JPH0194664A - Field-effect transistor - Google Patents

Field-effect transistor

Info

Publication number
JPH0194664A
JPH0194664A JP25207087A JP25207087A JPH0194664A JP H0194664 A JPH0194664 A JP H0194664A JP 25207087 A JP25207087 A JP 25207087A JP 25207087 A JP25207087 A JP 25207087A JP H0194664 A JPH0194664 A JP H0194664A
Authority
JP
Japan
Prior art keywords
melting point
high melting
layer
point metal
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25207087A
Other languages
Japanese (ja)
Inventor
Yasuro Ikeda
康郎 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP25207087A priority Critical patent/JPH0194664A/en
Publication of JPH0194664A publication Critical patent/JPH0194664A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To improve reliability of semiconductor devices while preventing the deterioration of dielectric strength induced by reaction between a gate insulating film or interlayer insulating film and a high melting point metal layer of a gate electrode and controlling the threshold voltage of a transistor, by coating the surroundings of the high melting point metal layer consisting of the gate electrode with a high melting point metal nitride layer, or like means. CONSTITUTION:A gate electrode comprises a high melting point metal nitride layer 4 arranged on a gate insulating film 8, a high melting point metal layer 5 or high melting point metal silicide layer arranged on such high melting point nitride layer 4, and a high melting point metal nitride layer 6 or high melting point metal oxide layer coating the surface of such high melting point metal layer 5 or high melting point silicide layer. For example, a field-effect transistor is constructed of the gate insulating film 3; the gate electrode in which a tungsten nitride layer 5 and a tungsten layer 5 are stacked upon such insulating film 3 as barrier layers and a tungsten nitride layer 6 is formed by coating the surface of such tungsten layer 5; a source region 7 and a drain region 8 which are of opposite conductivity type diffusion layer formed within an element forming region matching such gate electrode and a field insulating film 2.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電界効果トランジスタに関し、特にMO3型構
造の電界効果トランジスタに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a field effect transistor, and in particular to a field effect transistor of MO3 type structure.

〔従来の技術〕[Conventional technology]

従来のMO3型電界効果トランジスタは、半導体基板上
に設けたゲート絶縁膜上に設けた高融点金属又は不純物
をドープした多結晶シリコン層と高融点金属層を積層し
て設けたゲート電極と、前記ゲート電極に隣接する前記
半導体基板中に設けたソース及びドレイン領域とを備え
て構成される。
A conventional MO3 type field effect transistor includes a gate electrode formed by laminating a polycrystalline silicon layer doped with a high melting point metal or an impurity and a high melting point metal layer provided on a gate insulating film provided on a semiconductor substrate, and The semiconductor device includes source and drain regions provided in the semiconductor substrate adjacent to the gate electrode.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来のMO3型電界効果トランジスタは、ゲー
ト電極の高融点金属が、ゲート絶縁膜の酸化シリコン膜
やゲート電極の一部を構成する多結晶シリコン膜或いは
ゲート電極を被覆して設けられた眉間絶縁膜め酸化シリ
コン膜と直接接触する構造となっているので、高融点金
属と酸化シリコン膜の反応によるゲート絶縁膜の絶縁耐
圧の劣化やリーク電流の増加やトランジスタのしきい電
圧の変動が生じたり、高融点金属と多結晶シリコンの硅
化物形成によるゲート電極の抵抗率の増加や硅化物形成
反応時に発生する応力によるゲート絶縁膜の薊れやクラ
ックのため、デバイスの信頼性の低下が生じたり、高融
点金属と酸化シリコン膜の反応による眉間絶縁膜の絶縁
耐圧の劣化やリーク電流の増加が生じるという問題点が
ある。
The above-mentioned conventional MO3 type field effect transistor has a high melting point metal of the gate electrode, which is formed by covering the silicon oxide film of the gate insulating film, the polycrystalline silicon film forming part of the gate electrode, or the gate electrode. Since the structure is such that the insulating film is in direct contact with the silicon oxide film, the reaction between the high melting point metal and the silicon oxide film may cause deterioration of the dielectric strength of the gate insulating film, increase in leakage current, and fluctuations in the threshold voltage of the transistor. In addition, the reliability of the device decreases due to an increase in the resistivity of the gate electrode due to the formation of silicide between the high-melting point metal and polycrystalline silicon, and divots and cracks in the gate insulating film due to the stress generated during the silicide formation reaction. Another problem is that the dielectric strength of the glabellar insulating film deteriorates and leakage current increases due to the reaction between the high melting point metal and the silicon oxide film.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の電界効果トランジスタは、半導体基板上に設け
たゲート絶縁膜上に設けたゲート電極を有する電界効果
トランジスタにおいて、前記ゲート電極が前記ゲート絶
縁股上に設けた高融点金属窒化物層と、前記高融点金属
窒化物層の上に設けた高融点金属層又は高融点金属硅化
物層と、前記高融点金属層又は高融点金属硅化物層の表
面を被覆した高融点金属窒化物層又は高融点金属酸化物
層を有するように構成される。
The field effect transistor of the present invention is a field effect transistor having a gate electrode provided on a gate insulating film provided on a semiconductor substrate, wherein the gate electrode includes a high melting point metal nitride layer provided on the gate insulating crotch; A high melting point metal layer or high melting point metal silicide layer provided on the high melting point metal nitride layer, and a high melting point metal nitride layer or high melting point coating the surface of the high melting point metal layer or high melting point metal silicide layer. The metal oxide layer is configured to have a metal oxide layer.

〔実施例〕〔Example〕

次に、本発明の実施例について図面を参照して説明する
Next, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明の第1の実施例を説明するための半導体
チップの断面図である。
FIG. 1 is a sectional view of a semiconductor chip for explaining a first embodiment of the present invention.

第1図に示すように、−導電型のシリコン基板1の主表
面に設けて素子形成領域を区画するフィールド絶縁膜2
と、前記素子形成領域の表面に設けたゲート絶縁膜3と
、ゲート絶縁膜3の上に障壁層として厚さ50nmの窒
化ダンゲステン層4及び厚さ0.4μmのタングステン
層5を積層して設は且つタングステン層5の表面を被覆
して設けた厚さ50’nmの窒化タングステン層6から
なるゲート電極と、該ゲート電極及びフィールド絶縁膜
2に整合して前記素子形成領域内に設けた逆導電型拡散
層のソース領域7及びドレイン領域8により電界効果ト
ランジスタが構成される。
As shown in FIG. 1, a field insulating film 2 is provided on the main surface of a -conductivity type silicon substrate 1 to partition an element formation region.
A gate insulating film 3 is provided on the surface of the element formation region, and a 50 nm thick dungesten nitride layer 4 and a 0.4 μm thick tungsten layer 5 are laminated as barrier layers on the gate insulating film 3. and a gate electrode made of a tungsten nitride layer 6 with a thickness of 50 nm provided covering the surface of the tungsten layer 5; The source region 7 and drain region 8 of the conductive type diffusion layer constitute a field effect transistor.

第2図は本発明の第2の実施例を説明するための半導体
チップの断面図である。
FIG. 2 is a sectional view of a semiconductor chip for explaining a second embodiment of the present invention.

第2図に示すように、−導電型のシリコン基板1の主表
面に設けて素子形成領域を区画するフィールド絶縁膜2
と、前記素子形成領域の表面に設けたゲート絶縁膜3と
、ゲート絶縁膜3の上に厚さ50〜150nmの多結晶
シリコン層9と障壁層としての厚さ50nmの窒化タン
グステン層4と厚さ0.2μmの硅化チタン層1oとを
順次積層して設は且つ硅化チタン層10の表面を被覆し
て設けた窒化チタン層11からなるゲート電極と、該ゲ
ート電極及びフィールド絶縁膜2に整合して前記−素子
形成領域内に設けた逆導電型拡散層のソース領域7及び
ドレイン領域8により電界効果トランジスタが構成され
る。この場合、トランジスタのしきい電圧を従来の多結
晶シリコンゲートのMO3型電界効果トランジスタと同
じ値に設定できるという効果がある。
As shown in FIG. 2, a field insulating film 2 is provided on the main surface of a -conductivity type silicon substrate 1 to partition an element formation region.
, a gate insulating film 3 provided on the surface of the element formation region, a polycrystalline silicon layer 9 with a thickness of 50 to 150 nm on the gate insulating film 3, a tungsten nitride layer 4 with a thickness of 50 nm as a barrier layer, and a A gate electrode consisting of a titanium nitride layer 11 formed by sequentially laminating a titanium silicide layer 1o with a thickness of 0.2 μm and covering the surface of the titanium silicide layer 10 is aligned with the gate electrode and the field insulating film 2. A field effect transistor is constituted by the source region 7 and drain region 8 of the reverse conductivity type diffusion layer provided in the above-mentioned element forming region. In this case, there is an advantage that the threshold voltage of the transistor can be set to the same value as that of a conventional polycrystalline silicon gate MO3 field effect transistor.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、ゲート電極を構成する高
融点金属層の周囲を高融点金属窒化物層で被覆すること
により、ゲート絶縁膜又は眉間絶縁膜とゲート電極の高
融点金属層が反応して生ずる絶縁耐圧の劣化や、トラン
ジスタのしきい電圧変動を抑制し、半導体装置の信頼性
を向上させるという効果を有する。
As explained above, in the present invention, by coating the periphery of the high melting point metal layer constituting the gate electrode with a high melting point metal nitride layer, the gate insulating film or the glabella insulating film and the high melting point metal layer of the gate electrode react. This has the effect of suppressing the deterioration of the dielectric strength voltage caused by this and the fluctuation of the threshold voltage of the transistor, thereby improving the reliability of the semiconductor device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明の第1及び第2の実施例を説
明するための半導体チップの断面図である。 1・・・シリコン基板、2・・・フィールド絶縁膜、3
・・・ゲート絶縁膜、4・・・窒化タングステン層、5
・・・タングステン層、6・・・窒化タングステン層、
7・・・ソース領域、8・・ニドレイン領域、9・・・
多結晶シリコン層、10・・・硅化チタン層、11・・
・窒化チタン層。
1 and 2 are cross-sectional views of a semiconductor chip for explaining first and second embodiments of the present invention. 1... Silicon substrate, 2... Field insulating film, 3
...gate insulating film, 4...tungsten nitride layer, 5
... Tungsten layer, 6... Tungsten nitride layer,
7... Source region, 8... Nidrain region, 9...
Polycrystalline silicon layer, 10...Titanium silicide layer, 11...
・Titanium nitride layer.

Claims (1)

【特許請求の範囲】[Claims]  半導体基板上に設けたゲート絶縁膜上に設けたゲート
電極を有する電界効果トランジスタにおいて、前記ゲー
ト電極が前記ゲート絶縁膜上に設けた高融点金属窒化物
層と、前記高融点金属窒化物層の上に設けた高融点金属
層又は高融点金属硅化物層と、前記高融点金属層又は高
融点金属硅化物層の表面を被覆した高融点金属窒化物層
又は高融点金属酸化物層を有することを特徴とする電界
効果トランジスタ。
In a field effect transistor having a gate electrode provided on a gate insulating film provided on a semiconductor substrate, the gate electrode includes a high melting point metal nitride layer provided on the gate insulating film, and a high melting point metal nitride layer provided on the gate insulating film. A high melting point metal layer or a high melting point metal silicide layer provided above, and a high melting point metal nitride layer or a high melting point metal oxide layer covering the surface of the high melting point metal layer or high melting point metal silicide layer. A field effect transistor featuring:
JP25207087A 1987-10-05 1987-10-05 Field-effect transistor Pending JPH0194664A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25207087A JPH0194664A (en) 1987-10-05 1987-10-05 Field-effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25207087A JPH0194664A (en) 1987-10-05 1987-10-05 Field-effect transistor

Publications (1)

Publication Number Publication Date
JPH0194664A true JPH0194664A (en) 1989-04-13

Family

ID=17232131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25207087A Pending JPH0194664A (en) 1987-10-05 1987-10-05 Field-effect transistor

Country Status (1)

Country Link
JP (1) JPH0194664A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01265542A (en) * 1988-04-15 1989-10-23 Toshiba Corp Semiconductor device
EP0849806A2 (en) * 1996-12-19 1998-06-24 Texas Instruments Incorporated Improvements in or relating to semiconductor devices having tungsten nitride sidewalls
KR100232196B1 (en) * 1996-04-04 1999-12-01 김영환 Method of manufacturing semiconductor device
KR100252543B1 (en) * 1995-12-29 2000-04-15 김영환 Method for manufacturing semiconductor device
JP2000332259A (en) * 1999-03-17 2000-11-30 Semiconductor Energy Lab Co Ltd Wiring material, semiconductor device with wiring using the same and manufacture of the semiconductor device
JP2001007110A (en) * 1999-06-22 2001-01-12 Semiconductor Energy Lab Co Ltd Wiring material, semiconductor device with wiring using the same and manufacture thereof
US6265297B1 (en) 1999-09-01 2001-07-24 Micron Technology, Inc. Ammonia passivation of metal gate electrodes to inhibit oxidation of metal
US6432803B1 (en) 1998-12-14 2002-08-13 Matsushita Electric Industrial Co., Inc. Semiconductor device and method of fabricating the same
US6458714B1 (en) 2000-11-22 2002-10-01 Micron Technology, Inc. Method of selective oxidation in semiconductor manufacture
EP1786037A2 (en) * 1999-04-12 2007-05-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for fabricating the same
US7816191B2 (en) 1999-06-29 2010-10-19 Semiconductor Energy Laboratory Co., Ltd. Wiring material, semiconductor device provided with a wiring using the wiring material and method of manufacturing thereof
US7906429B2 (en) 1999-06-22 2011-03-15 Semiconductor Energy Laboratory Co., Ltd. Wiring material, semiconductor device provided with a wiring using the wiring material and method of manufacturing thereof
JP2012124508A (en) * 2012-01-26 2012-06-28 Semiconductor Energy Lab Co Ltd Semiconductor device, liquid crystal module, electronic equipment, and wiring
JP2012160737A (en) * 2012-03-08 2012-08-23 Toshiba Corp Method of manufacturing semiconductor device
US9045831B2 (en) 1999-07-22 2015-06-02 Semiconductor Energy Laboratory Co., Ltd. Wiring and manufacturing method thereof, semiconductor device comprising said wiring, and dry etching method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60147163A (en) * 1984-01-11 1985-08-03 Seiko Epson Corp Semiconductor device
JPS6213075A (en) * 1985-07-10 1987-01-21 Nec Corp Semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60147163A (en) * 1984-01-11 1985-08-03 Seiko Epson Corp Semiconductor device
JPS6213075A (en) * 1985-07-10 1987-01-21 Nec Corp Semiconductor device

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01265542A (en) * 1988-04-15 1989-10-23 Toshiba Corp Semiconductor device
KR100252543B1 (en) * 1995-12-29 2000-04-15 김영환 Method for manufacturing semiconductor device
KR100232196B1 (en) * 1996-04-04 1999-12-01 김영환 Method of manufacturing semiconductor device
EP0849806A2 (en) * 1996-12-19 1998-06-24 Texas Instruments Incorporated Improvements in or relating to semiconductor devices having tungsten nitride sidewalls
EP0849806A3 (en) * 1996-12-19 1999-08-25 Texas Instruments Incorporated Improvements in or relating to semiconductor devices having tungsten nitride sidewalls
US6432803B1 (en) 1998-12-14 2002-08-13 Matsushita Electric Industrial Co., Inc. Semiconductor device and method of fabricating the same
JP2000332259A (en) * 1999-03-17 2000-11-30 Semiconductor Energy Lab Co Ltd Wiring material, semiconductor device with wiring using the same and manufacture of the semiconductor device
EP1786037A2 (en) * 1999-04-12 2007-05-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for fabricating the same
EP1786037A3 (en) * 1999-04-12 2012-05-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for fabricating the same
US8866143B2 (en) 1999-04-12 2014-10-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for fabricating the same
JP2001007110A (en) * 1999-06-22 2001-01-12 Semiconductor Energy Lab Co Ltd Wiring material, semiconductor device with wiring using the same and manufacture thereof
US9660159B2 (en) 1999-06-22 2017-05-23 Semiconductor Energy Laboratory Co., Ltd. Wiring material, semiconductor device provided with a wiring using the wiring material and method of manufacturing thereof
US8357611B2 (en) 1999-06-22 2013-01-22 Semiconductor Energy Laboratory Co., Ltd. Wiring material, semiconductor device provided with a wiring using the wiring material and method of manufacturing thereof
US7906429B2 (en) 1999-06-22 2011-03-15 Semiconductor Energy Laboratory Co., Ltd. Wiring material, semiconductor device provided with a wiring using the wiring material and method of manufacturing thereof
US7816191B2 (en) 1999-06-29 2010-10-19 Semiconductor Energy Laboratory Co., Ltd. Wiring material, semiconductor device provided with a wiring using the wiring material and method of manufacturing thereof
US9045831B2 (en) 1999-07-22 2015-06-02 Semiconductor Energy Laboratory Co., Ltd. Wiring and manufacturing method thereof, semiconductor device comprising said wiring, and dry etching method
US6617624B2 (en) 1999-09-01 2003-09-09 Micron Technology, Inc. Metal gate electrode stack with a passivating metal nitride layer
US6265297B1 (en) 1999-09-01 2001-07-24 Micron Technology, Inc. Ammonia passivation of metal gate electrodes to inhibit oxidation of metal
US6458714B1 (en) 2000-11-22 2002-10-01 Micron Technology, Inc. Method of selective oxidation in semiconductor manufacture
JP2012124508A (en) * 2012-01-26 2012-06-28 Semiconductor Energy Lab Co Ltd Semiconductor device, liquid crystal module, electronic equipment, and wiring
JP2012160737A (en) * 2012-03-08 2012-08-23 Toshiba Corp Method of manufacturing semiconductor device

Similar Documents

Publication Publication Date Title
US4792841A (en) Semiconductor devices and a process for producing the same
US5168340A (en) Semiconductor integrated circuit device with guardring regions to prevent the formation of an MOS diode
US6333548B1 (en) Semiconductor device with etch stopping film
JPH0194664A (en) Field-effect transistor
KR950024359A (en) Semiconductor device
JPH01140757A (en) Semiconductor input-protective device
JP2805765B2 (en) Semiconductor memory device
US6420745B2 (en) Nonvolatile ferroelectric memory and its manufacturing method
JPS5856263B2 (en) Manufacturing method of semiconductor device
JP3013628B2 (en) Semiconductor device
JPS62219558A (en) Semiconductor integrated circuit device
JPH02178965A (en) Insulated isolation type field-effect semiconductor device
KR910007513B1 (en) Wiring connection of semiconductor device
JPS6358959A (en) Field-effect type semiconductor device with capacitor
JP3242478B2 (en) High voltage semiconductor device
JPH0324056B2 (en)
JPH04170066A (en) Manufacture of semiconductor integrated circuit device
JP2500924B2 (en) Semiconductor device
JP2853793B2 (en) Manufacturing method of memory element
JPH0618251B2 (en) Semiconductor device
JPS60144951A (en) Semiconductor device
JPH03108752A (en) Semiconductor device
JPS62104170A (en) Mos type semiconductor device
JPS58142579A (en) Mos transistor
JPS63174371A (en) Field-effect transistor