JPH0216193B2 - - Google Patents

Info

Publication number
JPH0216193B2
JPH0216193B2 JP57002249A JP224982A JPH0216193B2 JP H0216193 B2 JPH0216193 B2 JP H0216193B2 JP 57002249 A JP57002249 A JP 57002249A JP 224982 A JP224982 A JP 224982A JP H0216193 B2 JPH0216193 B2 JP H0216193B2
Authority
JP
Japan
Prior art keywords
temperature
skelp
forge
forge welding
tubular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57002249A
Other languages
Japanese (ja)
Other versions
JPS58122189A (en
Inventor
Toyotoshi Fukuda
Yoshio Iwanaga
Toshio Yamamoto
Tomohide Kono
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP224982A priority Critical patent/JPS58122189A/en
Publication of JPS58122189A publication Critical patent/JPS58122189A/en
Publication of JPH0216193B2 publication Critical patent/JPH0216193B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K13/00Welding by high-frequency current heating
    • B23K13/01Welding by high-frequency current heating by induction heating
    • B23K13/02Seam welding

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Induction Heating (AREA)

Description

【発明の詳細な説明】 本発明は鍛接鋼管の製造工程において、鍛接前
の管状スケルプの温度を鍛接に適した温度に加熱
制御するための鍛接温度自動制御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an automatic forge welding temperature control method for controlling the temperature of a tubular skelp before forge welding to a temperature suitable for forge welding in a manufacturing process of forge welded steel pipes.

従来鍛接鋼管は、加熱炉で加熱された帯状スケ
ルプを成形ロールで管状に成形し、該管状に成形
された管状スケルプのエツジ部を、ウエルデイン
グホーンから酸素を吹きつけて加熱したり、又は
環状の高周波誘導加熱コイルを用いて加熱したり
した後、該エツジ部を鍛接ロールにより鍛接して
製造していた。しかし上記帯状スケルプは、板厚
変動が5%程度あり、又加熱炉を出た帯状スケル
プは加熱炉の温度変動もあるため、その温度が±
40℃程度ばらつくと共に、左右のエツジ部の温度
差が20℃程度生じている。
Conventionally, forge welded steel pipes are produced by forming a band-shaped skelp heated in a heating furnace into a tubular shape using forming rolls, and then heating the edges of the tubular skelp by blowing oxygen from a welding horn, or forming an annular skelp into a ring shape. After heating using a high-frequency induction heating coil, the edge portions were forge-welded using a forge-welding roll. However, the band-shaped skelp described above has a plate thickness variation of about 5%, and the band-shaped skelp leaving the heating furnace also has temperature fluctuations in the heating furnace, so the temperature of the band-shaped skelp is ±
There is a variation of about 40°C, and a temperature difference of about 20°C between the left and right edges.

更に誘導加熱により管状スケルプのエツジ部を
加熱する場合は、該エツジ部の温度を200℃〜400
℃上昇させるが、この場合エツジ部の板厚変動及
びスケルプ走行速度変動等によつて、鍛接時の温
度は更にばらつく。
Furthermore, when heating the edge part of the tubular skelp by induction heating, the temperature of the edge part is 200℃ to 400℃.
℃, but in this case, the temperature during forge welding will further vary due to changes in plate thickness at the edge portion, fluctuations in squelp running speed, etc.

この様な欠点を除くために、加熱炉抽出温度を
一定にする方法としては、加熱炉抽出時の温度を
測定して、スケルプの走行速度を調整したり、加
熱炉の燃料により加熱温度を調整するなどの方法
が行われていた。
In order to eliminate these drawbacks, methods for keeping the heating furnace extraction temperature constant include measuring the temperature at the time of heating furnace extraction and adjusting the running speed of the skelp, or adjusting the heating temperature using the fuel in the heating furnace. Methods such as doing this were used.

しかし、上記の方法では帯状スケルプのボトム
とトツプを継いだ中継前後での急隙な肉厚変動に
よる温度急変に対して、加熱炉の応答速度が遅い
ので充分追従できず、温度のばらつきが解消され
ないという問題がある。又、誘導加熱での昇温量
を一定にする方法としては、スケルプ速度変化や
肉厚変化に対して高周波誘導加熱コイルの出力を
調整したり、鍛接後の鍛接衝合部の温度を測定し
て高周波誘導加熱コイルの出力を調整するなどの
例がある。しかしこの方法においても、鍛接後の
温度を測定するのでは、管状スケルプエツジ部の
昇温完了時点から時間経過しているため、急激な
熱伝導により、エツジ部の温度降下量が大きく変
化する等の問題や、左右のエツジ部温度が不明で
あり、左右のエツジ部温度を制御する手段もない
ので、左右のエツジ部の肉厚変動や加熱炉内での
スケルプ蛇行が、そのまま左右エツジ部の温度変
動となり、左右のエツジ部温度を一定にすること
は不可能であるという問題がある。
However, with the above method, the response speed of the heating furnace is slow, so it cannot sufficiently follow the sudden temperature change caused by the sudden change in wall thickness before and after the connection between the bottom and top of the band-shaped skelp, and the temperature variation is eliminated. The problem is that it is not. In addition, methods to keep the temperature rise constant during induction heating include adjusting the output of the high-frequency induction heating coil in response to changes in the squelp speed and wall thickness, and measuring the temperature of the forge weld abutment after forge welding. Examples include adjusting the output of a high-frequency induction heating coil. However, even with this method, when measuring the temperature after forge welding, it is difficult to measure the temperature after forge welding because some time has elapsed since the temperature of the tubular skelp edge was completed. The problem is that the temperature of the left and right edges is unknown, and there is no way to control the temperature of the left and right edges, so changes in the wall thickness of the left and right edges and squirting in the heating furnace will directly affect the temperature of the left and right edges. There is a problem in that it is impossible to keep the temperature of the left and right edges constant.

鍛接衝合部の品質が良好な鍛接鋼管を製造する
には、鍛接されるエツジ部の温度を、鍛接に適し
た温度(1350℃程度)に一定して鍛接することが
最も重要であるが、前記これらの方法では、鍛接
されるエツジ部温度を鍛接温度に一定して保つこ
とが不可能であつた。
In order to manufacture forge-welded steel pipes with good quality forge-welded joints, it is most important to forge-weld the edges to be forge-welded at a constant temperature (approximately 1350°C) suitable for forge-welding. In these methods, it has been impossible to maintain the temperature of the edge portion to be forge welded constant at the forge welding temperature.

本発明は前記方法の欠点を解消し、鍛接される
管状スケルプのエツジ部温度を常に鍛接温度に維
持可能で、しかも左右エツジ部の温度を均等な温
度に維持可能な鍛接管の製造工程における鍛接温
度自動制御方法の提供を目的とする。
The present invention eliminates the drawbacks of the above-mentioned methods, and is capable of forge welding in the manufacturing process of forge-welded pipes, in which the temperature of the edge portion of the tubular skelp to be forged welded can always be maintained at the forge welding temperature, and the temperature of the left and right edge portions can be maintained at an even temperature. The purpose is to provide an automatic temperature control method.

すなわち本発明は、加熱炉で加熱された帯状ス
ケルプを成形ロールで管状に成形し、該管状に成
形した管状スケルプのエツジ部を加熱装置により
加熱した後、該エツジ部を鍛接ロールにより鍛接
して管とする鍛接鋼管の製造工程において、前記
管状スケルプの両エツジ部上に高周波誘導加熱コ
イルを配置して、該エツジ部を各別に加熱し、鍛
接ロールの上流側に設けた温度計により、鍛接前
の管状スケルプ両エツジ部の温度を各別に測定
し、管状スケルプの両エツジ部の温度差が目標範
囲内となるように、前記高周波誘導加熱コイルを
管軸と直角方向に位置調整を行なうとともに、上
記高周波加熱コイルの出力調整を行なうことを特
徴とする鍛接鋼管の鍛接温度自動制御方法であ
る。
That is, the present invention forms a band-shaped skelp heated in a heating furnace into a tubular shape with a forming roll, heats the edge portion of the tubular skelp formed into the tubular shape with a heating device, and then forge-welds the edge portion with a forge-welding roll. In the manufacturing process of forge-welded steel pipes to be made into pipes, high-frequency induction heating coils are placed on both edges of the tubular skelp to heat each edge separately. The temperature at both edges of the previous tubular skelp is measured separately, and the position of the high-frequency induction heating coil is adjusted in a direction perpendicular to the tube axis so that the temperature difference between both edges of the tubular skelp is within the target range. , an automatic forge welding temperature control method for forge welded steel pipes, characterized in that the output of the high frequency heating coil is adjusted.

次に本発明の方法を図に示す実施例により詳細
に説明する。
Next, the method of the present invention will be explained in detail with reference to examples shown in the figures.

第1図及び第2図において、加熱炉1で熱間加
工温度に加熱された帯状スケルプ2を、成形ロー
ル3および4によつて管状に成形し、成形ロール
4と鍛接ロール5との間で、第2図に示す管状ス
ケルプ2′の両エツジ部2a,2a上に高周波誘
導加熱コイル6を配置して、帯状スケルプ2′の
エツジ部2aの端面を均一に加熱する。
In FIGS. 1 and 2, a band-shaped skelp 2 heated to a hot working temperature in a heating furnace 1 is formed into a tubular shape by forming rolls 3 and 4, and is then heated between forming rolls 4 and forge welding rolls 5. A high-frequency induction heating coil 6 is disposed on both edge portions 2a, 2a of the tubular squelp 2' shown in FIG. 2 to uniformly heat the end face of the edge portion 2a of the band-shaped squelp 2'.

加熱炉1の出口と、鍛接ロール5の上流側に
は、走査型の放射温度計からなるスケルプ温度計
9と、鍛接温度計7とを設けて、加熱炉1出口の
帯状スケルプ2の温度と、鍛接前の管状スケルプ
2′のエツジ部2aの温度とを測定し、この測定
した温度の値から、鍛接前の管状スケルプ2′の
両エツジ部2a,2aの温度差が、10℃以内の範
囲となる様に、高周波誘導加熱コイル6を第2図
に示すごとく、左右に位置調整する。
A squelp thermometer 9 consisting of a scanning radiation thermometer and a forge welding thermometer 7 are provided at the outlet of the heating furnace 1 and on the upstream side of the forge welding roll 5. , and the temperature of the edge portion 2a of the tubular skelp 2' before forge welding, and from the measured temperature values, it is determined that the temperature difference between the two edge portions 2a, 2a of the tubular skelp 2' before forge welding is within 10°C. As shown in FIG. 2, the high-frequency induction heating coil 6 is adjusted horizontally so as to maintain the same range.

左右調整装置15により、管軸と直角な方向に
位置調整を行うとともに、鍛接前の両エツジ部2
a,2aの温度が1350±10℃となる様に、高周波
誘導加熱コイル6の出力を調整して、鍛接の際の
管状スケルプ2′のエツジ部2aを、常に鍛接に
適した温度に自動的に制御する。
The left and right adjustment device 15 adjusts the position in the direction perpendicular to the tube axis, and also adjusts the position of both edges 2 before forge welding.
The output of the high-frequency induction heating coil 6 is adjusted so that the temperature of points a and 2a is 1350±10°C, and the edge part 2a of the tubular skelp 2' during forge welding is automatically maintained at a temperature suitable for forge welding. control.

次に本発明の方法の制御系について、図に示す
実施例により、詳細に説明する。加熱炉1から抽
出し、帯状スケルプ2を瞬時視野が5mm巾程度
で、光学的に走査して放射エネルギーを測定する
スケルプ温度計9で、巾方向に連続的に測温し、
左右分離回路22で、帯状スケルプ2の中央から
左方(造管方向に向つて)の温度パターンと、帯
状スケルプ2の中央から右方の温度パターンに分
離して、ピークキープ回路23で、帯状スケルプ
2の中央から左方の温度パターンのうち、最も高
い温度TL1と、帯状スケルプ2の中央から右方の
温度パターンのうち最も高い温度TR1の信号を出
力する。
Next, the control system of the method of the present invention will be explained in detail with reference to the embodiment shown in the drawings. The temperature of the strip-shaped Skelp 2 extracted from the heating furnace 1 is continuously measured in the width direction using a Skelp thermometer 9 that optically scans the strip-shaped Skelp 2 with an instantaneous field of view of about 5 mm width to measure the radiant energy.
The left and right separation circuit 22 separates the temperature pattern from the center of the band-shaped squelp 2 to the left (toward the pipe-making direction) and the temperature pattern from the center to the right of the band-shaped squelp 2. Signals of the highest temperature T L1 among the temperature patterns to the left from the center of the Skelp 2 and the highest temperature T R1 among the temperature patterns to the right from the center of the band-shaped Skelp 2 are output.

通常、加熱炉1で加熱される帯状スケルプ2
は、帯状スケルプ2の平面とほぼ同一平面上か
ら、バーナーで加熱されるが、帯状スケルプ2の
エツジ部は、帯状スケルプ2の中央部より、単位
体積当りの熱放射を受ける面積が大きいために、
エツジ部の温度が中央部の温度よりも高くなり、
従つて、帯状スケルプ2の中央から左方の温度パ
ターンのうち、最も高い温度TL1は、左方のエツ
ジ部温度であり、又帯状スケルプ2の中央から右
方の温度パターンのうち最も高い温度TR1は、右
方のエツジ部温度となる。
Usually, a band-shaped skelp 2 heated in a heating furnace 1
is heated by a burner from almost the same plane as the plane of the band-shaped skelp 2, but the edge part of the band-shaped skelp 2 has a larger area receiving heat radiation per unit volume than the center part of the band-shaped skelp 2. ,
The temperature at the edges becomes higher than the temperature at the center,
Therefore, the highest temperature T L1 in the temperature pattern to the left from the center of the band-shaped Skelp 2 is the left edge temperature, and the highest temperature T L1 in the temperature pattern to the right from the center of the band-shaped Skelp 2 T R1 is the right edge temperature.

次に高周波誘導加熱コイル6で加熱した管状ス
ケルプ2′を、瞬時視野が1mm巾×5mm長さ程度
の回転ミラーにより光学的に走査して、放射エネ
ルギーを測定する鍛接温度計7により、両エツジ
部2a,2aを含んだ巾で、巾方向に連続的に測
温して信号を出力すると共に、温度計位置パルス
発生器20により、回転ミラーの一定位置でパル
ス信号を出力する。
Next, the tubular skelp 2' heated by the high-frequency induction heating coil 6 is optically scanned by a rotating mirror with an instantaneous field of view of approximately 1 mm width x 5 mm length, and a forge welding thermometer 7 that measures the radiant energy is used to detect both edges. The temperature is continuously measured in the width direction in the width including the portions 2a, 2a, and a signal is output, and the thermometer position pulse generator 20 outputs a pulse signal at a fixed position of the rotating mirror.

鍛接温度計7で検出した温度信号は、スケルプ
温度計9の温度信号処理と同じように、左右分離
回路16およびピークキープ回路17によつて、
管状スケルプ2′の左方エツジ部温度TL2と管状
スケルプ2′の右方エツジ部温度TR2を出力する。
又、エツジ部の温度は、中央部の温度より高く、
又エツジ部の温度変化は最も激しいので、鍛接温
度計7で検出した温度信号を、微分回路18で微
分信号に出力し、ピーク位置パルス発生器19
で、左方と右方のエツジ部位置信号を出力する。
このエツジ部位置信号と、温度計位置パルス発生
器20からの出力信号とを、ピーク位置演算回路
21に入力して、温度計一定位置からエツジ部位
置までの時間を演算し、更にあらかじめ定まつて
いる鍛接温度計7から、管状スケルプ2′までの
距離を乗算することによつて、温度計定位置から
管状スケルプ2′の左方エツジ部までの水平方向
の距離LLと、温度計定位置から管状スケルプ
2′の右方エツジ部までの水平方向の距離LRを演
算し、制御装置11に入力する。
The temperature signal detected by the forge welding thermometer 7 is processed by the left/right separation circuit 16 and the peak keep circuit 17 in the same way as the temperature signal processing of the Skelp thermometer 9.
The left edge temperature T L2 of the tubular squelp 2' and the right edge temperature T R2 of the tubular squelp 2' are output.
Also, the temperature at the edge is higher than the temperature at the center,
Furthermore, since the temperature change at the edge part is the most severe, the temperature signal detected by the forge welding thermometer 7 is output as a differential signal by the differential circuit 18, and the peak position pulse generator 19
outputs left and right edge position signals.
This edge position signal and the output signal from the thermometer position pulse generator 20 are input to the peak position calculation circuit 21 to calculate the time from the thermometer constant position to the edge position. By multiplying the distance from the forge welding thermometer 7 to the tubular skelp 2', the horizontal distance L L from the thermometer fixed position to the left edge of the tubular skelp 2' can be calculated as follows: A horizontal distance L R from the position to the right edge of the tubular squelp 2' is calculated and input to the control device 11.

制御装置11は、鍛接温度計7からの信号とス
ケルプ温度計9からの信号とを入力して演算し、
サイリスタ電圧調整器14に制御信号を送つて、
サイリスタ電圧調整器14で電圧レベルを制御
し、高周波発振器13により、高周波電流を発生
させて、変成器12を通して高周波誘導加熱コイ
ル6に流れる電流を制御するとともに、高周波誘
導加熱コイル6の左右位置を調整する左右調整装
置15に制御信号を送つて、変成器12と一体構
造の高周波誘導加熱コイル6の左右位置を制御す
る。
The control device 11 inputs and calculates the signal from the forge welding thermometer 7 and the signal from the Skelp thermometer 9,
Sending a control signal to the thyristor voltage regulator 14,
The thyristor voltage regulator 14 controls the voltage level, the high-frequency oscillator 13 generates a high-frequency current, and the current flowing to the high-frequency induction heating coil 6 through the transformer 12 is controlled, and the left and right positions of the high-frequency induction heating coil 6 are controlled. A control signal is sent to the left-right adjusting device 15 to control the left-right position of the high-frequency induction heating coil 6 that is integrated with the transformer 12.

鍛接衝合部の品質を安定させるには、鍛接時の
温度を一定にすることが望ましいが、鍛接時の温
度は、鍛接ロールその他の設備があつて測温でき
ない。
In order to stabilize the quality of the forge welded joint, it is desirable to keep the temperature constant during forge welding, but the temperature during forge welding cannot be measured due to the presence of forge welding rolls and other equipment.

そこで、本発明の方法ではスケルプ温度計9
と、鍛接温度計7とからの信号により鍛接時の温
度を推定演算して、鍛接時の目標温度との差を少
なくなる様制御する。鍛接温度計7の測定位置か
ら、鍛接位置迄に管状スケルプ2′のエツジ部2
aの温度は、熱放射、対流及び管状スケルプ2′
の中央部への熱伝導のために低下する。
Therefore, in the method of the present invention, the Skelp thermometer 9
The temperature during forge welding is estimated and calculated based on the signals from the forge welding thermometer 7 and the forge welding temperature, and the temperature is controlled so as to reduce the difference from the target temperature during forge welding. From the measuring position of the forge welding thermometer 7 to the forge welding position, the edge part 2 of the tubular skelp 2'
The temperature of a is determined by thermal radiation, convection and tubular squelp 2'
decreases due to heat conduction to the central part of the body.

特に高周波誘導加熱により、管状スケルプのエ
ツジ部を急速に加熱した場合、熱浸透深さが浅
く、熱伝導による温度変化が急激であるので、高
周波誘導加熱による昇温量の程度によつて、鍛接
温度計の測定位置から鍛接位置迄の温度低下量は
変化する。鍛接温度計7の測定位置から鍛接位置
迄の温度低下量ΔTは近似的に下式で表わされ
る。
In particular, when the edge of a tubular skelp is rapidly heated by high-frequency induction heating, the depth of heat penetration is shallow and the temperature change due to heat conduction is rapid. The amount of temperature drop from the thermometer measurement position to the forge welding position changes. The amount of temperature decrease ΔT from the measurement position of the forge welding thermometer 7 to the forge welding position is approximately expressed by the following formula.

ΔTL=(T2L−T1L−C)×α ΔTR=(T2R−T1R−C)×α ……(1) T2L、T2R:鍛接温度計7の測定位置での管状ス
ケルプ2′のエツジ部2a温度(℃) T1L、T1R:スケルプ温度計9の測定位置での管
状スケルプ2のエツジ部2a温度(℃) C:定数(℃)0〜30℃ α:係数 αはスケルプの肉厚、スケルプの速度、鍛接温
度計7の測定位置から鍛接位置迄の距離および熱
浸透深さ等によつて決まる係数で、0〜1の範囲
で用いられる。
ΔT L = (T 2L − T 1L − C) × α ΔT R = (T 2R − T 1R − C) × α ...(1) T 2L , T 2R : Tubular squelp at the measurement position of forge welding thermometer 7 2' edge part 2a temperature (°C) T 1L , T 1R : Temperature (°C) of the edge part 2a of the tubular squelp 2 at the measurement position of the squelp thermometer 9 (°C) C: Constant (°C) 0 to 30°C α: Coefficient α is a coefficient determined by the thickness of the skelp, the speed of the skelp, the distance from the measurement position of the forge welding thermometer 7 to the forge welding position, the heat penetration depth, etc., and is used in the range of 0 to 1.

鍛接位置でのスケルプエツジ部温度(T3)は T3L=T2L−ΔTL T3R=T2R−ΔTR ……(2) で表わされるのでT3LとT3Rのうち低い方の温度
をT3として、目標温度T30と比較し、その偏差出
力をサイリスタ電圧調整器14に入力する。又、
鍛接位置での管状スケルプ2′の両エツジ部温度、
T3L、T3Rの偏差ΔT3は ΔT3=T3L−T3R ……(3) で表わされるが、このΔT3が0となる様に、ΔT3
の出力を高周波誘導加熱コイル6の左右調整装置
15に入力する。高周波誘導加熱コイル6による
入熱量Qと、鍛接位置での管状スケルプ2′のエ
ツジ部温度の上昇量TUPは、ほぼ比例関係にあ
る。従つて、前記T3とT30の偏差出力に比例し
て、高周波誘導加熱コイル6の入熱量を調整する
様サイリスタ電圧調整器14を制御する。
The temperature of the squelp edge at the forge welding position (T 3 ) is expressed as T 3L = T 2L −ΔT L T 3R = T 2R −ΔT R (2), so the lower temperature of T 3L and T 3R is T. 3 , the temperature is compared with the target temperature T30 , and the deviation output is input to the thyristor voltage regulator 14. or,
The temperature of both edges of the tubular skelp 2' at the forge welding position,
The deviation ΔT 3 between T 3L and T 3R is expressed as ΔT 3 = T 3LT 3R ( 3).
The output is input to the left/right adjustment device 15 of the high frequency induction heating coil 6. The amount of heat input Q by the high-frequency induction heating coil 6 and the amount of increase T UP in the temperature of the edge portion of the tubular skelp 2' at the forge welding position are approximately proportional to each other. Therefore, the thyristor voltage regulator 14 is controlled so as to adjust the amount of heat input to the high frequency induction heating coil 6 in proportion to the output difference between T 3 and T 30 .

次に、高周波誘導加熱コイル6を左方にずらし
た場合、右方のコイル6〜2により左方のエツジ
部が加熱され始めるので、左方のエツジ部の昇温
量が右方のエツジ部より大きくなる。又高周波誘
導加熱コイル6を右方にずらした場合、左方のコ
イル6〜1により右方のエツジ部が加熱され始め
るので、右方のエツジ部の昇温量が左方のエツジ
部より大きくなる。
Next, when the high-frequency induction heating coil 6 is shifted to the left, the left edge begins to be heated by the right coils 6 to 2, so the amount of temperature increase at the left edge is equal to that at the right edge. Become bigger. Also, when the high-frequency induction heating coil 6 is shifted to the right, the right edge begins to be heated by the left coils 6 to 1, so the amount of temperature increase at the right edge is greater than that at the left edge. Become.

従つて、ΔT3>0の場合は高周波誘導加熱コイ
ル6を右側に移動させ、ΔT3<0の場合は高周波
誘導加熱コイル6を左側に移動する様に、高周波
誘導加熱コイル6の左右調整装置15にΔT3の信
号を入力して位置調整を行う。
Therefore, when ΔT 3 >0, the high-frequency induction heating coil 6 is moved to the right, and when ΔT 3 <0, the high-frequency induction heating coil 6 is moved to the left. A signal of ΔT 3 is input to 15 to perform position adjustment.

次に制御装置11について詳細に説明する。 Next, the control device 11 will be explained in detail.

第3図は、第1図に示した制御装置11の構成
を示すブロツク図である。鍛接温度計7から管状
スケルプ2′の左方エツジ部温度TL2の入力端子
43、管状スケルプ2′の右方エツジ部温度TR2
の入力端子43′、鍛接温度計定位置から、管状
スケルプ2′の右方エツジ部までの水平距離LR
入力端子24に、鍛接温度計7からの信号が入力
され、帯状スケルプ2の左方エツジ部温度TL1
入力端子44、帯状スケルプ2の右方エツジ部温
度TR1の入力端子44′に、スケルプ温度計9か
らの信号が入力される。25は比較器で、入力端
子43からの入力電流信号と入力端子44からの
入力電流信号を比較するもので、その差信号を比
較器27に出力する。比較器27で比較器25の
出力信号と定数器26、出力信号を比較して、そ
の差信号を係数器28に出力し、係数器28で係
数を乗算して出力し、前記(1)式のΔTLを求める。
FIG. 3 is a block diagram showing the configuration of the control device 11 shown in FIG. 1. From the forge welding thermometer 7 to the input terminal 43 of the left edge temperature T L2 of the tubular squelp 2', the right edge temperature T R2 of the tubular squelp 2'.
The signal from the forge welding thermometer 7 is input to the input terminal 43' of the forge welding thermometer 7, and the input terminal 24 of the horizontal distance L R from the fixed position of the forge welding thermometer to the right edge of the tubular squelp 2'. The signal from the squelp thermometer 9 is input to the input terminal 44 for the right edge temperature T L1 and the input terminal 44' for the right edge temperature T R1 of the band-shaped squelp 2. A comparator 25 compares the input current signal from the input terminal 43 and the input current signal from the input terminal 44, and outputs the difference signal to the comparator 27. The comparator 27 compares the output signal of the comparator 25 with the output signal of the constant generator 26, outputs the difference signal to the coefficient unit 28, multiplies the coefficient by the coefficient unit 28, and outputs the result. Find ΔTL of .

29は比較器で入力端子43からの出力信号と
係数器28からの出力信号を比較して、その差信
号を出力し、前記(2)式の計算を行なう。この出力
信号が左方エツジ部の鍛接温度の推定値であり、
比較器31に入力される。比較器31で比較器2
9からの出力信号と鍛接温度目標設定器30から
の信号を比較し、その差信号を演算器32に出力
する。右方エツジ部の鍛接温度の推定値と、鍛接
温度目標値の差信号を出力する場合も、前記と同
様の制御を行なう。
A comparator 29 compares the output signal from the input terminal 43 and the output signal from the coefficient multiplier 28, outputs the difference signal, and calculates the equation (2). This output signal is the estimated value of the forge welding temperature of the left edge,
The signal is input to the comparator 31. Comparator 31 and comparator 2
The output signal from the forge welding temperature target setting device 30 is compared with the signal from the forge welding temperature target setting device 30, and the difference signal is outputted to the calculator 32. The same control as described above is also performed when outputting a difference signal between the estimated value of the forge welding temperature of the right edge portion and the target value of the forge welding temperature.

32は演算器で、比較器31の出力信号と比較
器31′の出力信号を比較して、小さい方の信号
を変換器33に出力すると共に、その差信号を変
換器37に出力する。変換器33は電流信号を電
圧信号に変換する変換器でゲート45に出力す
る。ゲート45は高周波誘導加熱コイル6の出力
調整を手動調整する場合は閉となり、自動調整す
る場合は開となる。35は加熱器で、ゲート45
からの出力信号とサイリスタ電圧調整器14から
の出力信号34を加算して、サイリスタ電圧調整
器14に入力する。変換器37はΔT3の電流信号
を電圧信号に変換する変換器でゲート40に入力
する。38は高周波誘導加熱コイル6の位置移動
範囲設定器で、鍛接温度計定位置から管状スケル
プ2′の左方エツジ部までの水平距離L10と温度計
定位置から、管状スケルプ2′の右方エツジ部ま
での水平距離LR0を設定するものである。管状ス
ケルプ2′の左方エツジ部が鍛接温度計の定位置
より必らず右方にくる様に鍛接温度計の定位置を
選べば、LL>LL0、LR<LR0となる様にし、この範
囲から外された場合は、高周波誘導加熱コイル6
が、管状スケルプ2′のエツジ部に接触して損傷
する恐れが生じるので、高周波誘導加熱コイル6
の左右調整の自動制御を停止する様にする。
32 is an arithmetic unit that compares the output signal of the comparator 31 and the output signal of the comparator 31', outputs the smaller signal to the converter 33, and outputs the difference signal to the converter 37. The converter 33 is a converter that converts a current signal into a voltage signal and outputs it to the gate 45. The gate 45 is closed when the output of the high-frequency induction heating coil 6 is manually adjusted, and is opened when the output is automatically adjusted. 35 is a heater, gate 45
The output signal from the thyristor voltage regulator 14 and the output signal 34 from the thyristor voltage regulator 14 are added and input to the thyristor voltage regulator 14 . Converter 37 is a converter that converts a current signal of ΔT 3 into a voltage signal and inputs it to gate 40 . 38 is a position movement range setting device for the high-frequency induction heating coil 6, which is a horizontal distance L 10 from the forge welding thermometer position to the left edge of the tubular skelp 2', and from the thermometer position to the right side of the tubular skelp 2'. This is to set the horizontal distance L R0 to the edge. If the fixed position of the forge welding thermometer is chosen so that the left edge of the tubular skelp 2' is always to the right of the fixed position of the forge welding thermometer, then L L > L L0 and L R < L R0 . and if it is outside this range, the high frequency induction heating coil 6
However, there is a risk that the high-frequency induction heating coil 6 may come into contact with the edge of the tubular skelp 2' and be damaged.
Automatic control of left and right adjustment is stopped.

39は比較器で、入力端子24からの入力信号
と位置移動範囲設定器38からの入力信号を比較
し、LL−LL0とLL0−LRをゲート40に出力する。
ゲート40は、LL−LL0>0及びLR0−LR>0のみ
ゲートが開となり、上記条件から外れた場合は閉
となり、変換器37の信号をゲート46に送る。
ゲート46は、高周波誘導加熱コイル6の左右調
整を手動調整にする場合は閉となり、自動調整す
る場合は開となる。42は加算器で、ゲート46
からの出力信号と高周波誘導加熱コイル6の左右
調整装置15からの出力信号41を加算して、高
周波誘導加熱コイル6の左右調整装置15に入力
して位置調整を行う。
A comparator 39 compares the input signal from the input terminal 24 and the input signal from the position movement range setter 38, and outputs L L -L L0 and L L0 -L R to the gate 40.
The gate 40 is open only when L L -L L0 >0 and L R0 -L R >0, and is closed when the above conditions are not met, and the signal from the converter 37 is sent to the gate 46 .
The gate 46 is closed when the horizontal adjustment of the high-frequency induction heating coil 6 is performed manually, and is opened when the horizontal adjustment is performed automatically. 42 is an adder, gate 46
The output signal from the high-frequency induction heating coil 6 and the output signal 41 from the left-right adjustment device 15 of the high-frequency induction heating coil 6 are added and input to the left-right adjustment device 15 of the high-frequency induction heating coil 6 to perform position adjustment.

本発明は以上述べた様な鍛接鋼管の製造工程に
おける鍛接温度自動制御方法であるから、鍛接直
前の左方エツジ部のピーク温度と、右方エツジ部
のピーク温度とを測定して、エツジ部の偏差温度
を減少させ、かつエツジ部の温度を一定値に制御
可能であるので、鍛接直前のエツジ部温度を一定
にし、鍛接温度を適正な値に制御できるので、鍛
接衝合部品質の良好な製品を製造でき、品質管理
上その効果は極めて大である。
Since the present invention is an automatic forge welding temperature control method in the manufacturing process of forge welded steel pipes as described above, the peak temperature at the left edge portion and the peak temperature at the right edge portion immediately before forge welding are measured, and the peak temperature at the right edge portion is measured. It is possible to reduce the deviation temperature and control the edge temperature to a constant value, so the edge temperature immediately before forge welding can be kept constant, and the forge welding temperature can be controlled to an appropriate value, resulting in good quality forge welded joints. It is possible to manufacture products with high quality, and the effect in terms of quality control is extremely large.

なお、本発明法ではスケルプ温度計で測定した
帯状スケルプのエツジ部温度と、鍛接温度計で測
温した管状スケルプのエツジ部温度とから、鍛接
温度を推定演算する方式としたが、鍛接温度計で
測温した管状スケルプのエツジ部温度にある定数
を加えた温度を鍛接温度としても、真の鍛接温度
との差は多少大きくなるが、この方式を簡易的に
代用することも容易に実施可能である。
In addition, in the method of the present invention, the forge welding temperature is estimated and calculated from the edge temperature of the strip-like skelp measured with a skelp thermometer and the edge temperature of the tubular skelp measured with a forge welding thermometer. Even if the forge welding temperature is determined by adding a certain constant to the edge temperature of the tubular skelp measured in the forge welding temperature, the difference from the true forge welding temperature will be somewhat large, but this method can be easily substituted. It is.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明法の一実施例を示す概略図、第
2図は第1図のA−A断面図、第3図は本発明法
にかかる制御装置のブロツク図である。 1……加熱炉、2……帯状スケルプ、2a……
エツジ部、3,4……成型ロール、5……鍛接ロ
ール、6……高周波誘導加熱コイル、7……鍛接
温度計、9……スケルプ温度計、15……左右調
整装置。
FIG. 1 is a schematic diagram showing an embodiment of the method of the present invention, FIG. 2 is a sectional view taken along line AA in FIG. 1, and FIG. 3 is a block diagram of a control device according to the method of the present invention. 1...Heating furnace, 2...Striped skelp, 2a...
Edge portion, 3, 4... Forming roll, 5... Forge welding roll, 6... High frequency induction heating coil, 7... Forge welding thermometer, 9... Skelp thermometer, 15... Left and right adjustment device.

Claims (1)

【特許請求の範囲】[Claims] 1 加熱炉で加熱された帯状スケルプを成形ロー
ルで管状に成形し、該管状に成形した管状スケル
プのエツジ部を加熱装置により加熱した後、該エ
ツジ部を鍛接ロールにより鍛接して管とする鍛接
鋼管の製造工程において、前記管状スケルプの両
エツジ部上に高周波誘導加熱コイルを配置して、
該エツジ部を各別に加熱し、鍛接ロールの上流側
に設けた温度計により、鍛接前の管状スケルプ両
エツジ部の温度を各別に測定し、管状スケルプの
両エツジ部の温度差が目標範囲内となるように、
前記高周波誘導加熱コイルを管軸と直角方向に位
置調整を行なうとともに、上記高周波加熱コイル
の出力調整を行なうことを特徴とする鍛接鋼管の
鍛接温度自動制御方法。
1. Forge welding, in which a band-shaped skelp heated in a heating furnace is formed into a tube shape with a forming roll, the edge portion of the tubular skelp formed into the tube shape is heated with a heating device, and then the edge portion is forge welded with a forge welding roll to form a tube. In the steel pipe manufacturing process, high frequency induction heating coils are placed on both edges of the tubular skelp,
Each edge is heated separately, and the temperature of both edges of the tubular skelp before forge welding is measured separately using a thermometer installed on the upstream side of the forge welding roll, and the temperature difference between both edges of the tubular skelp is within the target range. So that
An automatic forge welding temperature control method for a forge welded steel pipe, characterized in that the position of the high frequency induction heating coil is adjusted in a direction perpendicular to the tube axis, and the output of the high frequency heating coil is adjusted.
JP224982A 1982-01-12 1982-01-12 Automatic controlling method of forge welding temperature of forge-welded steel pipe Granted JPS58122189A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP224982A JPS58122189A (en) 1982-01-12 1982-01-12 Automatic controlling method of forge welding temperature of forge-welded steel pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP224982A JPS58122189A (en) 1982-01-12 1982-01-12 Automatic controlling method of forge welding temperature of forge-welded steel pipe

Publications (2)

Publication Number Publication Date
JPS58122189A JPS58122189A (en) 1983-07-20
JPH0216193B2 true JPH0216193B2 (en) 1990-04-16

Family

ID=11524076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP224982A Granted JPS58122189A (en) 1982-01-12 1982-01-12 Automatic controlling method of forge welding temperature of forge-welded steel pipe

Country Status (1)

Country Link
JP (1) JPS58122189A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10160058B2 (en) * 2012-08-17 2018-12-25 Nippon Steel & Sumitomo Metal Corporation Electric resistance welded pipe welding apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5319156A (en) * 1976-08-06 1978-02-22 Ishikawajima Harima Heavy Ind Automatic controlling method of high frequency welding

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5912145Y2 (en) * 1979-09-29 1984-04-12 住友金属工業株式会社 Forge welded pipe manufacturing equipment

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5319156A (en) * 1976-08-06 1978-02-22 Ishikawajima Harima Heavy Ind Automatic controlling method of high frequency welding

Also Published As

Publication number Publication date
JPS58122189A (en) 1983-07-20

Similar Documents

Publication Publication Date Title
JPH0216193B2 (en)
US4359210A (en) Temperature control apparatus
CN108235479A (en) Improve transverse magnetic flux sensing heating strip transverse temperature uniformity device and method
EP0158979A1 (en) Continuous weld tube mill
JPH10277620A (en) Method for controlling temperature in continuous hot rolling of steel tube
JPS60106679A (en) Method for controlling heat input to electric welded pipe
JPS5929812B2 (en) Method for detecting surface flaws on steel materials
JPH0525567B2 (en)
JPS60213373A (en) Method for controlling weld heat input for electric welded steel pipe
SU774855A1 (en) High-frequency welding process automatic control method
JPS6127122B2 (en)
JP2722970B2 (en) Heat input control method for wrought steel pipe
JPS5825883A (en) Controlling method for rate of upsetting for high frequency welded steel pipe
SU797856A1 (en) Method of automatic control of high-frequency welding
JPH0327875A (en) Initial heat input determining method for welded steel pipe
JPH0413486A (en) Welding control method for electro-resistance-welded tube
JP3015805B2 (en) Metal pipe bending method and apparatus
JP6020491B2 (en) ERW welded steel pipe manufacturing method
JPS59104281A (en) Production of welded h-beam
JP3827363B2 (en) Control device for ERW pipe making equipment
JPH0234714B2 (en)
SU680836A1 (en) Method for automatically controlling the process of high-frequency welding
JP2819779B2 (en) Heat input control device for ERW pipes
JPH071170A (en) Manufacture of welded tube by composite heat source
JPS62296974A (en) Welding heat input control method at manufacturing time of seam welded pipe