JPS59220289A - Method for controlling heat input of welding electric welded pipe - Google Patents

Method for controlling heat input of welding electric welded pipe

Info

Publication number
JPS59220289A
JPS59220289A JP9495483A JP9495483A JPS59220289A JP S59220289 A JPS59220289 A JP S59220289A JP 9495483 A JP9495483 A JP 9495483A JP 9495483 A JP9495483 A JP 9495483A JP S59220289 A JPS59220289 A JP S59220289A
Authority
JP
Japan
Prior art keywords
welding
heat input
speed
feed speed
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9495483A
Other languages
Japanese (ja)
Other versions
JPH0686020B2 (en
Inventor
Takashi Katanosaka
片之坂 隆
Tadashi Iokido
正 五百旗頭
Koji Kurita
栗田 宏二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP58094954A priority Critical patent/JPH0686020B2/en
Publication of JPS59220289A publication Critical patent/JPS59220289A/en
Publication of JPH0686020B2 publication Critical patent/JPH0686020B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/24Electric supply or control circuits therefor
    • B23K11/25Monitoring devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Induction Heating (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)
  • Control Of Temperature (AREA)

Abstract

PURPOSE:To improve welding quality and the yield of production in welding an electric welded pipe by detecting the feed speed of a pipe material, calculating the weld heat input corresponding thereto by specific expression and controlling the weld heat input. CONSTITUTION:The feed speed of a pipe material is detected and is inputted to an arithmetic processing unit which determines the optimum heat input value corresponding to the detected feed speed from the equation expressing the relation between the feed speed and the required welding heat input and controls online the welding heat input by a feed-forward method. In the equation, vr is the feed speed, Ep the plate voltage of a high frequency oscillator, Ip the plate current of the high frequency oscillator, (a) the coefft of speed in the moving and heating region, (b) the reference value of static heating, (c) the coefft. of speed in the static heating region, (d) the correction value for the speed in the static heating region, (e) the correction value for the static region, (f) the correction value for the acceleration and deceleration of the static heating region and (t) the thicknes of the plate.

Description

【発明の詳細な説明】 本発明は高周波電縫管溶接における溶接品質の改善、品
質の安定化、生産歩留シの大幅向上を計−)た入熱制御
方法に関する1、 第1図(lは誘導式高周波電縫管溶接を示し第1図(b
)は接触式1%周波電縫管溶接を示す。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a heat input control method for improving welding quality, stabilizing quality, and significantly increasing production yield in high-frequency electric resistance welding pipe welding. Figure 1 (b) shows induction type high frequency electric resistance welding pipe welding.
) indicates contact type 1% frequency ERW pipe welding.

図中、■は電磁誘導のためのワークコイル、2は(χ触
通電のためのチップ(接触子)、3rよスクイズロール
、4は溶接される素材、5は■シーム、6は電縫管、7
は高周波発振装置である。
In the figure, ■ is a work coil for electromagnetic induction, 2 is a tip (contact) for (χ), 3r is a squeeze roll, 4 is the material to be welded, 5 is ■ seam, and 6 is an electric resistance welding tube. ,7
is a high frequency oscillator.

ワークコイル1又はチップ2vニスクイズロール3の前
段部に配置されており、これらによシ多段の成形ロール
(図示省略)によって素材4に作られたVシーム5に葛
周波電流を流すと、互いに突合わされるエツジ部が高周
波電流によって加熱され次いでスクイズロール3によっ
て加圧溶接される。
The work coil 1 or the tip 2v is placed in front of the squeeze roll 3, and when a kine frequency current is applied to the V seam 5 made in the material 4 by a multi-stage forming roll (not shown), they mutually The edges to be butted are heated by a high frequency current and then pressure welded by a squeeze roll 3.

上述した電縫管溶接において、エツジ(■シーム)5に
流れる高周波電流を制御する従来の入熱制御力法として
は、 (1)  オペレータが溶接部の温度(火色)を目視す
ると共に切削された溶接ビードの形状を観察し、これら
の状態によシ手動で入熱量を調整している手動制御、 (2)箭接される素材の送シ速度を検出し、送シ速度に
見合う入熱量を関数発生器の出力(;よって調整する速
度連動制御、 (3)溶接部の温it検出し、この温度が一定となるよ
うに制御する温度制御、 などが採用されている。
In the above-mentioned ERW pipe welding, the conventional heat input control force method for controlling the high frequency current flowing to the edge (■ seam) 5 is as follows: (1) The operator visually observes the temperature (flame color) of the welded part and Manual control that observes the shape of the weld bead and manually adjusts the amount of heat input according to these conditions. (2) Detects the feeding speed of the material to be welded and adjusts the amount of heat input commensurate with the feeding speed (3) Temperature control that detects the temperature of the welding part and controls it so that this temperature is constant.

しかし、上記(1)〜(3)のような入熱制御方法では
、下記(a)〜(C)の点で未だ不十分である。
However, the heat input control methods described in (1) to (3) above are still insufficient in the following points (a) to (C).

(a)  素材の送り速度変動、板厚変動などの急激に
変動する要因には追従できない。
(a) It is not possible to follow rapidly changing factors such as material feed speed fluctuations and sheet thickness fluctuations.

(b)  起動時、停止時における送シ速度ゼロの近傍
では溶接ができず、オープンバイブが発生する。
(b) Welding cannot be performed when the feed speed is near zero when starting or stopping, and open vibration occurs.

(C)  これらの要因により、入熱の過不足が生じ、
そのためペネトレータ(スケールなどの酸化物を溶接部
に巻き込んで溶接不良となった状態)、冷接(低い温度
での不完全な溶接)等といった溶接部欠陥が発生し、良
好な溶接品質が得られない。また、起動停止の都度、溶
接できていない部分(オーブンパイプ)が発生するため
、生産歩留りの低下が太きい等の欠点があった。
(C) These factors cause excess or deficiency in heat input,
As a result, weld defects such as penetrators (a condition in which oxides such as scale are involved in the weld, resulting in poor welding) and cold welding (incomplete welding at low temperatures) occur, making it difficult to obtain good welding quality. do not have. In addition, each time the device is started or stopped, there is a portion (oven pipe) that is not welded, resulting in a drawback such as a significant drop in production yield.

本発明は上記従来技術の問題点に鑑み、ゼロから一足速
贋まで送シ速度が変っても連続的に安定な入熱制御を行
うことができる方法を提供することを目的とする。
SUMMARY OF THE INVENTION In view of the above-mentioned problems of the prior art, it is an object of the present invention to provide a method that can continuously perform stable heat input control even when the feed rate changes from zero to one-speed.

かかる目的を達成するための本発明方法の構成は、電縫
管溶接の入熱制御方法において、溶接される素材の送シ
速度を検出して演算処理装置に入力し7、送り速度と最
適溶接入熱との関係式に基づき、検出した送シ速度に対
応した溶接入熱を算出しフイードフォ17−ド方式でオ
ンライン制御することを特徴とする。
The structure of the method of the present invention to achieve such an object is that, in a heat input control method for electric resistance welding pipe welding, the feed speed of the material to be welded is detected and inputted to a processing unit 7, and the feed speed and optimal welding are determined. The welding heat input corresponding to the detected feed rate is calculated based on the relational expression with the heat input, and the welding heat input is controlled online using a feed-forward method.

以下詳細に説明する。This will be explained in detail below.

まず、電縫管溶接における操業データを整理すると、各
送)速Ut’lに対する必要入熱電力”pIpiz、誘
導式か接触式かの溶接方式の違い、管径、板厚を並びに
スクイズロール3のセンターとワークコイル1あるいは
チップ2間の距離t?が定められた場合、第2図に示フ
ーように一次式で表わされると考えられる。2152図
中、aは勾配(速度係数)、bは切片(静止加熱量)で
ある。そこで、この−次式によって各送シ速度7rに対
する入熱電力を計算し、この入熱電力を・与えれば送シ
速度の変化に応じて自動的に入熱調整されるはずである
。な゛お、E、、IPは高周波発振装置7のプレート電
圧とプレート電流であシ、この装置7としては第5図に
示す回路のものが一般的に用いられる。第5図中、8は
真空管、9は直流電源、10はタンクコノデンサ、11
は出力変圧器である。
First, if we organize the operational data for ERW pipe welding, we will find the required heat input power "pIpiz" for each feed speed Ut'l, the difference in welding method (induction type or contact type), pipe diameter, plate thickness, and squeeze roll 3. If the distance t? between the center of is the intercept (stationary heating amount). Therefore, by calculating the heat input power for each feed speed 7r using the following equation, and giving this heat input power, the power input will automatically occur according to changes in the feed speed. The heat should be adjusted. Note that E, IP are the plate voltage and plate current of the high frequency oscillator 7, and the circuit shown in FIG. 5 is generally used as this device 7. .In Figure 5, 8 is a vacuum tube, 9 is a DC power supply, 10 is a tank condenser, 11
is the output transformer.

しかし上述した一次式を用いて実験を重ねた結果、溶接
起動時又は停止時の送り速度がゼロの近傍においては一
次式を適用すると入熱不足となることがわかった。そこ
で、スクイズロール3とワークコイル1あるいはチップ
2間の距離1.の部分を送り速度ゼロ近傍でも溶接温度
に加熱する必要上、第3図に示す?r  Eplp/を
特性で入熱電力を与えることが考えられる。但し第3図
中の?4i’j、溶接起動時に送シ速度ゼロでワークコ
イル1又はチップ2のところに位置していた素材の部分
がスクイズロール3のセンターに来た時点での送シ速度
である。
However, as a result of repeated experiments using the above-mentioned linear equation, it was found that applying the linear equation results in insufficient heat input when the feed rate at the time of starting or stopping welding is near zero. Therefore, the distance between the squeeze roll 3 and the work coil 1 or the tip 2 is 1. It is necessary to heat the part to the welding temperature even when the feed rate is near zero, as shown in Figure 3. It is conceivable to give the heat input power using the characteristic rEplp/. However, in Figure 3? 4i'j is the feeding speed at the time when the part of the material that was located at the work coil 1 or the tip 2 at the feeding speed of zero at the start of welding comes to the center of the squeeze roll 3.

しかし、第3図のような1Pr −Eplp / を特
性で入熱電力を調整しても、未だ不十分であった。
However, even if the heat input power was adjusted using the characteristic of 1Pr-Eplp/ as shown in FIG. 3, it was still insufficient.

即ち、電縫管溶接では、造管ラインが起動されると、送
シ速度ゼロから所定の一定送シ速度1ではtマぼ一定の
加速度をもって加速される。
That is, in electric resistance welding pipe welding, when the pipe making line is started, it is accelerated from a feed speed of zero to a predetermined constant feed speed of 1 with a constant acceleration of about t.

従って第3図に示す如(0〜)・tの静止加熱領域で入
熱量を一定にすると、送ル速度ゼロの近傍においては、
静止加熱領域入熱の投入レベルによシ、部分的に入熱の
過不足が生じるため安定した溶接連続性がないことが判
った。
Therefore, if the amount of heat input is constant in the stationary heating region of (0~)·t as shown in Fig. 3, in the vicinity of the feeding speed of zero,
It was found that there was no stable welding continuity because the heat input in the stationary heating area was partially over or under depending on the level of heat input.

そこで、第4図に示す如く、静止加熱領域(0−)・t
)では送シ速度の増加に対し、入熱電力を減少させるy
r −EpIp/ を特性で実験を重ねた。
Therefore, as shown in Fig. 4, the stationary heating region (0-)・t
), the heat input power is decreased as the feeding speed increases.
We conducted repeated experiments using the characteristics of r -EpIp/.

もちろん1を以上では入熱量を増加する、その結果、送
シ速度ゼロから所定速度まで連続して安定に溶接が行わ
れることが判った。即ち、起動時、停止時のオープンパ
イプの発生がな(、生産歩留シが大幅に向上した。
Of course, when the value is 1 or more, the amount of heat input increases.As a result, it has been found that welding can be performed continuously and stably from the feed speed of zero to a predetermined speed. That is, open pipes do not occur when starting or stopping (and the production yield is greatly improved).

第4図のyr  BpIp / t %性を更に検討す
ると下記関係式であることが好ましい。
Further examining the yr BpIp/t% property shown in FIG. 4, it is preferable that the following relational expression is satisfied.

但し、E6は制御出力、 IPrは送シ速度、 EPは高周波発振装置のプレート電圧 (KV ) IPは高周波発振装置のプレート電流 (A) aは移動加熱領域速度係数、 bは静止加熱基準値、 Cは静止加熱領域速度係数、 dは静止加熱領域速度補正値、 eは静止加熱領域補正値、 fは静止加熱領域加減速補正値、 tは板厚である。However, E6 is the control output, IPr is the feed rate, EP is the plate voltage of the high frequency oscillator (KV) IP is the plate current of the high frequency oscillator (A) a is the moving heating area velocity coefficient, b is the static heating reference value, C is the stationary heating area rate coefficient; d is the stationary heating area speed correction value, e is the stationary heating area correction value, f is the stationary heating area acceleration/deceleration correction value, t is the plate thickness.

上式(1)における各係数a+b+c+d、e、fは、
溶接方式(誘導式か接触式かの違い)、管径、板厚t、
並びにスクイズロール3のセンターとワークコイルlあ
るいはチップ2間の距離t−で定まシ、いずれも実験に
よって求められる。
Each coefficient a+b+c+d, e, f in the above formula (1) is
Welding method (induction type or contact type), pipe diameter, plate thickness t,
It is also determined by the distance t- between the center of the squeeze roll 3 and the work coil l or tip 2, both of which can be determined by experiment.

1例を挙げると誘導式、管外径25.4 mφ、 板厚
l = 1.2 tran 、距離t、=65間の東件
下では、a=  1. 4 1) =  3 3 C−10 d  =  3 e −62 −0 である。
To give an example, in the case of an induction type, tube outer diameter 25.4 mφ, plate thickness l = 1.2 tran, distance t = 65, a = 1. 4 1) = 3 3 C-10 d = 3 e -62 -0.

上記関係式(1)による具体的な入熱制御として社、ま
ず、関係式(1)の演算をマイクロコノピユータなどの
演算処理装置にプログラムしておきまた、式中の各係数
a −fは演算処理装置の内部常数とし、溶接方式、管
径、板厚を及び距離を−の各条件によってテーブル化し
てオ・9く。次に制御に当り、上記各条件が演算処理装
置に入力されることによシ対応する各係数がテーブルか
ら検索され且つ自動的に関係式(1)にセットされるよ
うにしておき、素材4あるいは電縫管6の送シ速度V、
をセンサーで検出し、検出信号を演算処理装置に入力し
て関係式(1)から時々刻々の送シ速度に対する溶接入
熱を演算する。この演算値に基づき、フィードフォワー
ド方式によって溶接入熱をオンライン制御する。溶接入
熱を調整するには、高周波発振装置7のプレート電圧E
P、プレート電流Ipffi検出し、bpと、ipの片
方あるいは双方(電カ一定)の制御を使用すると良い。
As a concrete heat input control using the above relational expression (1), first, the calculation of the relational expression (1) is programmed into an arithmetic processing device such as a microcontroller, and each coefficient a - f in the equation is is an internal constant of the processing unit, and the welding method, pipe diameter, plate thickness, and distance are tabulated according to each condition. Next, for control, when each of the above conditions is input to the arithmetic processing device, the corresponding coefficients are retrieved from the table and automatically set in relational expression (1). Or the feed speed V of the ERW tube 6,
is detected by a sensor, and the detected signal is input to an arithmetic processing unit to calculate the welding heat input with respect to the momentary feed rate from relational expression (1). Based on this calculated value, welding heat input is controlled online using a feedforward method. To adjust the welding heat input, the plate voltage E of the high frequency oscillator 7
It is preferable to detect P and plate current Ipffi and use control of one or both of bp and ip (with constant power).

なお、各係数a−f f、1テーブル化せず各条件が変
わる都度、演算処理装置に入力する方法であっても良い
。板厚tH累材の公称板厚でも十分である。
Alternatively, each coefficient af may be input into the arithmetic processing device each time each condition changes, without forming one table. The nominal thickness of the plate thickness tH is sufficient.

以上説明した如く、本発明によれば送シ速度ゼロから一
定速度まで連続して安定な溶接ができる。これによシ溶
接品質が向上1−1品質が安定化し、また起動時・停止
時のオープンパイプもなく、生産歩留りが大幅に向上す
る。
As explained above, according to the present invention, stable welding can be performed continuously from a feed speed of zero to a constant speed. This improves welding quality.1-1 Quality is stabilized, and there are no open pipes at startup or shutdown, greatly improving production yield.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a) 、 (b)は電縫管溶接の訪導式、接触
式の各説明図、第2図、第3図は本発明の考察に用いた
送)速度−入熱電力の特性図、第4図は本発明の送シ速
度−人熱電力の特性図、第5図は高周波発振装置の1例
葡示す回路図である。。 図面中、■はワークコイル、2はチップ、3けスクイズ
ロール、4は素材、5はVシーム、6Vi電縫管、7は
高周波発振装置である。 特許出願人 株式会社明電舎
Figures 1 (a) and (b) are explanatory diagrams of the contact type and contact type of ERW pipe welding, and Figures 2 and 3 are diagrams showing the relationship between feeding speed and heat input power used in the discussion of the present invention. FIG. 4 is a characteristic diagram of the transmission speed versus heat power of the present invention, and FIG. 5 is a circuit diagram showing one example of a high frequency oscillation device. . In the drawing, ■ is a work coil, 2 is a chip, 3 squeeze rolls, 4 is a material, 5 is a V seam, 6Vi electric resistance welding tube, and 7 is a high frequency oscillator. Patent applicant Meidensha Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] (1)  電縫管溶接の入熱制御方法において、管材の
送シ速度を検出して演算処理装置に入力し、送ル速度と
必要溶接入熱との関係式に基づき、検出した送り速度に
対応した溶接人熱金算出しフィードフォワード方式でオ
ンライン制御することを特徴とする電縫管溶接の入熱制
御方法。
(1) In the heat input control method for electric resistance welding pipe welding, the feed speed of the pipe material is detected and input to the arithmetic processing unit, and the detected feed speed is adjusted based on the relational expression between the feed speed and the required welding heat input. A heat input control method for electric resistance welding pipe welding, which is characterized by calculating the corresponding welder's heat and performing online control using a feedforward method.
(2)  l記関係式が 但し、’LFrは送シ速度、 EPは高周波発振装置のプレート電圧、IPは高周波発
振装置のプレート電流、aは移動加熱領域速度係数、 bは静止加熱基準値、 Cは静止加熱領域速度係数、 dは静止加熱領域速度係数値、 eは静止加熱領域補正値、 fは静止加熱領域加減速補正値、 tは板厚、 であフ、この関係式によシ最適人熱値を求め、この値と
なるように溶接入熱を制御することを特徴とする特許請
求の範囲第1項記載の電縫管溶接の入熱制御方法。
(2) The relational expression in l is, however, 'LFr is the feed rate, EP is the plate voltage of the high frequency oscillation device, IP is the plate current of the high frequency oscillation device, a is the moving heating area speed coefficient, b is the stationary heating reference value, C is the stationary heating area velocity coefficient, d is the stationary heating area velocity coefficient value, e is the stationary heating area correction value, f is the stationary heating area acceleration/deceleration correction value, t is the plate thickness, 2. A heat input control method for electric resistance welding pipe welding according to claim 1, characterized in that an optimum human heat value is determined and the welding heat input is controlled to reach this value.
(3)上記関係式の係数a、b、c、d、e、fを、誘
導式か接触式かの溶接方式の違い、管径、板厚皇びにス
クイズロールセンターとワークロールあるいはチップ間
の距離の各条件によって演算処理装置内に予めテーブル
化しておき、各条件の入力によって条件に対応した係数
をテーブルから自動的に検索し且つ関係式にセットする
ことを特徴とする特許請求の範囲第2項記載の電縫管溶
接の入熱制御方法。
(3) The coefficients a, b, c, d, e, and f of the above relational expression are calculated based on the difference in welding method (induction type or contact type), pipe diameter, plate thickness, and the distance between the squeeze roll center and work roll or tip. A table is prepared in advance in an arithmetic processing unit according to each distance condition, and by inputting each condition, coefficients corresponding to the conditions are automatically searched from the table and set in the relational expression. The heat input control method for electric resistance welded pipe welding according to item 2.
(4)  高周波発振装置のプレート電圧とプレート電
流を検出し、電カー足制御によシ溶接人熱を制御するこ
とを特徴とする特許請求の範囲第2項記載の電縫管溶接
の入熱制御方法。
(4) Heat input for electric resistance welding pipe welding according to claim 2, characterized in that the plate voltage and plate current of the high-frequency oscillator are detected, and the welding human heat is controlled by electric car foot control. Control method.
JP58094954A 1983-05-31 1983-05-31 Heat input control method for ERW pipe welding Expired - Lifetime JPH0686020B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58094954A JPH0686020B2 (en) 1983-05-31 1983-05-31 Heat input control method for ERW pipe welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58094954A JPH0686020B2 (en) 1983-05-31 1983-05-31 Heat input control method for ERW pipe welding

Publications (2)

Publication Number Publication Date
JPS59220289A true JPS59220289A (en) 1984-12-11
JPH0686020B2 JPH0686020B2 (en) 1994-11-02

Family

ID=14124330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58094954A Expired - Lifetime JPH0686020B2 (en) 1983-05-31 1983-05-31 Heat input control method for ERW pipe welding

Country Status (1)

Country Link
JP (1) JPH0686020B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62296974A (en) * 1986-06-18 1987-12-24 Nippon Kokan Kk <Nkk> Welding heat input control method at manufacturing time of seam welded pipe

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4990649A (en) * 1972-12-29 1974-08-29
JPS57106483A (en) * 1980-12-22 1982-07-02 Kawasaki Steel Corp High frequency electric resistance welding method for blank pipe edge part for electric welding steel pipe
JPS57195587A (en) * 1981-05-29 1982-12-01 Nippon Steel Corp Method and device for controlling automatic welding of high frequency electric resistance welded pipe

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4990649A (en) * 1972-12-29 1974-08-29
JPS57106483A (en) * 1980-12-22 1982-07-02 Kawasaki Steel Corp High frequency electric resistance welding method for blank pipe edge part for electric welding steel pipe
JPS57195587A (en) * 1981-05-29 1982-12-01 Nippon Steel Corp Method and device for controlling automatic welding of high frequency electric resistance welded pipe

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62296974A (en) * 1986-06-18 1987-12-24 Nippon Kokan Kk <Nkk> Welding heat input control method at manufacturing time of seam welded pipe

Also Published As

Publication number Publication date
JPH0686020B2 (en) 1994-11-02

Similar Documents

Publication Publication Date Title
KR960005824B1 (en) High frequency electronic welding system
US2687464A (en) High-frequency induction tube welding
JPS59220289A (en) Method for controlling heat input of welding electric welded pipe
JPH03504695A (en) A method of press-welding heated members using an arc moving in a magnetic field
US5889262A (en) System for and method of automatically controlling amount of input heat in high-frequency electric resistance welding machine
JPH0699287A (en) Method for controlling welding electric power of high frequency welding equipment
JPS60247485A (en) Continuous welding method and device for metallic pipe
JPS6224180B2 (en)
JP2861286B2 (en) Heat input control device for ERW pipes
JP2819779B2 (en) Heat input control device for ERW pipes
JP3320509B2 (en) High frequency heating equipment
JP2675624B2 (en) AC TIG welding method and apparatus
JPH0436983A (en) Welding input heat control device for seam welded pipe
JP3827363B2 (en) Control device for ERW pipe making equipment
JPS62296974A (en) Welding heat input control method at manufacturing time of seam welded pipe
JPH07108463B2 (en) Welding heat input control method for ERW pipe
SU893463A1 (en) Automatic control method of the high-frequency welding process
SU1745460A1 (en) Method of arc welding by electric rivets
JPH0724582A (en) High-frequency heating equipment
JPH10109184A (en) Manufacture of resistance welded tube
JP2924675B2 (en) Manufacturing method of welded section steel
JP2525695B2 (en) Welding method of thick-wall ERW steel pipe
SU925585A1 (en) Method of automatic control of high frequency welding process
JPS61279376A (en) Production of electric welded pipe having taper thickness
JPS55109582A (en) Heat input control method in high-frequency electric welded tube welding