JPH0686020B2 - Heat input control method for ERW pipe welding - Google Patents
Heat input control method for ERW pipe weldingInfo
- Publication number
- JPH0686020B2 JPH0686020B2 JP58094954A JP9495483A JPH0686020B2 JP H0686020 B2 JPH0686020 B2 JP H0686020B2 JP 58094954 A JP58094954 A JP 58094954A JP 9495483 A JP9495483 A JP 9495483A JP H0686020 B2 JPH0686020 B2 JP H0686020B2
- Authority
- JP
- Japan
- Prior art keywords
- heat input
- welding
- feed rate
- heating region
- frequency oscillator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K11/00—Resistance welding; Severing by resistance heating
- B23K11/24—Electric supply or control circuits therefor
- B23K11/25—Monitoring devices
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Induction Heating (AREA)
- Control Of Temperature (AREA)
- Lining Or Joining Of Plastics Or The Like (AREA)
Description
【発明の詳細な説明】 本発明は高周波電縫管溶接における溶接品質の改善、品
質の安定化、生産歩留りの大幅向上を計つた入熱制御方
法に関する。The present invention relates to a heat input control method for improving the welding quality, stabilizing the quality and greatly improving the production yield in high frequency electric resistance welded pipe welding.
第1図(a)は誘導式高周波電縫管溶接を示し第1図
(b)は接触式高周波電縫管溶接を示す。図中、1は電
磁誘導のためのワークコイル、2は接触通電のためのチ
ツプ(接触子)、3はスクイズロール、4は溶接される
素材、5はVシーム、6は電縫管、7は高周波発振装置
である。1 (a) shows induction type high frequency electric resistance welded pipe welding, and FIG. 1 (b) shows contact type high frequency electric resistance welded pipe welding. In the figure, 1 is a work coil for electromagnetic induction, 2 is a chip (contact) for contact energization, 3 is a squeeze roll, 4 is a material to be welded, 5 is a V seam, 6 is an electric resistance welded pipe, 7 Is a high frequency oscillator.
ワークコイル1又はチツプ2はスクイズロール3の前段
部に配置されており、これらにより多段の成形ロール
(図示省略)によつて素材4に作られたVシーム5に高
周波電流を流すと、互いに突合わされるエツジ部が高周
波電流によつて加熱され次いでスクイズロール3によつ
て加圧溶接される。The work coil 1 or the chip 2 is arranged at the front stage of the squeeze roll 3, and when these are applied with a high-frequency current to the V seam 5 formed on the material 4 by the multi-stage forming rolls (not shown), they project from each other. The edges to be joined are heated by a high-frequency current and then pressure-welded by a squeeze roll 3.
上述した電縫管溶接において、エツジ(Vシーム)5に
流れる高周波電流を制御する従来の入熱制御方法として
は、 (1)オペレータが溶接部の温度(火色)を目視すると
共に切削された溶接ビードの形状を観察し、これらの状
態により手動で入熱量を調整している手動制御、 (2)溶接される素材の送り速度を検出し、送り速度に
見合う入熱量を関数発生器の出力によつて調整する速度
連動制御、 (3)溶接部の温度を検出し、この温度が一定となるよ
うに制御する温度制御、 などが採用されている。In the above-mentioned electric resistance welded pipe welding, as a conventional heat input control method for controlling the high frequency current flowing through the edge (V seam) 5, (1) the operator visually checked the temperature (flame color) of the welded portion and cut it. Observe the shape of the welding bead and manually adjust the heat input amount according to these conditions. (2) Detect the feed rate of the material to be welded, and output the heat input value corresponding to the feed rate from the function generator. The speed-linked control that adjusts the temperature by (3), (3) the temperature control that detects the temperature of the welded part and controls it so that this temperature becomes constant are adopted.
しかし、上記(1)〜(3)のような入熱制御方法で
は、下記(a)〜(c)の点で未だ不十分である。However, the heat input control methods such as (1) to (3) above are still insufficient in terms of the following (a) to (c).
(a)素材の送り速度変動、板厚変動などの急激に変動
する要因には追従できない。(A) It is not possible to follow a factor that causes a sudden change such as a change in the feed rate of the material and a change in the plate thickness.
(b)起動時、停止時における送り速度ゼロの近傍では
溶接ができず、オープンパイプが発生する。(B) Welding is not possible in the vicinity of the feed rate of zero when starting and stopping, and an open pipe occurs.
(c)これらの要因により、入熱の過不足が生じ、その
ためペネトレータ(スケールなどの酸化物を溶接部に巻
き込んで溶接不良となつた状態)、冷接(低い温度での
不完全な溶接)等といつた溶接部欠陥が発生し、良好な
溶接品質が得られない。また、起動停止の都度、溶接で
きていない部分(オープンパイプ)が発生するため、生
産歩留りの低下が大きい等の欠点があつた。(C) Due to these factors, excess or deficiency of heat input occurs, and therefore, penetrator (a state in which oxides such as scale are caught in the weld portion to cause poor welding), cold welding (incomplete welding at low temperature) As a result, defects in the weld zone occur and good welding quality cannot be obtained. In addition, there is a disadvantage that the production yield is greatly reduced because a portion (open pipe) that cannot be welded is generated each time the engine is stopped.
本発明は上記従来技術の問題点に鑑み、ゼロから一定速
度まで送り速度が変つても連続的に安定な入熱制御を行
うことができる方法を提供することを目的とする。The present invention has been made in view of the above-mentioned problems of the prior art, and an object thereof is to provide a method capable of continuously and stably performing heat input control even when the feed speed changes from zero to a constant speed.
かかる目的を達成するための本発明方法の構成は、高周
波発振装置を用いた電縫管溶接の入熱制御方法におい
て、 (a)管材の送り速度と溶接入熱との下記関係式を演算
する演算処理装置内に、該関係式の係数a,b,c,d,e及び
fを、誘導式か接触式かという溶接方法の違い、管径、
板厚、並びにスクイズロールセンターとワークロールあ
るいはチップとの間の距離という条件に応じて予めテー
ブル化しておくこと、 但し、υrは送り速度、 EpIpは溶接入熱、 Epは高周波発振装置のプレート電圧、 Ipは高周波発振装置のプレート電流、 aは移動加熱領域速度係数、 bは静止加熱基準値、 cは静止加熱領域速度係数、 dは静止加熱領域速度補正値、 eは静止加熱領域補正値、 fは静止加熱領域加減速補正値、 tは板厚、 (b)前記各条件の入力によって該条件に対応した係数
を演算処理装置がテーブルから自動的に検索し且つ前記
関係式にセットすること、 (c)管材の送り速度を検出して演算処理装置が入力す
ることにより、検出した送り速度に対応した溶接入熱を
前記関係式から算出すること、 (d)前記高周波発振装置のプレート電圧とプレート電
流を検出し、前記算出した溶接入熱に基づき電力一定制
御によりフィードフォワード方式で且つオンラインで溶
接入熱を制御すること、を特徴とする。The structure of the method of the present invention for achieving such an object is, in a heat input control method for electric resistance welded pipe using a high frequency oscillator, (a) the following relational expression between the feed rate of the pipe material and the welding heat input is calculated. In the arithmetic processing unit, the coefficients a, b, c, d, e and f of the relational expression are different in the welding method between the induction type and the contact type, the pipe diameter,
A table should be prepared in advance according to the plate thickness and the distance between the squeeze roll center and the work roll or chip. Where υ r is the feed rate, E p I p is the welding heat input, E p is the plate voltage of the high frequency oscillator, I p is the plate current of the high frequency oscillator, a is the moving heating region velocity coefficient, and b is the static heating reference. Value, c is static heating region velocity coefficient, d is static heating region velocity correction value, e is static heating region correction value, f is static heating region acceleration / deceleration correction value, t is plate thickness, (b) Input of each condition According to the above, the arithmetic processing unit automatically retrieves the coefficient corresponding to the condition from the table and sets it in the relational expression. (C) The coefficient is detected by detecting the feed rate of the pipe material and inputting it by the arithmetic processing unit. Calculating the welding heat input corresponding to the feed rate from the above relational expression, (d) detecting the plate voltage and the plate current of the high-frequency oscillator, and performing a constant power control based on the calculated welding heat input by a feedforward method. And Controlling the welding heat input online, it characterized.
以下詳細に説明する。The details will be described below.
まず、電縫管溶接における操業データを整理すると、各
送り速度υrに対する必要入熱電力EpIpは、誘導式か接
触式かの溶接方式の違い、管径、板厚t並びにスクイズ
ロール3のセンターとワークコイル1あるいはチツプ2
間の距離lυが定められた場合、第2図に示すように一
次式で表わされると考えられる。第2図中、aは勾配
(速度係数)、bは切片(静止加熱量)である。そこ
で、この一次式によつて各送り速度υrに対する入熱電
力を計算し、この入熱電力を与えれば送り速度の変化に
応じて自動的に入熱調整されるはずである。なお、Ep,
Ipは高周波発振装置7のプレート電圧とプレート電流で
あり、この装置7としては第5図に示す回路のものが一
般的に用いられる。第5図中、8は真空管、9は直流電
源、10はタンクコンデンサ、11は出力変圧器である。First, when arranging the operation data for ERW pipe welding, the required heat input power E p I p for each feed rate υ r is the difference in the welding method between the induction type and the contact type, the pipe diameter, the plate thickness t, and the squeeze roll. Center of 3 and work coil 1 or chip 2
When the distance l υ between them is determined, it is considered that it is expressed by a linear expression as shown in FIG. In FIG. 2, a is a gradient (velocity coefficient) and b is an intercept (static heating amount). Therefore, the heat input power for each feed speed υ r is calculated by this linear expression, and if this heat input power is given, the heat input should be automatically adjusted according to the change in the feed speed. Note that E p ,
I p is the plate voltage and plate current of the high-frequency oscillator 7, and the device shown in FIG. 5 is generally used as this device 7. In FIG. 5, 8 is a vacuum tube, 9 is a DC power supply, 10 is a tank capacitor, and 11 is an output transformer.
しかし上述した一次式を用いて実験を重ねた結果、溶接
起動時又は停止時の送り速度がゼロの近傍においては一
次式を適用すると入熱不足となることがわかった。そこ
で、スクイズロール3とワークコイル1あるいはチツプ
2間の距離lυの部分を送り速度ゼロ近傍でも溶接温度
に加熱する必要上、第3図に示すυr−EpIp/t特性で入
熱電力を与えることが考えられる。但し第3図中のυl
は、溶接起動時に送り速度ゼロでワークコイル1又はチ
ツプ2のところに位置していた素材の部分がスクイズロ
ール3のセンターに来た時点での送り速度である。However, as a result of repeated experiments using the above-described linear equation, it was found that heat input becomes insufficient when the linear equation is applied in the vicinity of the feed rate at the time of welding start or stop. Therefore, since it is necessary to heat the part of the distance l υ between the squeeze roll 3 and the work coil 1 or the chip 2 to the welding temperature even when the feed rate is near zero, the ν r -E p I p / t characteristic shown in FIG. It is possible to apply thermal power. However, υ l in Fig. 3
Is the feed rate at the time when the portion of the material located at the work coil 1 or the chip 2 at the feed rate of zero at the start of welding comes to the center of the squeeze roll 3.
しかし、第3図のようなυr−EpIp/t特性で入熱電力を
調整しても、未だ不十分であつた。However, adjusting the heat input power with the υ r −E p I p / t characteristic as shown in FIG. 3 was still insufficient.
即ち、電縫管溶接では、造管ラインが起動されると、送
り速度ゼロから所定の一定送り速度まではほぼ一定の加
速度をもつて加速される。従つて第3図に示す如く0−
υlの静止加熱領域で入熱量を一定にすると、送り速度
ゼロの近傍においては、静止加熱領域入熱の投入レベル
により、部分的に入熱の過不足が生じるため安定した溶
接連続性がないことが判つた。That is, in the electric resistance welded pipe welding, when the pipe making line is activated, it is accelerated with a substantially constant acceleration from zero feed speed to a predetermined constant feed speed. Therefore, as shown in FIG.
If the amount of heat input is constant in the static heating region of υ l , there is insufficient welding input near the feed rate due to the input level of heat input in the static heating region, and there is no stable welding continuity. I found out.
そこで、第4図に示す如く、静止加熱領域(0−υl)
では送り速度の増加に対し、入熱電力を減少させるυr
−EpIp/t特性で実験を重ねた。もちろんυl以上では入
熱量を増加する。その結果、送り速度ゼロから所定速度
まで連続して安定に溶接が行われることが判つた。即
ち、起動時,停止時のオープンパイプの発生がなく、生
産歩留りが大幅に向上した。Therefore, as shown in FIG. 4, the stationary heating region (0-υ l )
Then, decrease the heat input power with increasing feed rate υ r
Experiments were repeated with −E p I p / t characteristics. Of course, if it is υ l or more, the heat input increases. As a result, it was found that welding was continuously and stably performed from zero feed speed to a predetermined speed. In other words, there is no occurrence of open pipes when starting and stopping, and the production yield is greatly improved.
第4図のυr−EpIp/t特性を更に検討すると下記関係式
であることが好ましい。Further studying the ν r −E p I p / t characteristic in FIG. 4 preferably has the following relational expression.
但し、E0は制御出力、 υrは送り速度、 Epは高周波発振装置のプレート電圧(KV) Ipは高周波発振装置のプレート電流(A) aは移動加熱領域速度係数、 bは静止加熱基準値、 cは静止加熱領域速度係数、 dは静止加熱領域速度補正値、 eは静止加熱領域補正値、 fは静止加熱領域加減速補正値、 tは板厚である。 Where E 0 is the control output, υ r is the feed speed, E p is the plate voltage (KV) of the high frequency oscillator, I p is the plate current of the high frequency oscillator (A), a is the velocity coefficient of the moving heating region, and b is the static heating. Reference value, c is static heating region velocity coefficient, d is static heating region velocity correction value, e is static heating region correction value, f is static heating region acceleration / deceleration correction value, and t is plate thickness.
式(1)による曲線は、各係数または補正値次第で、υ
rのゼロ近傍において第4図に示すように、上に凸の変
化をする。The curve according to equation (1) depends on each coefficient or correction value.
In the vicinity of zero of r , there is a convex change as shown in FIG.
上式(1)における各係数a,b,c,d,e,fは、溶接方式
(誘導式か接触式かの違い),管径,板厚t,並びにスク
イズロール3のセンターとワークコイル1あるいはチツ
プ2間の距離lυで定まり、いずれも実験によつて求め
られる。1例を挙げると誘導式,管外径25.4mmφ,板厚
t=1.2mm,距離lυ=65mmの条件下では、 a=1.4 b=33 c=10 d=3 e=62 f=0 である。The coefficients a, b, c, d, e, f in the above formula (1) are the welding method (difference between induction type and contact type), pipe diameter, plate thickness t, center of squeeze roll 3 and work coil. It is determined by the distance l υ between 1 or the chip 2, and both are obtained by experiments. For example, under the conditions of induction type, pipe outer diameter 25.4 mmφ , plate thickness t = 1.2 mm, distance l υ = 65 mm, a = 1.4 b = 33 c = 10 d = 3 e = 62 f = 0 Is.
上記関係式(1)による具体的な入熱制御としては、ま
ず、関係式(1)の演算をマイクロコンピュータなどの
演算処理装置にプログラムしておき、また、式中の各係
数a〜fは演算処理装置の内部常数とし、溶接方式,管
径,板厚t及び距離lυの各条件によつてテーブル化し
ておく。次に制御に当り、上記各条件が演算処理装置に
入力されることにより対応する各係数がテーブルから検
索され且つ自動的に関係式(1)にセットされるように
しておき、素材4あるいは電縫管6の送り速度υrをセ
ンサーで検出し、検出信号を演算処理装置に入力して関
係式(1)から時々刻々の送り速度に対する溶接入熱を
演算する。この演算値に基づき、フイードフオワード方
式によつて溶接入熱をオンライン制御する。溶接入熱を
調整するには、高周波発振装置7のプレート電圧Ep、プ
レート電流Ipを検出し、EpとIpの片方あるいは双方(電
力一定)の制御を使用すると良い。なお、板厚tは素材
の公称板厚でも十分である。As a specific heat input control by the relational expression (1), first, the arithmetic operation of the relational expression (1) is programmed in an arithmetic processing unit such as a microcomputer, and the coefficients a to f in the equation are The internal constants of the arithmetic processing unit are used, and a table is prepared according to the welding method, pipe diameter, plate thickness t, and distance l υ . Next, in the control, by inputting each of the above conditions into the arithmetic processing unit, the corresponding coefficient is retrieved from the table and automatically set in the relational expression (1). The feed speed υ r of the sewing tube 6 is detected by a sensor, and the detection signal is input to the arithmetic processing unit to calculate the welding heat input with respect to the feed rate at every moment from the relational expression (1). Based on this calculated value, the welding heat input is online controlled by the feedforward method. To adjust the welding heat input, it is preferable to detect the plate voltage E p and the plate current I p of the high-frequency oscillator 7 and use one or both of E p and I p (constant power). The plate thickness t may be the nominal plate thickness of the material.
以上説明した如く、本発明によれば送り速度ゼロから一
定速度まで連続して安定な溶接ができる。これにより溶
接品質が向上し、品質が安定化し、また起動時・停止時
のオープンパイプもなく、生産歩留りが大幅に向上す
る。As described above, according to the present invention, stable welding can be continuously performed from zero feed speed to a constant speed. This improves the welding quality, stabilizes the quality, and there is no open pipe at the time of starting and stopping, which greatly improves the production yield.
第1図(a),(b)は電縫管溶接の誘導式,接触式の
各説明図、第2図、第3図は本発明の考察に用いた送り
速度−入熱電力の特性図、第4図は本発明の送り速度−
入熱電力の特性図、第5図は高周波発振装置の1例を示
す回路図である。 図面中、1はワークコイル、2はチツプ、3はスクイズ
ロール、4は素材、5はVシーム、6は電縫管、7は高
周波発振装置である。1 (a) and 1 (b) are explanatory views of induction type and contact type of electric resistance welded pipe welding, and FIGS. 2 and 3 are characteristic diagrams of feed rate-heat input power used for consideration of the present invention. , Fig. 4 shows the feed rate of the present invention-
FIG. 5 is a circuit diagram showing an example of a high-frequency oscillator, which is a characteristic diagram of heat input power. In the drawings, 1 is a work coil, 2 is a chip, 3 is a squeeze roll, 4 is a material, 5 is a V seam, 6 is an electric resistance welded pipe, and 7 is a high frequency oscillator.
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭57−195587(JP,A) 特開 昭57−106483(JP,A) 特開 昭49−90649(JP,A) ─────────────────────────────────────────────────── ─── Continuation of front page (56) Reference JP-A-57-195587 (JP, A) JP-A-57-106483 (JP, A) JP-A-49-90649 (JP, A)
Claims (1)
制御方法において、 (a)管材の送り速度と溶接入熱との下記関係式を演算
する演算処理装置内に、該関係式の係数a,b,c,d,e及び
fを、誘導式か接触式かという溶接方法の違い、管径、
板厚、並びにスクイズロールセンターとワークロールあ
るいはチップとの間の距離という条件に応じて予めテー
ブル化しておくこと、 但し、υrは送り速度、 EpIpは溶接入熱、 Epは高周波発振装置のプレート電圧、 Ipは高周波発振装置のプレート電流、 aは移動加熱領域速度係数、 bは静止加熱基準値、 cは静止加熱領域速度係数、 dは静止加熱領域速度補正値、 eは静止加熱領域補正値、 fは静止加熱領域加減速補正値、 tは板厚、 (b)前記各条件の入力によって該条件に対応した係数
を演算処理装置がテーブルから自動的に検索し且つ前記
関係式にセットすること、 (c)管材の送り速度を検出して演算処理装置が入力す
ることにより、検出した送り速度に対応した溶接入熱を
前記関係式から算出すること、 (d)前記高周波発振装置のプレート電圧とプレート電
流を検出し、前記算出した溶接入熱に基づき電力一定制
御によりフィードフォワード方式で且つオンラインで溶
接入熱を制御すること、 を特徴とする電縫管溶接の入熱制御方法。1. A heat input control method for electric resistance welded pipes using a high frequency oscillator, comprising: (a) a relational expression in a calculation processing device for calculating the following relational expression between a pipe feed rate and welding heat input: Of the coefficients a, b, c, d, e and f of
A table should be prepared in advance according to the plate thickness and the distance between the squeeze roll center and the work roll or chip. Where υ r is the feed rate, E p I p is the welding heat input, E p is the plate voltage of the high frequency oscillator, I p is the plate current of the high frequency oscillator, a is the moving heating region velocity coefficient, and b is the static heating reference. Value, c is static heating region velocity coefficient, d is static heating region velocity correction value, e is static heating region correction value, f is static heating region acceleration / deceleration correction value, t is plate thickness, (b) Input of each condition According to the above, the arithmetic processing unit automatically retrieves the coefficient corresponding to the condition from the table and sets it in the relational expression. (C) The coefficient is detected by detecting the feed rate of the pipe material and inputting it by the arithmetic processing unit. Calculating the welding heat input corresponding to the feed rate from the above relational expression, (d) detecting the plate voltage and the plate current of the high-frequency oscillator, and performing a constant power control based on the calculated welding heat input by a feedforward method. And Controlling the welding heat input online, heat input control method for electric-resistance-welded pipe welding according to claim.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58094954A JPH0686020B2 (en) | 1983-05-31 | 1983-05-31 | Heat input control method for ERW pipe welding |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58094954A JPH0686020B2 (en) | 1983-05-31 | 1983-05-31 | Heat input control method for ERW pipe welding |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59220289A JPS59220289A (en) | 1984-12-11 |
JPH0686020B2 true JPH0686020B2 (en) | 1994-11-02 |
Family
ID=14124330
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58094954A Expired - Lifetime JPH0686020B2 (en) | 1983-05-31 | 1983-05-31 | Heat input control method for ERW pipe welding |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0686020B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62296974A (en) * | 1986-06-18 | 1987-12-24 | Nippon Kokan Kk <Nkk> | Welding heat input control method at manufacturing time of seam welded pipe |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4990649A (en) * | 1972-12-29 | 1974-08-29 | ||
JPS57106483A (en) * | 1980-12-22 | 1982-07-02 | Kawasaki Steel Corp | High frequency electric resistance welding method for blank pipe edge part for electric welding steel pipe |
JPS57195587A (en) * | 1981-05-29 | 1982-12-01 | Nippon Steel Corp | Method and device for controlling automatic welding of high frequency electric resistance welded pipe |
-
1983
- 1983-05-31 JP JP58094954A patent/JPH0686020B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS59220289A (en) | 1984-12-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4963707A (en) | Resistance welding control system | |
US5223683A (en) | High frequency electronic welding system | |
JPH0615447A (en) | Welded pipe manufacturing method | |
JPH0686020B2 (en) | Heat input control method for ERW pipe welding | |
JP4138929B2 (en) | High frequency pipe making method | |
US5889262A (en) | System for and method of automatically controlling amount of input heat in high-frequency electric resistance welding machine | |
JPH0699287A (en) | Welding power control method for high-frequency welding equipment | |
JP2861286B2 (en) | Heat input control device for ERW pipes | |
JP2819779B2 (en) | Heat input control device for ERW pipes | |
US3253112A (en) | Tube welding | |
JPH0740062A (en) | High frequency heating device | |
JPS62296974A (en) | Welding heat input control method at manufacturing time of seam welded pipe | |
JPH07108463B2 (en) | Welding heat input control method for ERW pipe | |
JPS58154466A (en) | Automatic control of high frequency welding of electric welded steel tube | |
SU893463A1 (en) | Automatic control method of the high-frequency welding process | |
JP3328378B2 (en) | High frequency heating equipment | |
JPH0436983A (en) | Welding input heat control device for seam welded pipe | |
JPS619982A (en) | Resistance welding method | |
SU994182A1 (en) | Method of automatic control of high frequency welding process | |
JPH0413486A (en) | Welding control method for ERW pipe | |
JPS5825883A (en) | Controlling method for rate of upsetting for high frequency welded steel pipe | |
JP2525695B2 (en) | Welding method of thick-wall ERW steel pipe | |
JPH071170A (en) | Composite heat source welding pipe manufacturing method | |
JPH05200544A (en) | Welded pipe manufacturing method | |
JPS5843451B2 (en) | Strip temperature control method for continuous metal strip heating equipment |