JPH03108752A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH03108752A
JPH03108752A JP1247232A JP24723289A JPH03108752A JP H03108752 A JPH03108752 A JP H03108752A JP 1247232 A JP1247232 A JP 1247232A JP 24723289 A JP24723289 A JP 24723289A JP H03108752 A JPH03108752 A JP H03108752A
Authority
JP
Japan
Prior art keywords
oxide
film
dielectric
capacitor
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1247232A
Other languages
Japanese (ja)
Inventor
Hidekazu Okabayashi
岡林 秀和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP1247232A priority Critical patent/JPH03108752A/en
Publication of JPH03108752A publication Critical patent/JPH03108752A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Memories (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To obtain a semiconductor device comprising a capacitor which causes decreases neither in capacitance nor in insulation accompanying the oxidation of electrodes by constituting the dielectric of a capacitor contained in a semiconductor device from an oxide thin film, and at least one of electrodes contacting the dielectric from an oxide conductor. CONSTITUTION:The dielectric of a capacitor contained in a semiconductor device is constituted from an oxide thin film, and at least one of electrodes contacting the dielectric 15 from an oxide conductor. For example, a capacitor is built up of an n-type diffused region 12 provided on a p-type silicon substrate 11, a non-oxide electrode 14 such as oc poly crystalline silicon contacting this region 12 through an opening piercing an insulating film 13 on the substrate 11, and an oxide conductor layer 16 formed on the dielectric film 15. As this film 15 is suitable are an oxide silicon film formed by thermal oxidation or vapor deposition of the polycrystalline silicon constituting the non-oxide electrode 14 or a double-layered film of a silicon nitride film and an oxide thin film thereon.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はキャパシタを含む半導体装置に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a semiconductor device including a capacitor.

〔従来の技術〕[Conventional technology]

MO3型ダイナミックランダムアクセスメモリ(D−R
AM)等において基板と一体化して形成される酸化物系
薄膜を誘電体とするキャパシタにおいては、電極として
多結晶シリコンや金属からなる非酸化物導体が用いられ
、あるいはこれか検討されている。
MO3 type dynamic random access memory (D-R
In capacitors whose dielectric is an oxide-based thin film formed integrally with a substrate in AM), etc., non-oxide conductors made of polycrystalline silicon or metal are used as electrodes, or are being considered.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、非酸化物導体電極の場合には、酸化物系
誘電体薄膜形成時に酸化性雰囲気により電極表面の酸化
が生じたり、酸化物系誘電体膜と非酸化物導体電極の界
面反応により界面部の電極の酸化が生じたりする。この
ように電極の酸化が生じると、電極の酸化物が誘電体の
場合には、これによる寄生キャパシタが直列に連がり、
本来のキャパシタの容量を低下させ、また、電極の酸化
物が導体の場合においても、界面反応が生じて電極が酸
化された場合には、酸化物系誘電体膜の絶縁耐圧の劣化
やリーク電流の増加を引起す等の問題があった。
However, in the case of non-oxide conductor electrodes, oxidation of the electrode surface occurs due to the oxidizing atmosphere during the formation of the oxide-based dielectric thin film, or an interfacial reaction occurs between the oxide-based dielectric film and the non-oxide conductor electrode. Oxidation of the electrodes may occur. When electrode oxidation occurs in this way, if the electrode oxide is a dielectric, a parasitic capacitor due to this is connected in series,
In addition, even if the oxide of the electrode is a conductor, if an interfacial reaction occurs and the electrode is oxidized, the dielectric strength of the oxide dielectric film may deteriorate and leak current may decrease. There were problems such as an increase in

本発明の目的は、電極の酸化に伴なう容量の低下や絶縁
性の低下を引起さないキャパシタを具備した半導体装置
を提供することにある。
An object of the present invention is to provide a semiconductor device equipped with a capacitor that does not cause a decrease in capacity or insulation due to oxidation of an electrode.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するため、本発明の半導体装置は、半導
体装置に含まれるキャパシタの誘電体を酸化物系薄膜に
て構成し、該誘電体に接する少くとも一方の電極を酸化
物導体にて構成したものである。
In order to achieve the above object, the semiconductor device of the present invention includes a capacitor included in the semiconductor device, in which a dielectric is made of an oxide-based thin film, and at least one electrode in contact with the dielectric is made of an oxide conductor. This is what I did.

〔作用〕[Effect]

本発明による半導体装置に含まれるキャパシタにおいて
は、酸化物系薄膜からなる誘電体と、酸化物導体からな
る電極とを有しているので、酸化物系誘電体薄膜形成時
やその後の工程における反応による電極の酸化を防止又
は半減させることかできる。
Since the capacitor included in the semiconductor device according to the present invention has a dielectric made of an oxide-based thin film and an electrode made of an oxide conductor, reactions occur during formation of the oxide-based dielectric thin film and subsequent steps. It is possible to prevent or halve the oxidation of the electrode due to

〔実施例〕〔Example〕

次に本発明の実施例について図面を参照して説明する。 Next, embodiments of the present invention will be described with reference to the drawings.

第1図〜第4図は本発明によるキャパシタの種々の実施
例の構造を示す断面模式図である。
1 to 4 are schematic cross-sectional views showing the structures of various embodiments of the capacitor according to the present invention.

第1図に示した本発明の実施例1に係るキャパシタは、
p型シリコン基板11に設けられたn型拡散領域12と
、基板11上の絶縁層13に設けられた開孔13aを通
じてn型拡散領域12に接触する多結晶シリコン等の非
酸化物電極14と、非酸化物電極14上に形成された酸
化物系誘電体膜15と、誘電体膜15上に形成された酸
化物導電体層16により形成されている。この構造にお
いては、酸化物系誘電体膜15として、非酸化物電極1
4を構成する多結晶シリコンの熱酸化や気相堆積法等に
より形成される酸化シリコン膜、若しくは窒化シリコン
膜とその上に形成した酸化物薄膜(酸化シリコン、酸化
タンタル、チタン・ジルコニウム酸鉛)との2層膜を誘
電体に用いるのか適しているが、下部電極としての非酸
化物電極14の表面が多少酸化されることも許容できれ
ば、誘電体膜15として酸化タンタル膜やチタン・ジル
コニウム酸鉛等の高誘電率の堆積膜を用いることができ
る。
The capacitor according to Example 1 of the present invention shown in FIG.
An n-type diffusion region 12 provided in a p-type silicon substrate 11, and a non-oxide electrode 14 made of polycrystalline silicon or the like that contacts the n-type diffusion region 12 through an opening 13a provided in an insulating layer 13 on the substrate 11. , an oxide-based dielectric film 15 formed on the non-oxide electrode 14, and an oxide conductor layer 16 formed on the dielectric film 15. In this structure, the non-oxide electrode 1 is used as the oxide-based dielectric film 15.
A silicon oxide film or a silicon nitride film formed by thermal oxidation of polycrystalline silicon constituting 4 or a vapor phase deposition method, or a silicon nitride film and an oxide thin film (silicon oxide, tantalum oxide, titanium/lead zirconate) formed thereon. It is suitable to use a two-layer film as the dielectric material, but if it is acceptable that the surface of the non-oxide electrode 14 as the lower electrode is slightly oxidized, a tantalum oxide film or a titanium/zirconate film as the dielectric film 15 is suitable. A deposited film with a high dielectric constant such as lead can be used.

第2図に示した実施例2におけるキャパシタの構造にお
いては、下部電極は多結晶シリコンからなる非酸化物電
極24と、該を極24上に形成したタングステンシリサ
イド等のシリサイドや窒化チタン等の窒化物や炭化物よ
りなるバリヤ層17と、酸化物電極18とからなる3層
構造のものが用いられる。この場合には誘電体層15と
して、酸化シリコン、酸化タンタル、あるいはチタン酸
鉛等の酸化物薄膜を用いるのが適しているが窒化シリコ
ンと酸化物薄膜との2層構造を用いることも有効である
In the structure of the capacitor in Example 2 shown in FIG. 2, the lower electrode includes a non-oxide electrode 24 made of polycrystalline silicon, and a silicide such as tungsten silicide or nitride such as titanium nitride formed on the electrode 24. A three-layer structure consisting of a barrier layer 17 made of metal or carbide and an oxide electrode 18 is used. In this case, it is suitable to use a thin film of oxide such as silicon oxide, tantalum oxide, or lead titanate as the dielectric layer 15, but it is also effective to use a two-layer structure of silicon nitride and a thin oxide film. be.

第3図に示した実施例3におけるキャパシタの構造にお
いては、下部電極は、実施例2における3層′!f4造
の代りに、タングステンシリサイド等のシリサイドある
いは窒化チタン等の金属窒化物や炭化物よりなるバリヤ
層17と、酸化物電極18とからなる2層構造のものが
用いられている。
In the structure of the capacitor in Example 3 shown in FIG. 3, the lower electrode has three layers'! Instead of the F4 structure, a two-layer structure consisting of a barrier layer 17 made of a silicide such as tungsten silicide, or a metal nitride or carbide such as titanium nitride, and an oxide electrode 18 is used.

第4図に示した実施例4におけるキャパシタの構造にお
いては、下部電極は、実施例2における3層構造の代り
に、酸化物電@15からなる単層構造のものか用いられ
ている。
In the structure of the capacitor in Example 4 shown in FIG. 4, the lower electrode has a single layer structure made of oxide dielectric @15 instead of the three layer structure in Example 2.

上記実施例1〜4においては、いずれも上部電極として
単層MIJ造の酸化物電f216を用いなが、該酸化物
電極16上にシリサイド層、窒化物層、炭化物層、金属
層、あるいは多結晶シリコン層等を積層して用いること
は電極・配線の低抵抗化やさらに他の金属配線とのコン
タクトを形成する場合のコンタクト抵抗の低減に有効で
ある。
In Examples 1 to 4 above, a single-layer MIJ oxide electrode f216 is used as the upper electrode, but a silicide layer, nitride layer, carbide layer, metal layer, or multilayer layer is formed on the oxide electrode 16. The use of laminated crystalline silicon layers and the like is effective in lowering the resistance of electrodes and interconnections, as well as in reducing the contact resistance when forming contacts with other metal interconnections.

次に、上記実施例で示した構造のキャパシタをI)−R
AMに応用した実施例について第5図を用いて説明する
。スタック型キャパシタセル構造形成の標準的な方法を
用いて第5図(a)に示したようにキャパシタ形成直前
の構造を形成する。ここに、51はp型シリコン基板、
52はn型拡散領域(不純物ドープ層)、53はゲート
電極・配線、54は絶縁膜、55はコンタクト孔である
。次に、第5図(b)に示したように、多結晶シリコン
よりなる非酸化物電極56、タングステンシリサイドよ
りなるバリヤ層57、酸化ルテニウムよりなる酸化物下
部電極58を順次積層形成する。
Next, the capacitor having the structure shown in the above example is I)-R
An example applied to AM will be explained using FIG. 5. Using a standard method for forming a stacked capacitor cell structure, a structure immediately before capacitor formation is formed as shown in FIG. 5(a). Here, 51 is a p-type silicon substrate,
52 is an n-type diffusion region (impurity doped layer), 53 is a gate electrode/wiring, 54 is an insulating film, and 55 is a contact hole. Next, as shown in FIG. 5(b), a non-oxide electrode 56 made of polycrystalline silicon, a barrier layer 57 made of tungsten silicide, and an oxide lower electrode 58 made of ruthenium oxide are sequentially laminated.

これらの層の堆積には、標準的なCVD法やスパッタ法
を用い、また、パターン化には標準的なRIE法を用い
ることかできる。第5図(C)に示したようにCVD法
により酸化タンタル膜よりなる誘電体膜59を形成する
。次に第5図(d)に示したようにスパッタ法により酸
化ルテニウムよりなる上部型f!60を形成する。その
後は、標準的なスタック型キャパシタセル構造の形成方
法に従って配線形成等を行うことで、本発明の一実施例
としてのD−RAMを製作できる。
These layers can be deposited using standard CVD or sputtering techniques, and patterned using standard RIE techniques. As shown in FIG. 5(C), a dielectric film 59 made of tantalum oxide film is formed by the CVD method. Next, as shown in FIG. 5(d), the upper mold f! is made of ruthenium oxide by sputtering. form 60. Thereafter, a D-RAM as an embodiment of the present invention can be manufactured by forming wiring and the like according to a standard method for forming a stacked capacitor cell structure.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、酸化物系誘電体を
有するキャパシタの電極の酸化に伴なう容量の低下や絶
縁性の低下を回避したキャパシタを有する半導体装置を
実現することができるという効果が得られる。
As explained above, according to the present invention, it is possible to realize a semiconductor device having a capacitor that avoids a decrease in capacitance and a decrease in insulation properties caused by oxidation of the electrode of a capacitor having an oxide-based dielectric. Effects can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第4図は本発明の実施例におけるキャパシタを
示す断面図、第5図(a)〜(d)は本発明の実施例2
に係るキャパシタを具備するダイナミックランダムアク
セスメモリのキャパシタ部の製造方法を工程順に示す断
面図である。 11、51・・・p型シリコン基板 12、52・・・n型拡散領域 13、54・・・絶縁膜    14・・・非酸化物電
極15、59・・・酸化物系誘電体 16、18.19.58.60・・・酸化物電極17、
57・・・バリヤ層   53・・・ゲート電極・配線
55・・・コンタクト孔 第2図
1 to 4 are cross-sectional views showing capacitors according to embodiments of the present invention, and FIGS. 5(a) to 5(d) are sectional views showing embodiment 2 of the invention
FIG. 3 is a cross-sectional view showing, in order of steps, a method for manufacturing a capacitor section of a dynamic random access memory including a capacitor according to the present invention. 11, 51... P-type silicon substrate 12, 52... N-type diffusion region 13, 54... Insulating film 14... Non-oxide electrode 15, 59... Oxide-based dielectric 16, 18 .19.58.60...Oxide electrode 17,
57...Barrier layer 53...Gate electrode/wiring 55...Contact hole Fig. 2

Claims (1)

【特許請求の範囲】[Claims] (1)半導体装置に含まれるキャパシタの誘電体を酸化
物系薄膜にて構成し、該誘電体に接する少くとも一方の
電極を酸化物導体にて構成したことを特徴とする半導体
装置。
(1) A semiconductor device characterized in that a dielectric of a capacitor included in the semiconductor device is made of an oxide-based thin film, and at least one electrode in contact with the dielectric is made of an oxide conductor.
JP1247232A 1989-09-22 1989-09-22 Semiconductor device Pending JPH03108752A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1247232A JPH03108752A (en) 1989-09-22 1989-09-22 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1247232A JPH03108752A (en) 1989-09-22 1989-09-22 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH03108752A true JPH03108752A (en) 1991-05-08

Family

ID=17160419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1247232A Pending JPH03108752A (en) 1989-09-22 1989-09-22 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH03108752A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09116115A (en) * 1995-06-26 1997-05-02 Hyundai Electron Ind Co Ltd Manufacture of capacitor for semiconductor element
JPH10173154A (en) * 1996-12-04 1998-06-26 Samsung Electron Co Ltd Capacitor of semiconductor storage device and its manufacturing method
JP2008311676A (en) * 1995-02-13 2008-12-25 Texas Instr Inc <Ti> Method for forming semiconductor integrated circuit structure

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53100455A (en) * 1977-02-15 1978-09-01 Matsushita Electric Ind Co Ltd Solid electrolytic capacitor
JPH01175294A (en) * 1987-12-28 1989-07-11 Matsushita Electric Ind Co Ltd Circuit board
JPH03214717A (en) * 1989-07-17 1991-09-19 Natl Semiconductor Corp <Ns> Electrode for electric ceramic oxide apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53100455A (en) * 1977-02-15 1978-09-01 Matsushita Electric Ind Co Ltd Solid electrolytic capacitor
JPH01175294A (en) * 1987-12-28 1989-07-11 Matsushita Electric Ind Co Ltd Circuit board
JPH03214717A (en) * 1989-07-17 1991-09-19 Natl Semiconductor Corp <Ns> Electrode for electric ceramic oxide apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008311676A (en) * 1995-02-13 2008-12-25 Texas Instr Inc <Ti> Method for forming semiconductor integrated circuit structure
JPH09116115A (en) * 1995-06-26 1997-05-02 Hyundai Electron Ind Co Ltd Manufacture of capacitor for semiconductor element
JPH10173154A (en) * 1996-12-04 1998-06-26 Samsung Electron Co Ltd Capacitor of semiconductor storage device and its manufacturing method

Similar Documents

Publication Publication Date Title
US6146939A (en) Metal-polycrystalline silicon-N-well multiple layered capacitor
KR19990023766A (en) Semiconductor device and manufacturing method thereof
US5828129A (en) Semiconductor memory device including a capacitor having a top portion which is a diffusion barrier
JP3197782B2 (en) Semiconductor integrated circuit capacitor and its electrode structure
US5742472A (en) Stacked capacitors for integrated circuit devices and related methods
JP2000077622A (en) Semiconductor memory device and its manufacture
KR100290895B1 (en) Capacitor structure of semiconductor device and manufacturing method thereof
KR100224729B1 (en) Ferroelectric capacitor for semiconductor device and fabricating method thereof
US7531862B2 (en) Semiconductor device having ferroelectric substance capacitor
JP2003068993A (en) Semiconductor device and its manufacturing method
US6107105A (en) Amorphous tin films for an integrated capacitor dielectric/bottom plate using high dielectric constant material
JP3141231B2 (en) Semiconductor device capacitor and method of manufacturing the same
JP3676381B2 (en) Manufacturing method of semiconductor memory device without barrier
JPH03108752A (en) Semiconductor device
KR960032739A (en) Capacitor of Semiconductor Device and Manufacturing Method Thereof
JPH0513706A (en) Semiconductor device
JPH0414862A (en) Semiconductor device
JPH01273347A (en) Semiconductor device
US6465300B2 (en) Method for forming a lower electrode for use in a semiconductor device
KR100464938B1 (en) A method for forming capacitor using polysilicon plug structure in semiconductor device
KR100597598B1 (en) A method for forming high-dielectric capacitor in semiconductor device
KR100268941B1 (en) method for fabricating capacitor of semiconductor device
JP2001267529A (en) Semiconductor device and method of manufacturing the same
JPH0951074A (en) Semiconductor device with capacitor
JP3752449B2 (en) Semiconductor device