JPH02163701A - Antireflection film of optical parts made of plastic - Google Patents

Antireflection film of optical parts made of plastic

Info

Publication number
JPH02163701A
JPH02163701A JP63319049A JP31904988A JPH02163701A JP H02163701 A JPH02163701 A JP H02163701A JP 63319049 A JP63319049 A JP 63319049A JP 31904988 A JP31904988 A JP 31904988A JP H02163701 A JPH02163701 A JP H02163701A
Authority
JP
Japan
Prior art keywords
layer
film
plastic
plastic optical
antireflection film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63319049A
Other languages
Japanese (ja)
Inventor
Nahoko Shimamura
島村 奈保子
Toshiaki Ogura
敏明 小倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63319049A priority Critical patent/JPH02163701A/en
Publication of JPH02163701A publication Critical patent/JPH02163701A/en
Pending legal-status Critical Current

Links

Landscapes

  • Surface Treatment Of Optical Elements (AREA)

Abstract

PURPOSE:To improve adhesiveness and durability by using silicon dioxide to constitute the 1st and 3rd layers, which are formed by vapor deposition successively from a surface side to an air side on the surface of optical parts made of plastic, and using magnesium fluoride to constitute the 2nd layer. CONSTITUTION:The vapor deposited film of the 3-layered structure including the 1st layer 2 consisting of the silicon dioxide, the 2nd layer 3 consisting of the magnesium fluoride and the 3rd layer 4 consisting of the silicon dioxide are formed on the surface of the optical parts made of plastic from the surface side to the air side. The antireflection film having the excellent adhesiveness to the optical parts made of plastic and durability is formed in such a manner.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、ブロジェクシコンテレビ、ビデオカメラ、ス
チルカメラなどの光学系に用いるプラスチック製光学部
品の反射防止膜に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an antireflection coating for plastic optical components used in optical systems such as projector televisions, video cameras, and still cameras.

従来の技術 従来、レンズなどの光学部品には無機ガラスが多く使用
されてきたが、近年、軽量で加工が容易であり、且つ量
産に適している点等で優れているプラスチックが光学部
品の素材として用いられるようになってきた。しかしな
がら、プラスチックレンズなどのプラスチック製光学部
品は、無機ガラス同様に表面での光の反射が大きいとい
う欠点をもつ上に、表面に傷が入りやすく耐久性が悪い
という欠点があった。このような欠点を解消するために
、プラスチック光学部品の表面に無機ガラスと同様の反
射防止膜を形成し、表面の反射の防止及び、前記プラス
チック製光学部品の表面に何らかの硬化薄膜を形成する
ことによって前記プラスチック製光学部品の表面を硬化
して耐久性を向上させることは、−膜技術として知られ
ている。
Conventional technology Traditionally, inorganic glass has been widely used for optical parts such as lenses, but in recent years, plastic has become the material for optical parts because it is lightweight, easy to process, and suitable for mass production. It has come to be used as. However, plastic optical parts such as plastic lenses have the disadvantage that, like inorganic glass, they reflect a large amount of light on their surfaces, and they also have the disadvantage that their surfaces are easily scratched and have poor durability. In order to eliminate such drawbacks, it is necessary to form an antireflection film similar to inorganic glass on the surface of the plastic optical component to prevent reflection on the surface, and to form some kind of hardened thin film on the surface of the plastic optical component. Hardening the surface of the plastic optical component to improve its durability is known as -film technology.

(例えば「精密プラスチック光学レンズの設計成形技術
とその問題点」トリケンブス責料集Nα87P6−1〜
P6−4) 以下図面を参照しながら従来のプラスチック製光学部品
の反射防止膜について説明する。第2図はプラスチック
製光学部品の表面に形成される反射防止膜と同じ、弗化
マグネシウムからなる単層膜を形成した構造を示す図で
あり、第3図(b)はその分光反射特性を示す図であり
、比較のための第3図(C)は反射防止膜を形成してい
ない場合のプラスチック製光学部品の分光反射特性を示
す図である。第2図において、1はプラスチック製光学
部品、3は弗化マグネシウムよりなる反射防止膜である
。前記反射防止膜3は、通常真空1着法によって形成さ
れるが、最近では反射防止膜とプラスチック製光学部品
表面との密着性や耐久性を向上させるために、プラスチ
ック光学部品を60’C〜80°Cに加熱して真空蒸着
する方法や、RFイオンブレーティング方法を用いて反
射防止膜を形成する方法が行われている。
(For example, "Design and molding technology of precision plastic optical lenses and their problems" Trikembus Report Collection Nα87P6-1~
P6-4) Hereinafter, a conventional antireflection film for plastic optical components will be explained with reference to the drawings. Figure 2 shows a structure in which a single layer film made of magnesium fluoride is formed, which is the same as the antireflection film formed on the surface of plastic optical components, and Figure 3 (b) shows its spectral reflection characteristics. FIG. 3(C) for comparison is a diagram showing the spectral reflection characteristics of the plastic optical component when no antireflection film is formed. In FIG. 2, 1 is a plastic optical component, and 3 is an antireflection film made of magnesium fluoride. The anti-reflection film 3 is usually formed by a vacuum one-layer method, but recently, in order to improve the adhesion and durability between the anti-reflection film and the surface of the plastic optical component, plastic optical components are coated at 60'C or higher. A method of forming an antireflection film using a method of heating to 80° C. and vacuum deposition, and a method of forming an antireflection film using an RF ion blating method has been used.

次に第3図を用いてプラスチック製光学部品の表面に硬
化薄膜を形成した場合の反射防止膜について説明する。
Next, referring to FIG. 3, an explanation will be given of an antireflection film in which a hardened thin film is formed on the surface of a plastic optical component.

5はプラスチック製光学部品1と密着性のよい熱硬化性
のシリコン系硬化薄膜である。この場合、前記硬化薄膜
を形成するには通常、塗布あるいは浸漬によって1〜4
μの硬化膜を形成する。
5 is a thermosetting silicon-based hardened thin film that has good adhesion to the plastic optical component 1. In this case, the cured thin film is usually formed by coating or dipping for 1 to 4 hours.
Form a cured film of μ.

発明が解決しようとする課題 上記の反射防止膜形成法の従来例である真空蒸着方法で
、弗化マグネシウムからなる反射防止膜を形成する例で
は、プラスチックの流動温度、熱変形温度が低く、又、
プラスチック内部からの放出ガスの課題もあるため、無
機ガラス基板に蒸着膜を形成する時に行う。基板加熱(
通常300°C〜400”C)が不可能で、強固な蒸着
膜を得ることができず50〜60以下の低温でプラスチ
ック製光学部品の表面に反射防止膜を形成していたが、
この低温で形成された反射防止膜はプラスチック表面と
の発着性が悪く、耐久性も低いものである。また、プラ
スチック製光学部品を60°C〜80゛Cに加熱したり
、RFビイオンブレーティング法を用いて形成した反射
防止膜は、クラックが生じやすく、また、形成時の条件
を一定にし、且つプラスチック表面の状態を一定に保つ
ことは困難であり、量産にも適すものではない。
Problems to be Solved by the Invention In an example of forming an anti-reflective film made of magnesium fluoride using the vacuum evaporation method, which is a conventional example of the anti-reflective film forming method described above, the flow temperature and heat distortion temperature of the plastic are low, and ,
Since there is also the problem of gases released from inside the plastic, this is done when forming a vapor-deposited film on an inorganic glass substrate. Substrate heating (
However, anti-reflection films were formed on the surfaces of plastic optical components at low temperatures of 50 to 60 degrees Celsius or lower, as it was impossible to obtain a strong vapor deposition film.
The antireflection film formed at this low temperature has poor adhesion to the plastic surface and low durability. In addition, anti-reflection coatings formed by heating plastic optical components to 60°C to 80°C or using RF bio-ion blating are prone to cracking, and it is also important to keep the conditions constant during formation. It is difficult to maintain a constant state of the plastic surface, and it is not suitable for mass production.

次に上記硬化薄膜形成方法による膜厚の制御は、一定に
維持することが困難であるため前記光学部品の面精度を
悪化させてしまう恐れがある。またIII厚を厚くする
必要があるため耐熱試験により硬化膜にクラックが発生
しやすいという課題がある。
Next, since it is difficult to control the film thickness by the above-mentioned method for forming a cured thin film, the surface precision of the optical component may be deteriorated because it is difficult to maintain the film thickness constant. Further, since it is necessary to increase the III thickness, there is a problem that cracks are likely to occur in the cured film during a heat resistance test.

また、反射防止膜3は、前記硬化薄膜5の上に形成する
ため、反射防止膜3自体の耐久性にも前記従来例と同様
な課題が発生する。
Furthermore, since the antireflection film 3 is formed on the cured thin film 5, the durability of the antireflection film 3 itself is subject to the same problems as in the conventional example.

以上のように従来のプラスチック製光学部品の反射防止
膜には、プラスチック表面との密着性が悪く、耐久性に
も劣るという課題を有していた。
As described above, conventional antireflection coatings for plastic optical components have had the problem of poor adhesion to the plastic surface and poor durability.

本発明は上記課題に鑑み、プラスチック光学部品に対し
ての密着性及び耐久性に優れた反射防止膜を提供するも
のである。
In view of the above problems, the present invention provides an antireflection film that has excellent adhesion and durability to plastic optical components.

課題を解決するための手段 本発明は前記課題を解決するために、プラスチック製光
学部品の表面に、表面側から空気側へ、第1層、第2層
、第3層の3層構造の蒸着膜を形成して反射防止膜を構
成する構造であって、第1層、第3層は二酸化ケイソ、
第2層は弗化マグネシウムからなり、前記第1層、第2
層、第3層の屈折率をN、、N、、N3.幾何学的膜厚
をdI、dz、d3とし、設定基準波長をλoとじたと
き、各層の光学的膜厚が設定基準波長に対し、0.1λ
o<NI・d、 <0.15λo、0.2λo〈N!・
dt <0.25λo。
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention provides a method of vapor depositing a three-layer structure of a first layer, a second layer, and a third layer on the surface of a plastic optical component from the surface side to the air side. It has a structure in which an antireflection film is formed by forming a film, and the first and third layers are made of silica dioxide,
The second layer is made of magnesium fluoride, and the first layer and the second layer are made of magnesium fluoride.
The refractive index of the third layer is N, , N, , N3 . When the geometric film thicknesses are dI, dz, and d3, and the set reference wavelength is λo, the optical film thickness of each layer is 0.1λ with respect to the set reference wavelength.
o<NI・d, <0.15λo, 0.2λo<N!・
dt <0.25λo.

0.04λo<N、・d! <0.06λoの範囲にあ
ることを特徴とする反射防止膜を提供するものである。
0.04λo<N,・d! The object of the present invention is to provide an antireflection film characterized in that the antireflection film has an antireflection value in the range of <0.06λo.

作用 本発明は、プラスチック製光学部品の表面に、二酸化ケ
イソ、弗化マグネシウムからなる3層反射防止膜を形成
するものであり、各々の光学的膜厚を前記範囲内に制御
し、その結果、密着性及び耐久性に優れ、かつ、量産に
適したプラスチック製光学部品の反射防止膜を提供する
こととなる。
Function The present invention forms a three-layer anti-reflection film made of silica dioxide and magnesium fluoride on the surface of a plastic optical component, and controls the optical thickness of each film within the above range. This provides an antireflection coating for plastic optical components that has excellent adhesion and durability and is suitable for mass production.

実施例 以下本発明の一実施例について図面を参照しながら説明
する。
EXAMPLE An example of the present invention will be described below with reference to the drawings.

第1図は本発明のプラスチック製光学部品の反射防止膜
の構成を示す図であり、第3図(a)はその分光反射特
性例を示す。第1図において、1はプラスチック製光学
部品、2,4は二酸化ケイプからなる第1層、第3層、
3は弗化マグネシウムからなる第2層であり、本発明に
おける具体的内容は第1表に示す通りである。
FIG. 1 is a diagram showing the structure of the antireflection film of the plastic optical component of the present invention, and FIG. 3(a) shows an example of its spectral reflection characteristics. In FIG. 1, 1 is a plastic optical component, 2 and 4 are first and third layers made of cape dioxide,
3 is a second layer made of magnesium fluoride, and the specific contents of the present invention are as shown in Table 1.

第  1  表 (λo”  400n1m) またそれぞれの層はプラスチンツク製光学部品を60°
C以下に保持した状態のもとで、真空蒸着法により形成
した。
Table 1 (λo” 400n1m) Each layer also has plastic optical components at 60°.
It was formed by a vacuum evaporation method while maintaining the temperature below C.

上記本発明の実施例と従来の反射防止膜との密着性、耐
久性を比較するために行った試験は、(1)粘着テープ
剥離試験(温度40°C1相対湿度85%の高温・高温
雰囲気中に1000時間放置したあと、粘着テープをプ
ラスチック製光学部品表面に密着し、引き剥がす。) 
、(2)耐湿試験(温度40°C1相対湿度95%の高
温・高温雰囲気中に1000時間放置)、(3)耐熱試
験(温度85°Cの高温雰囲気中に1000時間放置)
 、(4)熱衝撃試験(温度−30°C,70”Cの低
温・高温雰囲気中に交互に30分間ずつ放置を約100
時間)であり、比較のための従来の反射防止膜は、前記
従来例の1つであるプラスチック製光学部品の表面に弗
化マグネシウムの反射防止膜を、真空蒸着法で、光学的
膜厚λo/4(λo”” 550nn+)の厚さに形成
したものであり、第2図に示す構造のものである。密着
性・耐久性試験結果は第2表に示す通りである。
The tests conducted to compare the adhesion and durability of the above embodiments of the present invention and conventional antireflection films were as follows: (1) Adhesive tape peel test (temperature 40°C, relative humidity 85% high temperature/high temperature atmosphere) After leaving it inside for 1000 hours, stick the adhesive tape to the surface of the plastic optical component and peel it off.)
, (2) Humidity test (leaved for 1000 hours in a high-temperature atmosphere with a temperature of 40°C and relative humidity of 95%), (3) Heat resistance test (left in a high-temperature atmosphere with a temperature of 85°C for 1000 hours)
, (4) Thermal shock test (approximately 100 minutes left for 30 minutes alternately in low and high temperature atmospheres at temperatures of -30°C and 70"C)
A conventional anti-reflection film for comparison is a magnesium fluoride anti-reflection film on the surface of a plastic optical component, which is one of the conventional examples, by a vacuum evaporation method and has an optical film thickness of λo. /4 (λo"" 550nn+), and has the structure shown in FIG. The results of the adhesion/durability test are shown in Table 2.

以下余白 第2表 第2表から分かるように本発明の反射防止膜は、従来の
反射防止膜より、密着性、耐久性、耐熱性の点で優れて
いる。
As can be seen from Table 2 in Table 2 below, the antireflection film of the present invention is superior to conventional antireflection films in terms of adhesion, durability, and heat resistance.

さらに、従来例は反射防止膜形成時にクラ・ツクの発生
があったが本発明の実施例においては反射防止膜は常時
安定していた。分光反射特性に関しても第3図から分か
るように本発明の実施例は分光特性上も従来例とほとん
ど代わりない特性が得られている。
Further, in the conventional example, cracks and cracks occurred during the formation of the antireflection film, but in the example of the present invention, the antireflection film was always stable. Regarding the spectral reflection characteristics, as can be seen from FIG. 3, the embodiment of the present invention has almost the same spectral characteristics as the conventional example.

発明の効果 以上の説明から明らかなように、本発明のプラスチック
製光学部品の反射防止膜は、二酸化ケイプからなる第1
層、第3層、弗化マグネシウムからなる第2層という構
造をとり前記第1層、第2層、第3層の屈折率をN、、
NZ、N3.幾何学的膜厚をd1、d2、d3とし、設
定基準波長をλoとじたとき、各層の光学的膜厚が設定
基準波長に対し0.1 λo<N、−di <0.15
λo、0.2λo〈N2・dz<0.25λo、 0.
04λo< N l−d 3 <0.06λoの範囲に
制御することによって、プラスチック製光学部品との密
着性を高め、反射防止膜の耐久性の向上と共にクラック
の発生を阻止するので従来例の持つ欠点を解消する効果
を有する。また、本発明のプラスチック製光学部品の反
射防止膜は量産にも適しているため、その実用上の価値
は大なるものがある。
Effects of the Invention As is clear from the above explanation, the antireflection coating of the plastic optical component of the present invention has a first coating made of a carbon dioxide cape.
The refractive index of the first layer, second layer, and third layer is N.
NZ, N3. When the geometric film thicknesses are d1, d2, and d3 and the set reference wavelength is λo, the optical thickness of each layer is 0.1 with respect to the set reference wavelength λo<N, -di <0.15
λo, 0.2λo<N2・dz<0.25λo, 0.
By controlling the range of 04λo<Nld3<0.06λo, the adhesion with the plastic optical parts is improved, the durability of the anti-reflection film is improved, and cracks are prevented from occurring, which improves the properties of the conventional example. It has the effect of eliminating defects. Furthermore, the antireflection film for plastic optical components of the present invention is suitable for mass production, and therefore has great practical value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明のプラスチック製光学部品の反射防止
膜の構成図、第2図は、従来のプラスチック製光学部品
の反射防止膜の構成図、第3図は、分光反射特性を示す
グラフ、第4図は、プラスチック製光学部品の表面に硬
化薄膜を形成し、その上に反射防止膜を形成した従来の
反射防止膜の構成因である。 1・・・・・・プラスチック製光学部品、2.4・・・
・・・二酸化ケイソからなる薄膜、3・・・・・・弗化
マグネシウムからなる薄膜、5・・・・・・熱硬化性シ
リコン系硬化薄膜。 代理人の氏名 弁理士 粟野重孝 はか1名簿 図 1− プラスチック較た字犯品 F!、4−− 二^9化グイ素子らTよる清廉3− %
fじマづオシウLからなる清魔第 2 図
Fig. 1 is a block diagram of an antireflection coating for a plastic optical component of the present invention, Fig. 2 is a block diagram of a conventional antireflection coating for a plastic optical component, and Fig. 3 is a graph showing spectral reflection characteristics. FIG. 4 shows the structure of a conventional antireflection film in which a hardened thin film is formed on the surface of a plastic optical component and an antireflection film is formed thereon. 1...Plastic optical parts, 2.4...
...Thin film made of silica dioxide, 3...Thin film made of magnesium fluoride, 5... Thin film made of thermosetting silicone. Agent's name Patent attorney Shigetaka Awano Haka 1 List Figure 1 - Plastic comparison crime F! , 4-- Integrity by 2^9 Gui element et al. 3-%
Seima 2nd figure consisting of fjimazuosiu L

Claims (1)

【特許請求の範囲】 (1)プラスチック製光学部品の表面に、前記表面側か
ら空気側に順に、第1層、第2層、第3層の3層構造の
蒸着膜を形成する構造であって、前記第1層、第3層は
二酸化ケイソからなり、第2層は弗化マグネシウムから
なることを特徴とする、プラスチック製光学部品の反射
防止膜。 (2)第1層、第2層、第3層の屈折率をN_1、N_
2、N_3、幾何学的膜厚をd_1、d_2、d_3と
し、設定基準波長をλ_oとしたとき、各層の光学的膜
厚N_1・d_1、N_2・d_2、N_3・d_3が
設定基準波長に対し下記の条件の範囲にあることを特徴
とした請求項(1)記載のプラスチック製光学部品の反
射防止膜。 0.10λ_o<N_1・d_1<0.15λ_o 0.20λ_o<N_2・d_2<0.25λ_o 0.04λ_o<N_1・d_3<0.06λ_o
[Scope of Claims] (1) A structure in which a three-layered vapor deposited film of a first layer, a second layer, and a third layer is formed on the surface of a plastic optical component in order from the surface side to the air side. An antireflection film for a plastic optical component, wherein the first layer and the third layer are made of silica dioxide, and the second layer is made of magnesium fluoride. (2) The refractive index of the first layer, second layer, and third layer is N_1, N_
2, N_3, When the geometric film thicknesses are d_1, d_2, d_3 and the set reference wavelength is λ_o, the optical film thicknesses of each layer N_1・d_1, N_2・d_2, N_3・d_3 are as follows with respect to the set reference wavelength. The antireflection coating for plastic optical parts according to claim 1, characterized in that the antireflection coating falls within the range of the following conditions. 0.10λ_o<N_1・d_1<0.15λ_o 0.20λ_o<N_2・d_2<0.25λ_o 0.04λ_o<N_1・d_3<0.06λ_o
JP63319049A 1988-12-16 1988-12-16 Antireflection film of optical parts made of plastic Pending JPH02163701A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63319049A JPH02163701A (en) 1988-12-16 1988-12-16 Antireflection film of optical parts made of plastic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63319049A JPH02163701A (en) 1988-12-16 1988-12-16 Antireflection film of optical parts made of plastic

Publications (1)

Publication Number Publication Date
JPH02163701A true JPH02163701A (en) 1990-06-25

Family

ID=18105936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63319049A Pending JPH02163701A (en) 1988-12-16 1988-12-16 Antireflection film of optical parts made of plastic

Country Status (1)

Country Link
JP (1) JPH02163701A (en)

Similar Documents

Publication Publication Date Title
JPS6064301A (en) Antireflecting film of optical parts and formation thereof
JPS5860701A (en) Reflection preventing film
JPH01273001A (en) Antireflection film of optical parts made of synthetic resin
JPS62186202A (en) Antireflection film for plastic optical parts
JPH02163701A (en) Antireflection film of optical parts made of plastic
JPH07104102A (en) Water repellant reflection preventive film for glass-made optical parts and production thereof
JPS60156001A (en) Reflection preventive film of plastic optical parts
JPH02163702A (en) Antireflection film of optical parts made of plastic
JPH0255302A (en) Antireflection film of plastic optical parts
JPH0553001A (en) Multilayered antireflection film of optical parts made of synthetic resin
JPH03132601A (en) Antireflection film of optical parts made of plastic and production thereof
JP2777937B2 (en) Resin optical element and method of manufacturing the same
JPS6022101A (en) Antireflection film for plastic optical parts
JPH05313001A (en) Reflection preventing film for plastic made optical part
JPH06208002A (en) Antireflection film of plastic optical parts and its formation
JPH04156501A (en) Reflection preventing film for optical part made of synthetic resin
JP3353948B2 (en) Beam splitter
JPS60257401A (en) Plastic optical parts
JPS60151602A (en) Antireflection film for plastic optical parts
JPS63220101A (en) Antireflection film for plastic optical parts
JPS62186203A (en) Antireflection film for plastic optical parts
JPS60129701A (en) Antireflection film of plastic optical component part
JPH08240701A (en) Optical thin film
JPH0132481B2 (en)
JPS6381402A (en) Reflection reducing coating of plastic optical parts