melting point metal that is a constituent element of silicide passing through polysilicon and reaching the surface of the gate insulating film.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例を説明する断面図、第2図
は本発明の他の実施例を説明する断面図、第3図は従来
のポリサイド電極を有する半導体装置の断面図である。 第4図、第5図は、MIS容量における耐圧のヒストグ
ラムであり、横軸は、絶縁破壊の電界で、縦軸は、絶縁
破壊の頻度を示す。 l・・・・・・シリコン基板、2・・・・・・フィール
ド酸化膜、3・・・・・・ゲート絶縁膜、4・・・・・
・ポリシリコン膜、5・・・・・・金属シリサイド膜、
6・・・・・・窒化金属膜、7・・・・・・アルミ電極
、8・・・・・・ソース、ドレイン、9・・・・・・絶
縁膜。 代理人 弁理士  内 原   晋 革 蓑 連
FIG. 1 is a cross-sectional view for explaining one embodiment of the present invention, FIG. 2 is a cross-sectional view for explaining another embodiment of the present invention, and FIG. 3 is a cross-sectional view of a semiconductor device having a conventional polycide electrode. be. 4 and 5 are histograms of breakdown voltages in MIS capacitors, where the horizontal axis shows the electric field of dielectric breakdown, and the vertical axis shows the frequency of dielectric breakdown. l...Silicon substrate, 2...Field oxide film, 3...Gate insulating film, 4...
・Polysilicon film, 5...Metal silicide film,
6...Metal nitride film, 7...Aluminum electrode, 8...Source, drain, 9...Insulating film. Agent Patent Attorney Shin Uchihara

Claims (1)

【特許請求の範囲】[Claims] ポリシリコン膜と窒化金属膜と金属シリサイド膜とを順
次積層した構造の電極膜を有することを特徴とする半導
体装置。
A semiconductor device characterized by having an electrode film having a structure in which a polysilicon film, a metal nitride film, and a metal silicide film are sequentially laminated.
JP32124888A 1988-12-19 1988-12-19 Semiconductor device Pending JPH02164074A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32124888A JPH02164074A (en) 1988-12-19 1988-12-19 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32124888A JPH02164074A (en) 1988-12-19 1988-12-19 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH02164074A true JPH02164074A (en) 1990-06-25

Family

ID=18130464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32124888A Pending JPH02164074A (en) 1988-12-19 1988-12-19 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH02164074A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6248069A (en) * 1985-08-28 1987-03-02 Oki Electric Ind Co Ltd Semiconductor device
JPS62111466A (en) * 1985-11-09 1987-05-22 Toshiba Corp Semiconductor device
JPS63224255A (en) * 1987-03-13 1988-09-19 Toshiba Corp Semiconductor device and manufacture thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6248069A (en) * 1985-08-28 1987-03-02 Oki Electric Ind Co Ltd Semiconductor device
JPS62111466A (en) * 1985-11-09 1987-05-22 Toshiba Corp Semiconductor device
JPS63224255A (en) * 1987-03-13 1988-09-19 Toshiba Corp Semiconductor device and manufacture thereof

Similar Documents

Publication Publication Date Title
US5406447A (en) Capacitor used in an integrated circuit and comprising opposing electrodes having barrier metal films in contact with a dielectric film
KR100257079B1 (en) Semiconductor device and method for fabricating the same
JP2829023B2 (en) Capacitors for semiconductor integrated circuits
JPS60153158A (en) Manufacture of semiconductor device
JPH06314775A (en) Dynamic ram cell and preparation thereof
JP2934325B2 (en) Semiconductor device and manufacturing method thereof
US6215142B1 (en) Analog semiconductor device and method of fabricating the same
JPH0194664A (en) Field-effect transistor
JPH0936307A (en) Mos capacitor
JPS5856263B2 (en) Manufacturing method of semiconductor device
US5612236A (en) Method of forming a silicon semiconductor device using doping during deposition of polysilicon
JPH06125057A (en) Semiconductor memory containing ferroelectric film
JPH0438862A (en) Semiconductor integrated circuit device
JPH02164074A (en) Semiconductor device
JPH0763060B2 (en) Method for manufacturing semiconductor device
US5943583A (en) Method for manufacturing semiconductor device
JPH05291499A (en) Semiconductor device and fabrication thereof
JPH0645614A (en) Manufacture of read-only semiconductor memory
JP3219856B2 (en) Method for manufacturing semiconductor device
KR19990080754A (en) Nonvolatile Semiconductor Device and Manufacturing Method Thereof
JPH02228071A (en) Semiconductor device including p-channel type field effect transistor
JPH0228377A (en) Manufacture of semiconductor device, field-effect transistor and capacitor
JPH02288361A (en) Semiconductor device
JP3149584B2 (en) Semiconductor device and method of manufacturing the same
JPS6358959A (en) Field-effect type semiconductor device with capacitor