JP2819779B2 - Heat input control device for ERW pipes - Google Patents

Heat input control device for ERW pipes

Info

Publication number
JP2819779B2
JP2819779B2 JP2142499A JP14249990A JP2819779B2 JP 2819779 B2 JP2819779 B2 JP 2819779B2 JP 2142499 A JP2142499 A JP 2142499A JP 14249990 A JP14249990 A JP 14249990A JP 2819779 B2 JP2819779 B2 JP 2819779B2
Authority
JP
Japan
Prior art keywords
heat input
deviation
fuzzy inference
unit
inference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2142499A
Other languages
Japanese (ja)
Other versions
JPH0436982A (en
Inventor
正 五百旗頭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP2142499A priority Critical patent/JP2819779B2/en
Publication of JPH0436982A publication Critical patent/JPH0436982A/en
Application granted granted Critical
Publication of JP2819779B2 publication Critical patent/JP2819779B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Feedback Control In General (AREA)
  • Control Of Temperature (AREA)
  • General Induction Heating (AREA)

Description

【発明の詳細な説明】 A.産業上の利用分野 この発明は電縫管の溶接入熱制御装置に関するもので
ある。
The present invention relates to a welding heat input control device for an electric resistance welded pipe.

B.発明の概要 この発明は電縫管製造ラインにおける電縫管の溶接入
熱制御装置において、 中間変数による移動および静止加熱領域ファジイ推論
によるそれぞれの入熱量を得、これら入熱量をファジイ
推論合成部でファジイ推論して最適入熱量を制御量とし
たことにより、 線形近似式における各種パラメータの同定を不要とす
ることができるとともに、制御ルールの数を低減でき、
かつ入熱制御の立ち上がり制御を円滑に行うことができ
るようにしたものである。
B. Summary of the Invention The present invention relates to a heat input control device for an electric resistance welded pipe in an electric resistance welded pipe production line, which obtains respective heat input amounts by fuzzy inference based on moving and stationary heating regions by an intermediate variable, and synthesizes these heat input amounts by fuzzy inference. By using fuzzy inference in the section to set the optimal heat input as a control amount, it is not necessary to identify various parameters in the linear approximation formula, and the number of control rules can be reduced.
In addition, it is possible to smoothly perform the rising control of the heat input control.

C.従来の技術 誘導加熱装置を用いた電縫管製造ラインにおいて、電
縫管溶接における溶接品質の改善、品質の安定化および
生産歩留まりの大幅な向上を図るために入熱制御が行わ
れている。
C. Conventional technology In an ERW pipe production line using an induction heating device, heat input control is performed to improve the welding quality in ERW pipe welding, stabilize the quality, and significantly improve the production yield. I have.

第8図は誘導式高周波電縫管製造ラインを示すもの
で、1は電磁誘導のためのワークコイル、2はスクイズ
ロール、3は溶接される素材、4はVシーム、5は電縫
管、6は高周波発振装置である。
FIG. 8 shows an induction type high-frequency electric resistance welded pipe production line, where 1 is a work coil for electromagnetic induction, 2 is a squeeze roll, 3 is a material to be welded, 4 is a V seam, 5 is an electric resistance welded pipe, 6 is a high-frequency oscillator.

ワークコイル1はスクイズロール2の前段部に配置さ
れており、これらにより多段の成形ロール(図示省略)
によって素材3に作られたVシーム4に高周波電流を流
すと、互いに突き合わされるエッジ部が高周波電流によ
って加熱され、次いでスクイズロール2によって加圧溶
接される。
The work coil 1 is arranged at the front stage of the squeeze roll 2, and is used to form a multi-stage forming roll (not shown).
When a high-frequency current is applied to the V seam 4 made of the raw material 3, the butted edges are heated by the high-frequency current and then pressure-welded by the squeeze roll 2.

上述した電縫管溶接において、Vシーム4に流れる高
周波電流を制御する従来の入熱制御手段としては次の3
つの制御手段が採られている。
In the above-described ERW pipe welding, conventional heat input control means for controlling a high-frequency current flowing through the V seam 4 is as follows.
Two control means are employed.

(1)オペレータが溶接部の温度(火色)を目視すると
ともに切削された溶接ビードの形状を観察し、これらの
状態により手動で入熱量を調整する手動制御手段。
(1) Manual control means for the operator to visually observe the temperature (fire color) of the welded portion, observe the shape of the cut weld bead, and manually adjust the heat input based on these conditions.

(2)溶接される素材の送り速度を検出し、送り速度に
見合う入熱量を関数発生器の出力によって調整する速度
連動制御手段。
(2) Speed-linked control means for detecting the feed rate of the material to be welded and adjusting the amount of heat input corresponding to the feed rate by the output of the function generator.

(3)溶接部の温度を検出し、この温度が一定となるよ
うに制御する温度制御手段。
(3) Temperature control means for detecting the temperature of the weld and controlling the temperature to be constant.

しかし、上記(1)〜(3)の入熱制御手段では、次
の(a)〜(c)の点において未だ不十分である。
However, the heat input control means (1) to (3) are still insufficient in the following points (a) to (c).

(a)素材の送り速度変動、板厚変動などの急激に変動
する要因には追従できない。
(A) It cannot follow rapidly changing factors such as a change in the feed speed of the material and a change in the plate thickness.

(b)起動時、停止時における送り速度ゼロの近傍では
溶接ができないで、オープンパイプが発生してしまう。
(B) At the time of starting and stopping, welding cannot be performed near a feed rate of zero, and an open pipe is generated.

(c)これらの要因により、入熱の過不足が生じ、その
ためペネトレータ(スケールなどの酸化物を溶接部に巻
き込んで溶接不良となった状態)冷接(低い温度での不
完全な溶接)等といった溶接部欠陥が発生して、良好な
溶接品質が得られない。
(C) Due to these factors, excess or deficiency of heat input occurs, and therefore, a penetrator (a state in which oxides such as scale are entangled in the welded portion and welding is poor), cold welding (incomplete welding at low temperature), etc. , And good welding quality cannot be obtained.

D.発明が解決しようとする課題 上述した(a)〜(c)の問題点を解決するために、
溶接される素材の送り速度を検出して演算処理装置に入
力し、送り速度と最適溶接入熱との関係式(後述する)
に基づき、検出した送り速度に対応した溶接入熱を算出
し、フィードフォワード方式でオンライン制御すること
が考えられるようになって来た。
D. Problems to be solved by the invention In order to solve the above-mentioned problems (a) to (c),
The feed rate of the material to be welded is detected and input to an arithmetic processing unit, and a relational expression between the feed rate and the optimal welding heat input (described later)
Based on this, it has become possible to calculate the welding heat input corresponding to the detected feed rate and to perform online control by a feedforward method.

フィードフォワード方式による制御要素の主たるもの
は同一板厚,同一外径,同一鋼種の場合、素材の送り速
度である。そして制御区分としては移動加熱領域と静止
加熱領域があり、各領域での入熱量P0,P1送り速度をパ
ラメータとしたとき、 P0=av+b ……(1) P=e/cv+d +F ……(2) の近似式で与えられる。
The main control element of the feedforward system is the feed rate of the raw material for the same plate thickness, the same outer diameter, and the same steel type. The control section includes a moving heating area and a static heating area. When the heat input amounts P 0 and P 1 feed speed in each area are used as parameters, P 0 = av + b (1) P = e / cv + d + F ... (2)

上記(1),(2)式から入熱制御装置での入熱量P
は次式で与えられる。
From the above equations (1) and (2), the heat input amount P in the heat input control device is obtained.
Is given by the following equation.

P=P0+P1=av+b+(e/cv+d)+f ……(3) 但し、a,b,c,d,e,f:パラメータ、 v:送り速度 しかし、上記方式では非線形要素を含んだ送り速度の
全域を上記(3)式で近似しているため、a,b,c,d,e,f
のパラメータの同定が困難であり、かつ再現性に問題が
あった。
P = P 0 + P 1 = av + b + (e / cv + d) + f (3) where a, b, c, d, e, f: parameters, v: feed speed However, in the above-mentioned method, feed including a nonlinear element Since the entire speed range is approximated by the above equation (3), a, b, c, d, e, f
Is difficult to identify, and there is a problem in reproducibility.

この発明は上記の事情に鑑みてなされたもので、各種
パラメータの同定を不要とするとともに静止加熱領域か
ら移動加熱領域への立ち上がり制御を円滑にできるよう
にした電縫管の溶接入熱制御装置を提供することを目的
とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and has a heat input control device for an electric resistance welded pipe, in which identification of various parameters is not required and control of rising from a stationary heating region to a moving heating region can be smoothly performed. The purpose is to provide.

E.課題を解決するための手段 この発明は、電縫管の溶接入熱制御において、管素材
の送り速度と、基準送り速度設定値との偏差を検出する
第1偏差検出部と、管素材の送り速度と状態変化速度設
定値との偏差を検出する第2偏差検出部と、第1偏差検
出部の偏差出力が入力され、基準送り速度以上のとき
に、移動加熱領域ファジイ推論による推論結果が有効と
なる入熱量を出力に中間変数として送出する移動加熱領
域決定ファジイ推論部と、第2偏差検出部の偏差出力が
入力され、送り速度が零から状態変化速度までに、静止
加熱領域ファジイ推論による推論結果が有効となる入熱
量を出力に中間変数として送出する静止加熱領域決定フ
ァジイ推論部と、上記両推論部から送出された中間変数
による移動および静止加熱領域ファジイ推論による入熱
量と第1,第2偏差検出部の偏差出力が入力され、これか
ら送り速度に対する最適入熱量を送出するファジイ推論
合成部と、このファジイ推論合成部から送出される最適
入熱量にて制御され、管素材を加熱する可変電源部とを
備えたものである。
E. Means for Solving the Problems The present invention provides a first deviation detecting unit for detecting a deviation between a feed rate of a tube material and a reference feed speed set value in welding heat input control of an electric resistance welded pipe; A second deviation detecting unit for detecting a deviation between the feed speed of the state and the set value of the state change speed, and a deviation output of the first deviation detecting unit are input, and when the speed is equal to or higher than the reference feed speed, an inference result based on the moving heating area fuzzy inference is obtained. A fuzzy estimating unit for determining a moving heating region, which outputs a heat input amount at which the heat becomes effective as an intermediate variable, and a deviation output of the second deviation detecting unit are inputted. A fuzzy inference part for determining the static heating area which outputs the amount of heat input for which the inference result is valid to the output as an intermediate variable, and a fuzzy inference for moving and stationary heating area based on the intermediate variables transmitted from the two inference parts. A heat input amount and a deviation output of the first and second deviation detection units are input, and a fuzzy inference synthesizing unit that sends out an optimum heat input amount with respect to a feed rate from the input and an optimal heat input amount sent from the fuzzy inference synthesis unit are controlled. And a variable power supply for heating the tube material.

F.作用 基準送り速度以上のときに推論結果が有効となる移動
加熱領域における入熱量と、送り速度が零から状態変化
速度までに推論結果が有効となる静止加熱領域における
入熱量とを中間変数として出力する。両出力はファジイ
推論合成部で状態変化速度偏差と基準速度偏差値を加味
して管素材の現在の送り速度に対して最適入熱量を推論
し、その推論結果にもとづいて可変電源部を制御する。
F.Action The intermediate variable is the amount of heat input in the moving heating area where the inference result is valid at or above the reference feed rate, and the amount of heat input in the stationary heating area where the inference result is effective from the zero feed rate to the state change rate. Output as For both outputs, the fuzzy inference synthesis unit infers the optimal heat input for the current feed speed of the tube material taking into account the state change speed deviation and the reference speed deviation value, and controls the variable power supply unit based on the inference result. .

G.実施例 以下この発明の実施例を図面に基づいて説明する。G. Embodiment An embodiment of the present invention will be described below with reference to the drawings.

第1図において、パイプ状にロール成形された管素材
11はスクイズロール12の前段部に位置するワークコイル
13の高周波電流でVシーム部11Aの加熱がなされる。ワ
ークコイル13に供給する高周波電流は可変電源部14で電
圧制御された交流電力を直流高圧部15によって昇圧整流
する。この高圧直流電力は高周波発振部16に供給され、
この発振部16から高周波電流を取り出し、この高周波電
流が整合変圧器17から取り出される。
In FIG. 1, a pipe material roll-formed into a pipe shape
11 is a work coil located at the front of the squeeze roll 12.
The V-seam portion 11A is heated by the 13 high-frequency current. The high-frequency current supplied to the work coil 13 is stepped and rectified by the DC high-voltage unit 15 in AC power whose voltage is controlled by the variable power supply unit 14. This high-voltage DC power is supplied to the high-frequency oscillation unit 16,
A high-frequency current is extracted from the oscillating unit 16, and the high-frequency current is extracted from the matching transformer 17.

18は速度検出器で、この速度検出器18は管素材11の送
り速度vtを検出するもので、検出された送り速度vtは第
1,第2偏差検出部19,20に供給される。第1,第2偏差検
出部19,20には基準速度設定値vsと状態変化速度設定値v
xがそれぞれ与えられ、これら値vs,vxとvtとの偏差Δ
vs,Δvxを出力に得る。
Reference numeral 18 denotes a speed detector, which detects the feed speed v t of the tube material 11, and the detected feed speed v t
1, is supplied to the second deviation detecting units 19 and 20. First, reference speed setting value to the second difference detecting section 19, 20 v s and state change speed setting value v
x is respectively given, these values v s, v deviation of x and v t delta
Get v s , Δv x at the output.

これら偏差vsとvxは移動加熱領域入熱量決定ファジイ
推論部(以下移動加熱推論と称す)21と静止加熱領域入
熱量決定ファジイ推論部(以下静止加熱推論と称す)22
にそれぞれ各別に入力される。前者の移動加熱推論21は
送り速度vtが状態変化速度以上の時に推論結果を有効と
する中間変数%P0を得るものであり、後者の静止加熱推
論22は送り速度零から状態変化速度までに推論結果を有
効とする中間変数%P1を得るものである。
These deviations v s and v x are the fuzzy inference unit for determining the amount of heat input in the moving heating area (hereinafter referred to as “moving heating inference”) 21 and the fuzzy inference unit for determining the amount of heat input in the stationary heating area (hereinafter referred to as “static heating inference”) 22.
Is entered separately for each. The former moving heating inference 21 is for obtaining an intermediate variable% P 0 that makes the inference result effective when the feed speed v t is equal to or greater than the state change speed, and the latter stationary heating inference 22 is from the feed speed zero to the state change speed. it is intended to obtain the intermediate variable% P 1 to enable the inference result.

得られた中間変数%P0,P1はファジイ推論合成部23に
入力される。このファジイ推論合成部23な中間変数%
P0,%P1に対して第1,第2偏差検出部19,20の偏差Δv
x(状態変化速度偏差),Δvs(基準送り速度偏差)を
加味してvt(現在の送り速度)に対する最適入熱量Pt
求めるためのものである。可変電源部14はファジイ推論
合成部23から出力される最適入熱量Ptで制御される。
The obtained intermediate variables% P 0 and P 1 are input to the fuzzy inference synthesizing unit 23. This fuzzy inference synthesis unit 23 intermediate variable%
Deviation Δv of the first and second deviation detectors 19 and 20 with respect to P 0 and% P 1
x (state change speed deviation) is for obtaining an optimum heat input P t for Delta] v s in consideration of the (reference feed speed deviation) v t (current feed rate). Variable power supply unit 14 is controlled by the optimum amount of heat input P t which is output from the fuzzy inference synthesis unit 23.

次に上記実施例の動作を述べる。 Next, the operation of the above embodiment will be described.

管素材11の送り速度vtは検出器18で検出する。検出さ
れた送り速度vtは第1,第2偏差検出部19,20で設定値vs,
vxと比較され、その偏差Δvs,Δvxが第1,第2偏差検出
部19,20から出力される。偏差Δvs,Δvxは第3図に示す
制御ルール説明図に従って移動加熱推論21および静止加
熱推論22でファジイ推論される。なお、第3図の制御ル
ールにおいて、R1〜R3は移動加熱推論21のルール例であ
り、Rn〜Rn+6は静止加熱推論22のルール例である。ま
た、Rx,Rx+1はファジイ推論合成部23のルール例であ
る。
The feed speed v t of the tube material 11 is detected by the detector 18. The detected feed speed v t is set by the first and second deviation detectors 19 and 20 to the set value v s ,
v is compared to x, the deviation Delta] v s, the Delta] v x is outputted from the first, second difference detecting section 19, 20. The deviations Δv s and Δv x are fuzzy inferred by the moving heating inference 21 and the stationary heating inference 22 according to the control rule explanatory diagram shown in FIG. In the control rule of FIG. 3, R 1 to R 3 are rule examples of the moving heating inference 21, and R n to R n + 6 are rule examples of the static heating inference 22. Also, R x and R x + 1 are rule examples of the fuzzy inference synthesis unit 23.

例えば、第3図のルール例において、静止加熱推論が
22ルールR1を実行したとき、その出力の中間変数%P1
ミディアム(中位)になる。また、移動加熱推論21がル
ールRnを実行したとき、その出力の中間変数%P0は非常
に小さくなる。これら中間変数%P0,%P1はファジイ推
論合成部23に入力される。ファジイ推論合成部23は中間
変数が入力されると、偏差Δvs,Δvxを考慮して%P1
%P0をファジイ推論して出力に入熱量Ptを得る。この入
熱量Ptにより可変電源部14は制御され、高圧直流部15,
高周波発振部16,変成器17およびワークコイル13を介し
て管素材11が最適入熱量にて加熱される。
For example, in the rule example of FIG.
When you run a 22 rule R 1, the intermediate variable% P 1 of the output is a medium (medium). Further, when the mobile heating reasoning 21 executes the rules R n, intermediate variables% P 0 of its output is very small. These intermediate variables% P 0 and% P 1 are input to the fuzzy inference synthesis unit 23. When fuzzy inference synthesis section 23 intermediate variables are input, obtaining a deviation Delta] v s, in consideration of the Δv x% P 1 or% P 0 fuzzy inference to heat input P t to the output. Variable power supply section 14 by the heat input P t is controlled, the high-voltage DC unit 15,
The tube material 11 is heated with the optimal heat input via the high-frequency oscillator 16, the transformer 17, and the work coil 13.

上記第3図に示す制御ルールを用いれば第2図に示す
ような理想的な入熱制御パターンで可変電源部14は制御
される。
If the control rules shown in FIG. 3 are used, the variable power supply section 14 is controlled in an ideal heat input control pattern as shown in FIG.

なお、第4図から第7図はメンバーシップ関数例を示
す説明図で、第4図はΔvx(v−vx)のメンバーシップ
関数例、第5図はΔvs(v−vs)のメンバーシップ関数
例、第6図はvのメンバーシップ関数例、第7図は%
P0、%P1のメンバーシップ関数例である。
4 to 7 are explanatory diagrams showing examples of membership functions. FIG. 4 is an example of a membership function of Δv x (v−v x ), and FIG. 5 is Δv s (v−v s ). 6 is an example of a membership function of v, and FIG.
P 0,% is a membership function example of P 1.

上記のように管素材11の入熱量をファジイ推論を用い
て行うと、オペレータが操作するとき同様に入熱制御が
できるようになる。
If the heat input of the tube material 11 is performed using fuzzy inference as described above, the heat input can be controlled similarly when the operator operates.

H.発明の効果 以上述べたように、この発明によれば、電縫管製造ラ
インにおける入熱制御をファジイ推論を用いて制御した
ことにより、送り速度を主要因とするフィードバック制
御の制御アルゴリズムを線形近似式の各種パラメータの
同定を不要とすることができるとともに、静止加熱領域
と移動加熱領域の制御ルールを個別に表現してルール数
の低減を図りかつ静止加熱領域から移動加熱領域への移
行制御(立ち上がり制御)が円滑に行うことができる利
点がある。
H. Effects of the Invention As described above, according to the present invention, by controlling the heat input control in the ERW pipe production line using fuzzy inference, the control algorithm of the feedback control with the feed rate as the main factor is realized. It is not necessary to identify various parameters of the linear approximation formula, and the control rules for the stationary heating area and the moving heating area are separately expressed to reduce the number of rules and to shift from the stationary heating area to the moving heating area. There is an advantage that control (rise control) can be performed smoothly.

【図面の簡単な説明】[Brief description of the drawings]

第1図はこの発明の実施例を示す概略構成図、第2図は
電縫管製造時の理想的な入熱制御パターン図、第3図は
制御ルールの一例を示す説明図、第4図から第7図はメ
ンバーシップ関数例を示す説明図、第8図は誘導式高周
波電縫管製造ラインを示す概略的な斜視図である。 11……管素材、12……スクイズロール、13……ワークコ
イル、14……可変電源部、15……高圧直流部、16……高
周波発振部、17……変成器、18……速度検出器、19,20
……第1,第2偏差検出器、21……移動加熱領域入熱量決
定ファジイ推論部、22……静止加熱領域入熱量決定ファ
ジイ推論部、23……ファジイ推論合成部。
FIG. 1 is a schematic configuration diagram showing an embodiment of the present invention, FIG. 2 is an ideal heat input control pattern diagram in manufacturing an electric resistance welded tube, FIG. 3 is an explanatory diagram showing an example of a control rule, FIG. 7 is an explanatory diagram showing an example of a membership function, and FIG. 8 is a schematic perspective view showing an induction type high-frequency electric resistance welded pipe production line. 11 ... Tube material, 12 ... Squeeze roll, 13 ... Work coil, 14 ... Variable power supply unit, 15 ... High voltage DC unit, 16 ... High frequency oscillation unit, 17 ... Transformer, 18 ... Speed detection Vessels, 19,20
... First and second deviation detectors 21... A moving heating area heat input amount determining fuzzy inference section, 22... A stationary heating area heat input amount determining fuzzy inference section, and 23.

フロントページの続き (58)調査した分野(Int.Cl.6,DB名) H05B 6/06 H05B 6/10 G05B 13/02 G05D 23/00 G05D 23/19Continued on the front page (58) Fields surveyed (Int.Cl. 6 , DB name) H05B 6/06 H05B 6/10 G05B 13/02 G05D 23/00 G05D 23/19

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】電縫管の溶接入熱制御において、管素材の
送り速度と、基準送り速度設定値との偏差を検出する第
1偏差検出部と、管素材の送り速度と状態変化速度設定
値との偏差を検出する第2偏差検出部と、第1偏差検出
部の偏差出力が入力され、基準送り速度以上のときに、
移動加熱領域ファジイ推論による推論結果が有効となる
入熱量を出力に中間変数として送出する移動加熱領域決
定ファジイ推論部と、第2偏差検出部の偏差出力が入力
され、送り速度が零から状態変化速度までに、静止加熱
領域ファジイ推論による推論結果が有効となる入熱量を
出力に中間変数として送出する静止加熱領域決定ファジ
イ推論部と、上記両推論部から送出された中間変数によ
る移動および静止加熱領域ファジイ推論による入熱量と
第1,第2偏差検出部の偏差出力が入力され、これから送
り速度に対する最適入熱量を送出するファジイ推論合成
部と、このファジイ推論合成部から送出される最適入熱
量にて制御され、管素材を加熱する可変電源部とを備え
たことを特徴とする電縫管の溶接入熱制御装置。
In a welding heat input control of an electric resistance welded pipe, a first deviation detecting unit for detecting a deviation between a feed speed of a tube material and a reference feed speed set value, a feed speed of a tube material and a state change speed setting. When a deviation output from the second deviation detection unit for detecting a deviation from the value and a deviation output from the first deviation detection unit are input and are equal to or higher than the reference feed speed,
The moving heating area determining fuzzy inference unit that sends out the heat input that makes the inference result by the moving heating area fuzzy inference effective as an intermediate variable and the deviation output of the second deviation detection unit are input, and the feed rate changes from zero to a state change. By the speed, the stationary heating area determining fuzzy inference unit that sends the heat input amount at which the inference result by the static heating area fuzzy inference becomes effective to the output as an intermediate variable, and the moving and stationary heating by the intermediate variable sent from both the inference units A fuzzy inference synthesizing unit which receives a heat input amount based on a region fuzzy inference and a deviation output of the first and second deviation detection units and sends out an optimum heat input amount with respect to a feed rate, and an optimum heat input amount transmitted from the fuzzy inference synthesis unit And a variable power supply for heating the tube material.
JP2142499A 1990-05-31 1990-05-31 Heat input control device for ERW pipes Expired - Lifetime JP2819779B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2142499A JP2819779B2 (en) 1990-05-31 1990-05-31 Heat input control device for ERW pipes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2142499A JP2819779B2 (en) 1990-05-31 1990-05-31 Heat input control device for ERW pipes

Publications (2)

Publication Number Publication Date
JPH0436982A JPH0436982A (en) 1992-02-06
JP2819779B2 true JP2819779B2 (en) 1998-11-05

Family

ID=15316760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2142499A Expired - Lifetime JP2819779B2 (en) 1990-05-31 1990-05-31 Heat input control device for ERW pipes

Country Status (1)

Country Link
JP (1) JP2819779B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102081409B (en) * 2010-11-30 2013-01-02 大连三高重工设备有限公司 Speed control system and method of titanium welded pipe production line

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
菅野道夫、外3名、"汎用ファジィコントロールシステム",富士時報,1985年 Vol.58,No.4,p.307−314

Also Published As

Publication number Publication date
JPH0436982A (en) 1992-02-06

Similar Documents

Publication Publication Date Title
US5223683A (en) High frequency electronic welding system
Suzuki et al. Application of adaptive control theory to on-line GTA weld geometry regulation
JP2819779B2 (en) Heat input control device for ERW pipes
GB1570916A (en) Method of induction heating of metal materials
JP2861285B2 (en) Heat input control device for ERW pipes
JP2861286B2 (en) Heat input control device for ERW pipes
JPH0436983A (en) Welding input heat control device for seam welded pipe
JP3827363B2 (en) Control device for ERW pipe making equipment
SU893463A1 (en) Automatic control method of the high-frequency welding process
PL162785B1 (en) Method of automatically adaptingg welding current to actual welding rate in continous induction welding processes and circuitry therefor
JPS59220289A (en) Method for controlling heat input of welding electric welded pipe
JP4010880B2 (en) Temperature control device for heating device
JPH0699287A (en) Method for controlling welding electric power of high frequency welding equipment
Boo et al. A self-organizing fuzzy control of weld pool size in GMA welding processes
JP2508141B2 (en) Heat input control method for ERW pipe welding equipment
JPS60151709A (en) Temperature controller for industrial furnace
Iokibe Fuzzy Control for High Frequency Tube Welding System
SU541155A1 (en) Device for regulating induction heating
JPH03254374A (en) Welding heat input control method for resistance welded tube
JPH03472A (en) Method and equipment for ac tig welding
JPH07108463B2 (en) Welding heat input control method for ERW pipe
SU925585A1 (en) Method of automatic control of high frequency welding process
SU812469A1 (en) Method of controlling process of resistance butt welding
JPS60106679A (en) Method for controlling heat input to electric welded pipe
SU797856A1 (en) Method of automatic control of high-frequency welding

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20040301

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20050804

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050816

A521 Written amendment

Effective date: 20051006

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051213

A61 First payment of annual fees (during grant procedure)

Effective date: 20051226

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20100113

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20110113

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20110113

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20120113

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20120113

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20130113

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130113

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20140113