KR100597598B1 - A method for forming high-dielectric capacitor in semiconductor device - Google Patents

A method for forming high-dielectric capacitor in semiconductor device Download PDF

Info

Publication number
KR100597598B1
KR100597598B1 KR1019990062181A KR19990062181A KR100597598B1 KR 100597598 B1 KR100597598 B1 KR 100597598B1 KR 1019990062181 A KR1019990062181 A KR 1019990062181A KR 19990062181 A KR19990062181 A KR 19990062181A KR 100597598 B1 KR100597598 B1 KR 100597598B1
Authority
KR
South Korea
Prior art keywords
forming
high dielectric
layer
capacitor
tin
Prior art date
Application number
KR1019990062181A
Other languages
Korean (ko)
Other versions
KR20010064062A (en
Inventor
김정태
김헌도
Original Assignee
주식회사 하이닉스반도체
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 하이닉스반도체 filed Critical 주식회사 하이닉스반도체
Priority to KR1019990062181A priority Critical patent/KR100597598B1/en
Publication of KR20010064062A publication Critical patent/KR20010064062A/en
Application granted granted Critical
Publication of KR100597598B1 publication Critical patent/KR100597598B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/60Electrodes
    • H01L28/75Electrodes comprising two or more layers, e.g. comprising a barrier layer and a metal layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28556Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by chemical means, e.g. CVD, LPCVD, PECVD, laser CVD
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/02Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
    • H10B12/03Making the capacitor or connections thereto
    • H10B12/033Making the capacitor or connections thereto the capacitor extending over the transistor
    • H10B12/0335Making a connection between the transistor and the capacitor, e.g. plug
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B53/00Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Semiconductor Memories (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

본 발명은 열적 안정성 및 내산화성을 가진 확산방지막의 채용으로 보다 안정적인 캐패시터 특성 및 신뢰성을 확보할 수 있는 고유전체 캐패시터 형성방법을 제공하는데 그 목적이 있다. 상기 목적을 달성하기 위한 본 발명은, 반도체 소자의 고유전체 커패시터 형성방법에 있어서, 소정의 하부층 상에 층간절연막을 형성하는 단계와, 상기 층간절연막을 선택식각하여 캐패시터의 하부전극용 콘택홀을 형성하는 단계와, 상기 콘택홀이 매립되도록 TiN 콘택 플러그를 형성하는 단계와, 상기 콘택 플러그의 상부 표면에 Si를 함유한 기체를 소오스 기체로 사용한 플라즈마처리를 하여 상기 TiN을 Ti-Si-N층으로 변환시키는 단계와, 상기 Ti-Si-N층에 전기적으로 접속되는 하부전극과 고유전체 산화막 및 상부전극을 차례로 형성하는 단계를 포함하여 이루어진다.It is an object of the present invention to provide a method for forming a high dielectric capacitor capable of securing more stable capacitor characteristics and reliability by employing a diffusion barrier having thermal stability and oxidation resistance. In order to achieve the above object, the present invention provides a method of forming a high dielectric capacitor of a semiconductor device, the method comprising: forming an interlayer insulating film on a predetermined lower layer, and selectively etching the interlayer insulating film to form a contact hole for a lower electrode of a capacitor Forming a TiN contact plug so that the contact hole is filled, and performing a plasma treatment using a Si-containing gas as a source gas on the upper surface of the contact plug to form the TiN as a Ti-Si-N layer. And a step of sequentially forming a lower electrode, a high dielectric oxide film, and an upper electrode electrically connected to the Ti-Si-N layer.

TiN 플러그, Ti-Si-N층, 하부전극, 고유전체 산화막, 상부전극TiN plug, Ti-Si-N layer, lower electrode, high dielectric oxide film, upper electrode

Description

반도체 소자의 고유전체 캐패시터 형성방법{A method for forming high-dielectric capacitor in semiconductor device} A method for forming high-dielectric capacitor in semiconductor device             

도1a 내지 도1c는 종래기술에 따른 확산방지막을 적용한 고유전체 캐패시터 형성방법을 도시한 도면.1A to 1C illustrate a method of forming a high dielectric capacitor using a diffusion barrier according to the prior art.

도2a 내지 도2c는 본 발명의 일실시예에 따른 고유전체 캐패시터 형성방법을 도시한 도면.2A to 2C illustrate a method of forming a high dielectric capacitor according to an embodiment of the present invention.

*도면의 주요부분에 대한 부호의 간단한 설명* Brief description of symbols for the main parts of the drawings

20 : 하부층 21 : 층간절연막20: lower layer 21: interlayer insulating film

22 : TiN 플러그 23 : Ti-Si-N층22: TiN plug 23: Ti-Si-N layer

24 : 하부전극 25 : 고유전체 산화막24: lower electrode 25: high dielectric oxide film

26 : 상부전극26: upper electrode

본 발명은 반도체 소자 제조방법에 관한 것으로, 특히 확산방지막을 적용한고유전체 캐패시터 제조방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a semiconductor device, and more particularly, to a method of manufacturing a high dielectric capacitor using a diffusion barrier.

반도체 소자의 고집적화에 따라 캐패시터의 레이아웃 면적을 증가시키지 않으면서 그의 동작 특성 확보에 충분한 정전용량을 제공하기 위한 노력이 계속하여 진행되고 있다. 이에, 하부전극을 3차원 구조화하여 전극표면을 증가시키거나, 유전체 두께를 감소시키는 방법을 사용하여 왔다. 그러나, 전극면적을 증가시키는 방법은 반도체 소자의 고집적화에 따라 그 적용 한계에 직면하게 되었으며, 유전체 두께를 줄이는 방법의 경우에는 누설(Leakage)문제를 유발하여 역시 한계에 직면해 있다.With high integration of semiconductor devices, efforts have been made to provide a capacitance sufficient to secure operating characteristics thereof without increasing the layout area of the capacitor. Accordingly, a method of increasing the surface of the electrode or reducing the thickness of the dielectric by three-dimensional structure of the lower electrode has been used. However, the method of increasing the electrode area has faced its application limit due to the high integration of semiconductor devices, and the method of reducing the thickness of the dielectric also faces the limitation by causing leakage problems.

이에 따라, 향후 차세대 반도체 메모리 장치의 캐패시터의 유전막으로서 고유전체 박막을 사용하는 고유전체 캐패시터에 대한 많은 연구 및 개발이 진행되고 있다.Accordingly, many researches and developments are being conducted on high-k dielectric capacitors using high-k dielectric thin films as dielectric layers of capacitors in next-generation semiconductor memory devices.

고유전체 캐패시터의 하부전극 재료로서는 통상적으로 백금(Pt), 루테늄(Ru), 이리듐(Ir)등이 사용되고 있으며, 하부전극과 기판간의 불순물 상호 확산을 방지하기 위해서 확산 방지막을 사용하고 있다. 하부전극 확산 방지막으로는 티타늄(Ti) 또는 질화티타늄막(TiN막)이 주로 사용되고 있다. Platinum (Pt), ruthenium (Ru), iridium (Ir) and the like are commonly used as the lower electrode materials of the high dielectric capacitor, and a diffusion barrier film is used to prevent diffusion of impurities between the lower electrode and the substrate. As the lower electrode diffusion preventing film, a titanium (Ti) film or a titanium nitride film (TiN film) is mainly used.

도1a 내지 도1c는 종래기술에 따른 확산방지막을 적용한 고유전체 캐패시터 형성방법을 도시한 도면으로써, 이하 이를 참조하여 살펴보기로 한다.1A to 1C illustrate a method of forming a high dielectric capacitor using a diffusion barrier according to the prior art, which will be described with reference to the following.

먼저, 도1a에 도시된 바와 같이 소정의 공정을 마친 하부층(10) 상부에 층간절연막(11)을 형성하고, 상기 층간절연막(11)을 선택식각하여 캐패시터 하부전극과 의 콘택을 위한 콘택홀을 형성한다. 계속하여, 전체구조 상부에 폴리실리콘을 증착하여 콘택홀을 매립한 후 에치백을 수행하여 하부전극용 콘택 플러그(12)를 형성한다. 이때, 상기 콘택 플러그(12)의 상부가 상기 층간절연막(11)의 상부보다 낮게 형성되도록 한다. 즉, 콘택 플러그(12)가 콘택홀 내에 완전히 매립되지 않도록 한다.First, as shown in FIG. 1A, an interlayer insulating film 11 is formed on the lower layer 10 that has been subjected to a predetermined process, and the interlayer insulating film 11 is selectively etched to form a contact hole for contact with the capacitor lower electrode. Form. Subsequently, polysilicon is deposited on the entire structure to bury the contact holes and then etch back to form a contact plug 12 for the lower electrode. In this case, an upper portion of the contact plug 12 may be formed to be lower than an upper portion of the interlayer insulating layer 11. That is, the contact plug 12 is not completely embedded in the contact hole.

다음으로, 도1b에 도시된 바와 같이 전체 구조물의 상부에 확산방지막인 질화티타늄(TiN)막(13)을 증착한 후 에치백 공정 또는 화학적 기계적 연마(Chemical Mechenical Polishing, CMP)공정을 실시하여 질화티타늄막(13)이 콘택홀 상단에만 매립되도록 한다.Next, as illustrated in FIG. 1B, a nitride nitride (TiN) film 13, which is a diffusion barrier layer, is deposited on the entire structure, followed by an etch back process or a chemical mechanical polishing (CMP) process. The titanium film 13 is buried only at the upper end of the contact hole.

다음으로, 도1c에 도시된 바와 같이 전체 구조 상부에 백금(Pt), 루테늄(Ru), 이리듐(Ir)등의 하부전극 재료를 증착하고, 이를 패터닝하여 하부전극(14)을 형성하고, 전체 구조물의 상부에 차례로 고유전체 산화막(15) 및 상부전극(16)을 증착하여 확산방지막을 적용한 고유전체 캐패시터 형성 공정을 완료한다.Next, as shown in FIG. 1C, a lower electrode material such as platinum (Pt), ruthenium (Ru), iridium (Ir), and the like is deposited on the entire structure, and patterned to form the lower electrode 14, and then the whole The high dielectric oxide film 15 and the upper electrode 16 are sequentially deposited on the structure to complete the process of forming the high dielectric capacitor to which the diffusion barrier is applied.

상기와 같은 방법을 사용함에 있어서, 상기 질화티타늄막(13)을 하부전극(14) 하단부 전면에 형성하지 않고 콘택홀 영역에만 형성하는 이유는 질화티타늄막(14)이 내산화성이 떨어지기 때문에 가능한한 상기 고유전체 산화막(15)과의 접촉을 피하기 위함이다.In the above method, the titanium nitride film 13 is formed only in the contact hole region instead of being formed on the lower surface of the lower electrode 14, because the titanium nitride film 14 is inferior in oxidation resistance. This is to avoid contact with the high dielectric oxide film 15.

그러나, 이와 같이 상기 질화티타늄막(13)이 상기 고유전체 산화막(15)과 직접적인 접촉이 되지 않더라도, 캐패시터를 완성한 후 후속 열 공정시에 상기 고유 전체 산화막(15)을 통해 침투한 산소기에 의해서 상기 질화티타늄막(13)의 일부가 산화되는 현상이 발생하여 누설전류가 증가하는 등의 캐패시터의 특성 및 신뢰성이 현저히 떨어지는 문제점이 발생하고 있다.However, even if the titanium nitride film 13 is not in direct contact with the high dielectric oxide film 15, the oxygen nitride penetrates through the intrinsic full oxide film 15 during the subsequent thermal process after completing the capacitor. Part of the titanium nitride film 13 is oxidized, which causes a problem that the characteristics and reliability of the capacitor, such as an increase in leakage current, are significantly reduced.

본 발명은 상술한 바와 같은 문제점을 해결하기 위하여 안출된 것으로써, 열적 안정성 및 내산화성을 가진 확산방지막의 채용으로 보다 안정적인 캐패시터 특성 및 신뢰성을 확보할 수 있는 고유전체 캐패시터 형성방법을 제공하는데 그 목적이 있다.
The present invention has been made to solve the problems described above, and to provide a method of forming a high dielectric capacitor capable of securing more stable capacitor characteristics and reliability by the adoption of a diffusion barrier film having thermal stability and oxidation resistance. There is this.

상기 목적을 달성하기 위한 본 발명은, 반도체 소자의 고유전체 커패시터 형성방법에 있어서, 소정의 하부층 상에 층간절연막을 형성하는 단계와, 상기 층간절연막을 선택식각하여 캐패시터의 하부전극용 콘택홀을 형성하는 단계와, 상기 콘택홀이 매립되도록 TiN 콘택 플러그를 형성하는 단계와, 상기 콘택 플러그의 상부 표면에 Si를 함유한 기체를 소오스 기체로 사용한 플라즈마처리를 하여 상기 TiN을 Ti-Si-N층으로 변환시키는 단계와, 상기 Ti-Si-N층에 전기적으로 접속되는 하부전극과 고유전체 산화막 및 상부전극을 차례로 형성하는 단계를 포함하여 이루어진다.In order to achieve the above object, the present invention provides a method of forming a high dielectric capacitor of a semiconductor device, the method comprising: forming an interlayer insulating film on a predetermined lower layer, and selectively etching the interlayer insulating film to form a contact hole for a lower electrode of a capacitor Forming a TiN contact plug so that the contact hole is filled, and performing a plasma treatment using a Si-containing gas as a source gas on the upper surface of the contact plug to form the TiN as a Ti-Si-N layer. And a step of sequentially forming a lower electrode, a high dielectric oxide film, and an upper electrode electrically connected to the Ti-Si-N layer.

이하, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명의 기술적 사상을 용이하게 실시할 수 있을 정도로 상세히 설명하기 위하여, 본 발명 의 가장 바람직한 실시예를 첨부된 도면을 참조하여 설명하기로 한다.DETAILED DESCRIPTION Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the technical idea of the present invention. do.

도2a 내지 도2c는 본 발명의 일실시예에 따른 고유전체 캐패시터 형성방법을 도시한 것이다.2A to 2C illustrate a method of forming a high dielectric capacitor according to an embodiment of the present invention.

본 발명의 일실시예에 따른 고유전체 캐태시터 형성 공정은 먼저, 도2a에 도시된 바와 같이 소정의 공정이 완료된 하부층(20) 상부에 층간절연막(21)을 형성하고, 이를 선택식각하여 캐패시터의 하부전극 콘택을 위한 콘택홀을 형성한다. 계속하여, 전체 구조 상부에 질화티타늄(TiN)을 증착하여 콘택홀을 매립한 후 에치백 또는 화학적 기계적 연마(CMP) 공정을 수행하여 TiN 플러그(22)를 형성한다. 이때, TiN 플러그(22) 형성을 위한 질화티타늄(TiN)막의 증착은 매립특성을 고려하여 화학 기상 증착(Chemical Vapor Deposition, CVD)법으로 증착을 하되, 증착용 전구물질로는 유기금속 소오스 또는 무기금속 소오스를 사용한다.In the process of forming a high-k dielectric capacitor according to an embodiment of the present invention, first, as shown in FIG. 2A, an interlayer insulating film 21 is formed on the lower layer 20 on which a predetermined process is completed, and then selectively etched. A contact hole for the bottom electrode contact is formed. Subsequently, titanium nitride (TiN) is deposited on the entire structure to fill the contact hole, and then an etch back or chemical mechanical polishing (CMP) process is performed to form the TiN plug 22. At this time, the deposition of the titanium nitride (TiN) film to form the TiN plug 22 is deposited by a chemical vapor deposition (CVD) method in consideration of the buried characteristics, an organic metal source or inorganic Use a metal source.

다음으로, 도2b에 도시된 바와 같이 SiH4가스를 소오스 기체로 사용한 플라즈마 처리를 수행하여 TiN 플러그(22)의 상부 표면 일부를 Ti-Si-N층(23)으로 개질시켜 확산 방지막의 역할을 수행할 수 있도록 한다. 이때, 플라즈마 처리를 위한 소오스 기체로는 상기 SiH4가스 이외에 Si2H6와 같이 Si가 함유된 다른 가스를 사용할 수도 있다.Next, as shown in FIG. 2B, a plasma treatment using SiH 4 gas as the source gas is performed to modify a portion of the upper surface of the TiN plug 22 into the Ti-Si-N layer 23 to serve as a diffusion barrier. Make it work. In this case, as a source gas for plasma treatment, other gases containing Si, such as Si 2 H 6 , may be used in addition to the SiH 4 gas.

이와 같이, 상기 TiN 플러그(22)의 상부를 플라즈마 처리를 하게 되면, TiN/Ti-Si-N의 이중구조를 이룰 수 있게 된다.As such, when the upper portion of the TiN plug 22 is subjected to plasma treatment, a dual structure of TiN / Ti-Si-N can be achieved.

다음으로, 도2c에 도시된 바와 같이 전체 구조 상부에 백금(Pt), 루테늄(Ru), 이리듐(Ir)등의 하부전극 재료를 증착한 후 이를 패터닝 하여 하부전극(24)을 형성하고, 전체 구조물의 상부에 연속하여 고유전체 산화막(25) 및 상부전극(26)을 증착하여 고유전체 캐패시터형성 공정을 완료한다.Next, as shown in FIG. 2C, a lower electrode material such as platinum (Pt), ruthenium (Ru), iridium (Ir), and the like is deposited on the entire structure, and then patterned to form the lower electrode 24, and then the entire structure. The high-k dielectric layer 25 and the upper electrode 26 are successively deposited on top of the structure to complete the high-k capacitor formation process.

이와 같이, Ti-Si-N층(23)은 내산화성이 우수하여 후속 열공정시 산소기가 침투하여도 쉽게 산화되지 않기 때문에 누설전류 증가와 같은 캐패시터의 특성저하를 방지할 수 있게 된다.As described above, since the Ti-Si-N layer 23 is excellent in oxidation resistance and is not easily oxidized even when oxygen groups penetrate during subsequent thermal processes, it is possible to prevent deterioration of the characteristics of the capacitor such as an increase in leakage current.

본 발명의 기술 사상은 상기 바람직한 실시예에 따라 구체적으로 기술되었으나, 상기한 실시예는 그 설명을 위한 것이며 그 제한을 위한 것이 아님을 주의하여야 한다. 또한, 본 발명의 기술 분야의 통상의 전문가라면 본 발명의 기술 사상의 범위내에서 다양한 실시예가 가능함을 이해할 수 있을 것이다.Although the technical idea of the present invention has been described in detail according to the above preferred embodiment, it should be noted that the above-described embodiment is for the purpose of description and not of limitation. In addition, those skilled in the art will understand that various embodiments are possible within the scope of the technical idea of the present invention.

예컨대, 상기 일실시예에서는 TiN을 플러그 물질로 사용하여 그 표면부분을 개질하는 경우를 일례로 들어 설명하였으나, TiN이 아닌 다른 플러그 물질로 콘택홀의 일부를 매립하고 그 나머지 부분에 TiN을 매립한 후 그 표면 또는 전부를 Ti-Si-N층으로 개질하는 경우에도 본 발명은 적용된다.For example, in the above embodiment, the surface portion is modified using TiN as a plug material as an example, but a part of the contact hole is buried with a plug material other than TiN, and TiN is embedded in the remaining portion. The present invention also applies when the surface or the whole is modified with a Ti-Si-N layer.

본 발명은 확산방지막의 산화에 따른 누설전류의 증가를 방지하며, 이로 인하여 반도체 소자의 특성 및 신뢰성을 크게 향상시킬 수 있는 효과가 있다.The present invention prevents an increase in leakage current due to oxidation of the diffusion barrier layer, thereby greatly improving the characteristics and reliability of the semiconductor device.

Claims (4)

반도체 소자의 고유전체 커패시터 형성방법에 있어서,In the method of forming a high dielectric capacitor of a semiconductor device, 소정의 하부층 상에 층간절연막을 형성하는 단계;Forming an interlayer insulating film on a predetermined lower layer; 상기 층간절연막을 선택식각하여 캐패시터의 하부전극용 콘택홀을 형성하는 단계;Selectively etching the interlayer insulating layer to form a contact hole for a lower electrode of the capacitor; 상기 콘택홀이 매립되도록 TiN 콘택 플러그를 형성하는 단계;Forming a TiN contact plug to fill the contact hole; 상기 콘택 플러그의 상부 표면에 Si를 함유한 기체를 소오스 기체로 사용한 플라즈마처리를 하여 상기 TiN을 Ti-Si-N층으로 변환시키는 단계; 및Converting the TiN into a Ti—Si—N layer by performing a plasma treatment using a gas containing Si as a source gas on an upper surface of the contact plug; And 상기 Ti-Si-N층에 전기적으로 접속되는 하부전극과 고유전체 산화막 및 상부전극을 차례로 형성하는 단계Sequentially forming a lower electrode, a high dielectric oxide film, and an upper electrode electrically connected to the Ti-Si-N layer. 를 포함하여 이루어지는 반도체 소자의 고유전체 캐패시터 형성방법.A method of forming a high dielectric capacitor of a semiconductor device comprising a. 삭제delete 제1항에 있어서,The method of claim 1, 상기 콘택 플러그를 형성하는 단계는,Forming the contact plug, 증착용 전구물질로 유기금속소오스 또는 무기금속소오스를 사용한 화학기상증착법으로 수행하는 것을 특징으로 하는 반도체 소자의 고유전체 캐패시터 형성방법. A method for forming a high dielectric capacitor of a semiconductor device, characterized in that the chemical vapor deposition method using an organic metal source or an inorganic metal source as a precursor for deposition. 제1항에 있어서,The method of claim 1, 상기 콘택홀을 형성한 후,After forming the contact hole, 상기 콘택홀의 일부가 매립되도록 폴리실리콘을 증착하는 단계를 더 포함하는 반도체 소자의 고유전체 캐패시터 형성방법.And depositing polysilicon so that a portion of the contact hole is buried.
KR1019990062181A 1999-12-24 1999-12-24 A method for forming high-dielectric capacitor in semiconductor device KR100597598B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019990062181A KR100597598B1 (en) 1999-12-24 1999-12-24 A method for forming high-dielectric capacitor in semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990062181A KR100597598B1 (en) 1999-12-24 1999-12-24 A method for forming high-dielectric capacitor in semiconductor device

Publications (2)

Publication Number Publication Date
KR20010064062A KR20010064062A (en) 2001-07-09
KR100597598B1 true KR100597598B1 (en) 2006-07-07

Family

ID=19629735

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990062181A KR100597598B1 (en) 1999-12-24 1999-12-24 A method for forming high-dielectric capacitor in semiconductor device

Country Status (1)

Country Link
KR (1) KR100597598B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100448854B1 (en) * 2001-12-29 2004-09-18 주식회사 하이닉스반도체 Forming method for capacitor of semiconductor device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980060736A (en) * 1996-12-31 1998-10-07 김광호 Capacitor of Semiconductor Device and Manufacturing Method Thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980060736A (en) * 1996-12-31 1998-10-07 김광호 Capacitor of Semiconductor Device and Manufacturing Method Thereof

Also Published As

Publication number Publication date
KR20010064062A (en) 2001-07-09

Similar Documents

Publication Publication Date Title
KR100449949B1 (en) Method for fabricating capacitor in ferroelectric memory device
JPH09139481A (en) Semiconductor device-oriented capacitor forming method utilizing selective tungsten nitride thin film
KR100533971B1 (en) Method of manufacturing capacitor for semiconductor device
US7132710B2 (en) Capacitor, semiconductor device having the same, and method of manufacturing the semiconductor device
KR100319171B1 (en) Manufacturing method for capacitor of semiconductor device
KR100402943B1 (en) High dielectric capacitor and a method of manufacturing the same
KR100597598B1 (en) A method for forming high-dielectric capacitor in semiconductor device
KR100670726B1 (en) A capacitor in semiconductor device and method for forming the same
KR100318453B1 (en) METHOD FOR FORMING CAPACITOR HAVING BOTTOM ELECTRODE FORMED BY Ir/Pt DOUBLE LAYER
KR100464938B1 (en) A method for forming capacitor using polysilicon plug structure in semiconductor device
KR100300046B1 (en) Fabricating method of semiconductor device
US6306666B1 (en) Method for fabricating ferroelectric memory device
KR100503961B1 (en) Method of manufacturing a capacitor
KR100436057B1 (en) Method for fabricating high dielectric capacitor of semiconductor device to guarantee process margin
KR20040082511A (en) Semiconductor memory device and method for manufacturing the same
KR100533991B1 (en) Manufacturing method of high dielectric capacitor of semiconductor device
KR100734640B1 (en) Method of manufacturing a capacitor in semiconductor device
KR100846384B1 (en) Method for fabricating semiconductor device
KR0180786B1 (en) Method for manufacturing semiconductor capacitor
KR100322839B1 (en) Method of fabricating capacitor of semiconductor device
KR100268941B1 (en) method for fabricating capacitor of semiconductor device
KR20010020999A (en) Semiconductor device and method of fabricating the same
KR20010113320A (en) Method of manufacturing a capacitor in a semiconductor device
KR100387262B1 (en) Method of manufacturing a capacitor in a semiconductor device
KR100972553B1 (en) Capacitor in ferroelcetric random access memory and method for fabricating the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20110526

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee