JPH10109184A - Manufacture of resistance welded tube - Google Patents
Manufacture of resistance welded tubeInfo
- Publication number
- JPH10109184A JPH10109184A JP26414896A JP26414896A JPH10109184A JP H10109184 A JPH10109184 A JP H10109184A JP 26414896 A JP26414896 A JP 26414896A JP 26414896 A JP26414896 A JP 26414896A JP H10109184 A JPH10109184 A JP H10109184A
- Authority
- JP
- Japan
- Prior art keywords
- heating
- resistance welded
- preheating
- frequency
- edge parts
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、電縫管の製造方法
に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an electric resistance welded tube.
【0002】[0002]
【従来の技術】電縫管は、通常、スケルプを成形ロール
に通して両側エッジ部を対向させた断面形状略円形のオ
ープン管となし、この両側エッジ部に高周波電流を通流
して融点以上に加熱し、スクイズロールに通してアップ
セットをかけつつ衝合接合する方法で製造される。2. Description of the Related Art Normally, an electric resistance welded tube is an open tube having a substantially circular cross section in which both sides are opposed to each other by passing a skeleton through a forming roll. It is manufactured by a method of joining by heating and passing through a squeeze roll and applying upset.
【0003】高周波電流を用いて誘導加熱あるいは抵抗
加熱を行うと、近接効果や表皮効果によって両側エッジ
部の稜線部の電流密度が高くなるため、エッジ部の端面
全域が溶融している状態では、端面の板厚方向中央部に
比べて板厚方向端部すなわちオープン管の内外面側のほ
うが、溶融した部分の管周方向への広がり(溶融幅とい
う)が大きくかつ高温である。[0003] When induction heating or resistance heating is performed using a high-frequency current, the current density at the ridges on both side edges increases due to the proximity effect and the skin effect. Therefore, when the entire end face of the edge is melted, At the end in the plate thickness direction, that is, at the inner and outer surface sides of the open pipe, compared to the central part of the end face in the plate thickness direction, the spread of the melted portion in the pipe circumferential direction (referred to as a melt width) is higher and the temperature is higher.
【0004】そのため、スケルプの接合点では溶鋼が流
動・飛散して発生するフラッシュとよばれる溶鋼飛滴が
管壁に付着するため、スクイズロールでの圧接時に管体
表面に押し込み疵を生じるという問題があった。この押
し込み疵の防止対策として、従来、例えば高周波電流を
調節する等して加熱温度をできるだけ下げてフラッシュ
の発生を抑えるという方法が採用されてきた。しかし、
この方法では、ともすれば加熱温度が下がりすぎて端面
の板厚方向中央部に未溶融部が出現し、シーム品質が不
安定となる問題がある。[0004] Therefore, at the joining point of the skelp, since molten steel droplets called flashes generated by the flow and scattering of molten steel adhere to the pipe wall, there is a problem that a pressing flaw is generated on the pipe surface when pressed with a squeeze roll. was there. As a countermeasure for preventing the indentation flaw, a method has conventionally been adopted in which the heating temperature is reduced as much as possible by, for example, adjusting a high-frequency current to suppress the occurrence of flash. But,
In this method, there is a problem that the heating temperature becomes too low, and an unmelted portion appears at the center of the end face in the thickness direction, and the seam quality becomes unstable.
【0005】この問題を解決するために、例えば特開平
2-299782号公報や特開平2-299783号公報に開示の、オー
プン管のエッジ部を二段階に加熱し初段加熱でキュリー
点以上に昇温する方法や初段加熱用周波数を45kHz 〜25
0kHzとする方法が提案されている。しかしながら、これ
らの方法は、肉厚4.5 mm以下の比較的薄肉の電縫管に対
しては有効であるが、肉厚がこれを超える比較的厚肉の
電縫管に対しては、フラッシュの発生を抑制し得る溶接
条件下で安定したシーム品質を得るには未だ不十分であ
った。To solve this problem, for example, Japanese Patent Laid-Open
No. 2-299782 or Japanese Patent Application Laid-Open No. 2-299783, discloses a method of heating the edge portion of an open tube in two stages and raising the temperature above the Curie point in the first stage heating and the frequency for the first stage heating from 45 kHz to 25.
A method of setting the frequency to 0 kHz has been proposed. However, these methods are effective for relatively thin ERW pipes having a wall thickness of 4.5 mm or less, but for relatively thick ERW pipes having a wall thickness of more than 4.5 mm, flashing is not possible. It is still insufficient to obtain stable seam quality under welding conditions that can suppress the occurrence.
【0006】[0006]
【発明が解決しようとする課題】本発明は、上記従来技
術の問題点に鑑み、比較的厚肉のオープン管をフラッシ
ュの発生を伴わずシーム品質の安定した電縫管に製管で
きる電縫管の製造方法を提供することを課題とする。SUMMARY OF THE INVENTION In view of the above-mentioned problems in the prior art, the present invention provides an electric resistance welded pipe that can produce a relatively thick open pipe into an electric resistance welded pipe having a stable seam quality without generating flash. It is an object to provide a method for manufacturing a pipe.
【0007】[0007]
【課題を解決するための手段】本発明は、オープン管の
対向する両エッジ部を高周波加熱して溶融させスクイズ
ロールによって衝合接合する電縫管の製造方法におい
て、まず、両エッジ部をキュリー点以上の未溶融温度域
に予加熱し、次いで、200kHz以下の周波数で溶融温度域
に本加熱して衝合接合することを要旨とする。SUMMARY OF THE INVENTION The present invention relates to a method for manufacturing an electric resistance welded tube in which both opposing edges of an open pipe are heated and melted by high frequency heat and joined by means of a squeeze roll. The gist of the present invention is to preheat to an unmelting temperature range above a point and then to perform full-heating to a melting temperature range at a frequency of 200 kHz or less to perform abutment joining.
【0008】本発明においては、予加熱と本加熱との間
の空冷時間を0.05秒以上とるのが好ましい。また、本発
明においては、予加熱を300kHz以上の周波数の高周波で
行うのが好ましい。In the present invention, it is preferable that the air cooling time between the preheating and the main heating is 0.05 seconds or more. In the present invention, it is preferable to perform the preheating at a high frequency of 300 kHz or more.
【0009】[0009]
【発明の実施の形態】図1は、電縫管製造ラインの要部
にオープン管エッジ部端面の温度履歴を併示した本発明
実施形態の説明図であり、1はオープン管、2は電縫
管、3は予加熱用ワークコイル、4は本加熱用ワークコ
イル、5はスクイズロール、6は余盛、7は余盛切削刃
である。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is an explanatory view of an embodiment of the present invention in which a temperature history of an end face of an open pipe edge is shown in a main part of an electric resistance welded pipe manufacturing line. Sewing tube, 3 is a pre-heating work coil, 4 is a main heating work coil, 5 is a squeeze roll, 6 is an extra bank, and 7 is an extra cutting blade.
【0010】本発明によれば、電縫管2は、オープン管
1の対向する両エッジ部をスクイズロール5で衝合接合
する前に、まず、例えば予加熱用ワークコイル3によ
り、キュリー点( 770℃程度)以上の未溶融温度域に予
加熱し、次いで、本加熱用ワークコイル4により200kHz
以下の周波数で溶融温度域に本加熱することにより製造
される。予加熱と本加熱の間には冷却(空冷)過程が介
在するが、この空冷時間は、後述のように0.05秒以下に
規制するのが好ましい。[0010] According to the present invention, the electric resistance welded pipe 2 is first joined, for example, by the preheating work coil 3 to the Curie point ( Preheating to the unmelting temperature range of about 770 ° C) or higher, and then 200 kHz by the main heating work coil 4.
It is manufactured by main heating to the melting temperature range at the following frequency. A cooling (air cooling) process is interposed between the preheating and the main heating, and the air cooling time is preferably regulated to 0.05 seconds or less as described later.
【0011】エッジ部の加熱をこの順序で行うことによ
り、比較的厚肉のオープン管のエッジ部全域において溶
融幅が均一化し、接合後の電縫管のシーム品質が安定す
る。この構成による作用効果を以下に説明する。鋼はキ
ュリー点以上の温度域で強磁性体から常磁性体に磁気変
態するので、図2に示すように比透磁率(対真空比)が
1に近い値となる。一方、高周波電流の浸透深さは次式
(1) で与えられる。[0011] By heating the edge portion in this order, the melting width becomes uniform over the entire edge portion of the relatively thick open tube, and the seam quality of the joined electric resistance welded tube is stabilized. The operation and effect of this configuration will be described below. Since the steel undergoes magnetic transformation from a ferromagnetic material to a paramagnetic material in a temperature range above the Curie point, the relative magnetic permeability (vs. vacuum ratio) becomes a value close to 1 as shown in FIG. On the other hand, the penetration depth of the high-frequency current is
Given by (1).
【0012】S=α{ρ/(μr f)}1/2 ………(1) ここに、S:浸透深さ(m)、ρ:抵抗率(Ω・m)、
μr :比透磁率、f:周波数(kHz )、α:定数であ
る。なお、図3は、(1) 式による浸透深さの温度および
周波数依存性の例を示す特性図である。このためエッジ
部をキュリー点以上に加熱すれば比透磁率μr が小さく
なり、式(1) で与えられる浸透深さが大きくなってエッ
ジ部端面の温度は均一化の方向に向かう。しかし、その
まま一気にエッジ部端面の板厚方向端部(コーナ部とよ
ぶ)をフラッシュの発生しない溶融温度域、好ましくは
1600〜1650℃に加熱すると、比較的肉厚が厚い場合には
殊に、板厚方向中央部(中央部とよぶ)に未溶融部が残
って接合が不完全になりやすく、シーム品質が安定しな
い。S = α {ρ / (μ rf )} 1/2 (1) where, S: penetration depth (m), ρ: resistivity (Ω · m),
μ r: relative permeability, f: Frequency (kHz), α: a constant. FIG. 3 is a characteristic diagram showing an example of the temperature and frequency dependence of the penetration depth according to the equation (1). Therefore relative permeability mu r is decreased by heating the edge portion above the Curie point, the temperature of the edge portion end face is penetration depth given is increased by the formula (1) is directed toward the homogenization. However, the end portion in the thickness direction of the end portion of the edge portion (referred to as a corner portion) at a stretch is a melting temperature range where flash does not occur, preferably
When heated to 1600 to 1650 ° C, especially when the wall thickness is relatively large, unmelted portions remain in the center in the thickness direction (called the center), and the joining tends to be incomplete, and the seam quality is stable. do not do.
【0013】これに対し、コーナ部を一旦キュリー点以
上の未溶融温度域、好ましくは1000℃以下に予加熱し、
そこから周波数200kHz以下の高周波加熱によって溶融温
度域に本加熱することにより、接合点において端面内の
温度がより一様化しかつ端面下のエッジ部内の等温面が
端面に平行な状態に近づくので、コーナ部と中央部との
温度差および溶融幅の差が小さくなり、フラッシュの発
生しない条件下で未溶融部の残存しない接合点を高い確
率で得ることができて、シーム品質が安定する。本加熱
を、200kHzを超える周波数を用いて行ったのでは、この
作用効果が得られない。On the other hand, the corner portion is once preheated to an unmelting temperature range above the Curie point, preferably below 1000 ° C.,
From there, by performing main heating to the melting temperature range by high-frequency heating at a frequency of 200 kHz or less, the temperature within the end face at the joining point becomes more uniform and the isothermal surface inside the edge part below the end face approaches the state parallel to the end face, The difference in the temperature and the melting width between the corner and the central portion is reduced, and a joining point where no unmelted portion remains can be obtained with high probability under the condition where no flash occurs, and the seam quality is stabilized. If the main heating is performed using a frequency exceeding 200 kHz, this effect cannot be obtained.
【0014】なお、予加熱の加熱方式としては本加熱同
様高周波加熱方式が好ましいが、これ以外にレーザビー
ム、電子ビーム、プラズマビーム等の局部加熱方式も適
用可能である。本発明においてはさらに、予加熱と本加
熱との間の空冷時間を0.05秒以上とるのが好ましい。こ
れにより、予加熱終了時のコーナ部に偏った蓄熱量が中
央部に拡散して端面内の温度がより一様となるので、接
合点の温度分布がさらに改善され、シーム品質がさらに
安定化する。As a heating method for preheating, a high-frequency heating method is preferable as in the main heating, but a local heating method using a laser beam, an electron beam, a plasma beam or the like is also applicable. In the present invention, the air cooling time between the preheating and the main heating is preferably set to 0.05 seconds or more. As a result, the amount of heat stored at the corners at the end of preheating is diffused to the center and the temperature within the end face becomes more uniform, so the temperature distribution at the junction is further improved and the seam quality is further stabilized I do.
【0015】また、本発明において予加熱を高周波加熱
で行う際には、300kHz以上の周波数を採用するほうが所
要電流値を小さくできるので省エネルギーの点から好ま
しい。なお、本発明は、薄肉電縫管の製造にも適用でき
るが、厚肉電縫管の製造においてその効果が特に顕著に
現れる。In the present invention, when preheating is performed by high-frequency heating, it is preferable to use a frequency of 300 kHz or more from the viewpoint of energy saving because a required current value can be reduced. Although the present invention can be applied to the production of a thin-walled electric resistance welded tube, the effect is particularly remarkable in the production of a thick-walled electric resistance welded tube.
【0016】[0016]
【実施例】図1に示した電縫管製造ラインを用いて、0.
19%炭素鋼のオープン管を30m/min で通しながら表1に
示す諸条件で予加熱し本加熱し衝合接合して6.0mm 厚×
60.5mm外径の厚肉電縫管A〜Iに製管した。なお、予加
熱と本加熱間の空冷時間は、管Hで0.02秒、それ以外で
0.1 秒とした。これらの電縫管について、図4の要綱で
偏平試験を行い、シーム部に割れを生じた時の偏平比
(h/D )を測定し、偏平比が2t/D(密着)のものを○、
2t/D超え4t/D以下のものを△、4t/D超えのものを×で表
して表1に示す。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The electric resistance welded pipe production line shown in FIG.
While passing through an open pipe made of 19% carbon steel at 30 m / min, preheat it under the conditions shown in Table 1, perform main heating, and abut it to form a 6.0 mm thick sheet.
The pipes were made into thick electric resistance welded pipes A to I having an outer diameter of 60.5 mm. The air cooling time between preheating and main heating is 0.02 seconds for tube H,
0.1 seconds. For these ERW pipes, a flattening test was performed using the rules shown in FIG. 4, and the flattening ratio (h / D) when the seam cracked was measured. ,
Tables 1 and 2 show those exceeding 2 t / D and 4 t / D or less, and those exceeding 4 t / D as x.
【0017】[0017]
【表1】 [Table 1]
【0018】また、表1には、本加熱終了時の端面にお
けるコーナ部と中央部との溶融幅の差(シミュレーショ
ン計算値)、予加熱所要電流値(2000A未満を好適レベ
ルとして○、これ以上を非好適レベルとして×を付し
た)、および偏平試験結果と予加熱所要電流とから下し
た総合評価を掲げた。表1より、予加熱をキュリー点未
満の700 ℃で停止し、周波数を200kHz超えの400kHzとし
て本加熱した管A、Bは、コーナ部と中央部との溶融幅
の差が大きく偏平試験結果が×であった。予加熱をキュ
リー点未満の700 ℃で停止し、周波数を200kHzとして本
加熱した管E、Fは、コーナ部と中央部との溶融幅の差
に関しては管A、Bよりも改善されたが、偏平試験結果
は管A、B同様×であった。Table 1 shows the difference in the melting width between the corner portion and the center portion at the end face at the end of the main heating (simulated calculation value), the required current value for preheating (a less than 2000 A is a suitable level, and Was given as a non-preferred level) and the overall evaluation based on the results of the flattening test and the current required for preheating. From Table 1, it can be seen from the results of the flattening test that the preheating was stopped at 700 ° C below the Curie point and the main heating was performed at a frequency of over 400 kHz to 400 kHz, and the difference in the melting width between the corner and the center was large. X. The preheating was stopped at 700 ° C. below the Curie point, and the tubes E and F which were fully heated at a frequency of 200 kHz improved the difference in the melting width between the corner and the center compared to the tubes A and B. The flattening test result was x as in the tubes A and B.
【0019】他方、予加熱をキュリー点以上の温度域ま
で行ったものの、周波数を200kHz超えの400kHzとして本
加熱した管C、Dの偏平試験結果が△であったのに対
し、予加熱、本加熱条件とも本発明の規定を満たす管
G、H、Iはコーナ部と中央部との溶融幅の差が格段に
縮小し、偏平試験結果が初めて○となった。そして、こ
れらのうち、さらなる好適範囲内の周波数(300kHz以
上)400kHzで予加熱しかつ予加熱・本加熱間の空冷時間
をさらなる好適範囲(0.05秒以上)内の0.1 秒とした管
Gでは、空冷時間を0.02秒とした管Hに比べてコーナ部
と中央部との溶融幅の差が小さく、また周波数10kHz で
予加熱した管Iに比べて所要電流値が大幅に節約でき
た。On the other hand, although the preheating was performed up to the temperature range not lower than the Curie point, the flat test results of the tubes C and D which were fully heated at a frequency of more than 200 kHz and 400 kHz were Δ, In the tubes G, H, and I satisfying the requirements of the present invention under both heating conditions, the difference in the melting width between the corner portion and the central portion was remarkably reduced, and the flattening test result became 初 め て for the first time. And among these, the tube G preheated at a frequency (300 kHz or more) of 400 kHz in a further preferable range and the air cooling time between preheating and main heating is set to 0.1 second in a further preferable range (0.05 seconds or more) The difference in the melting width between the corner portion and the central portion was smaller than that of the tube H in which the air cooling time was 0.02 seconds, and the required current value was significantly reduced as compared with the tube I preheated at a frequency of 10 kHz.
【0020】[0020]
【発明の効果】本発明によれば、比較的厚肉のオープン
管をフラッシュの発生を伴わずシーム品質の安定した電
縫管に製管できるという優れた効果を奏する。According to the present invention, there is an excellent effect that a relatively thick open pipe can be formed into an electric resistance welded pipe having a stable seam quality without generating flash.
【図1】電縫管製造ラインの要部にオープン管エッジ部
端面の温度履歴を併示した本発明実施形態の説明図であ
る。FIG. 1 is an explanatory view of an embodiment of the present invention in which a temperature history of an end face of an open pipe edge portion is shown together with a main part of an electric resistance welded pipe production line.
【図2】鋼の比透磁率の温度依存性を示すグラフであ
る。FIG. 2 is a graph showing temperature dependence of relative magnetic permeability of steel.
【図3】鋼についての電流の浸透深さの温度および周波
数依存性を示すグラフである。FIG. 3 is a graph showing the temperature and frequency dependence of the current penetration depth for steel.
【図4】偏平試験要綱の説明図である。FIG. 4 is an explanatory diagram of a flat test outline.
1 オープン管 2 電縫管 3 予加熱用ワークコイル 4 本加熱用ワークコイル 5 スクイズロール 6 余盛 7 余盛切削刃 DESCRIPTION OF SYMBOLS 1 Open pipe 2 ERW pipe 3 Work coil for preheating 4 Work coil for heating 5 Squeeze roll 6 Excessive 7 Excessive cutting blade
───────────────────────────────────────────────────── フロントページの続き (72)発明者 板谷 元晶 愛知県半田市川崎町1丁目1番地 川崎製 鉄株式会社知多製造所内 (72)発明者 依藤 章 愛知県半田市川崎町1丁目1番地 川崎製 鉄株式会社知多製造所内 (72)発明者 大西 寿雄 愛知県半田市川崎町1丁目1番地 川崎製 鉄株式会社知多製造所内 (72)発明者 橋本 裕二 愛知県半田市川崎町1丁目1番地 川崎製 鉄株式会社知多製造所内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Motoaki Itaya 1-1-1, Kawasaki-cho, Handa-city, Aichi Prefecture Inside the Chita Works, Kawasaki Steel (72) Inventor Akira Ito 1-1-1, Kawasaki-cho, Handa-city, Aichi Prefecture Kawasaki Steel Corporation Chita Works (72) Inventor Toshio Onishi 1-1-1, Kawasakicho, Handa City, Aichi Prefecture Kawasaki Steel Corporation Chita Works (72) Inventor Yuji Hashimoto 1-1-1, Kawasakicho, Handa City, Aichi Prefecture Kawasaki Steel Corporation Chita Works
Claims (3)
波加熱して溶融させスクイズロールによって衝合接合す
る電縫管の製造方法において、まず、両エッジ部をキュ
リー点以上の未溶融温度域に予加熱し、次いで、200kHz
以下の周波数で溶融温度域に本加熱して衝合接合するこ
とを特徴とする電縫管の製造方法。1. A method of manufacturing an electric resistance welded pipe in which opposite edges of an open pipe are heated and melted by high-frequency welding and joined by squeeze rolls, first, both edges are brought to an unmelted temperature range equal to or higher than the Curie point. Preheat, then 200kHz
A method for producing an electric resistance welded tube, comprising subjecting a main heating to a melting temperature range at the following frequency to perform abutment joining.
秒以上とる請求項1記載の電縫管の製造方法。2. An air cooling time between preheating and main heating is set to 0.05.
The method for producing an electric resistance welded tube according to claim 1, which takes at least one second.
行う請求項1または2に記載の電縫管の製造方法。3. The method according to claim 1, wherein the preheating is performed at a high frequency of 300 kHz or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26414896A JPH10109184A (en) | 1996-10-04 | 1996-10-04 | Manufacture of resistance welded tube |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26414896A JPH10109184A (en) | 1996-10-04 | 1996-10-04 | Manufacture of resistance welded tube |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH10109184A true JPH10109184A (en) | 1998-04-28 |
Family
ID=17399137
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP26414896A Pending JPH10109184A (en) | 1996-10-04 | 1996-10-04 | Manufacture of resistance welded tube |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH10109184A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100354327B1 (en) * | 2000-04-28 | 2002-09-28 | 주식회사 대구정밀 | A device to form a fixing pin of a coiled spring for the bottom piece of shoes |
-
1996
- 1996-10-04 JP JP26414896A patent/JPH10109184A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100354327B1 (en) * | 2000-04-28 | 2002-09-28 | 주식회사 대구정밀 | A device to form a fixing pin of a coiled spring for the bottom piece of shoes |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3627603B2 (en) | Method for manufacturing a steel pipe having a flat height ratio of 0.1 or less | |
JP3680788B2 (en) | ERW pipe manufacturing method | |
US2746141A (en) | Method of welding a tube | |
JPH10109184A (en) | Manufacture of resistance welded tube | |
JP2650558B2 (en) | Manufacturing method of high workability welded steel pipe | |
US2025741A (en) | Method of electrically welding thin metal articles | |
JP3288600B2 (en) | Steel pipe manufacturing method | |
JPH1080718A (en) | Manufacture of steel tube | |
JPH10296458A (en) | Manufacture of welded steel tube | |
US4376882A (en) | Method of resistance flash butt welding | |
JPH1058161A (en) | Welded steel tube and its manufacture | |
JPS61172684A (en) | Production of clad steel pipe | |
JP3557813B2 (en) | Steel pipe manufacturing method | |
JPH10211585A (en) | Manufacture of steel tube | |
JPH08155656A (en) | Production of resistance welded steel tube having excellent weld zone | |
JPH10328730A (en) | Production of steel pipe | |
JP2870433B2 (en) | Manufacturing method of welded pipe | |
JP2924675B2 (en) | Manufacturing method of welded section steel | |
JPH1058029A (en) | Production of welded steel tube | |
JPS59232676A (en) | Energy beam combined electric resistance welding method | |
JPH06154850A (en) | Production of square electric resistance welded tube | |
JPH02299782A (en) | Manufacturing method of ERW pipe | |
JPH10109108A (en) | Manufacture of welded stainless steel tube | |
JPH0753317B2 (en) | Heat input control method for high frequency electric resistance welding combined with laser beam | |
JPH105857A (en) | Manufacture of steel tube |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040420 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20040914 |