JPH0234714B2 - - Google Patents

Info

Publication number
JPH0234714B2
JPH0234714B2 JP56106574A JP10657481A JPH0234714B2 JP H0234714 B2 JPH0234714 B2 JP H0234714B2 JP 56106574 A JP56106574 A JP 56106574A JP 10657481 A JP10657481 A JP 10657481A JP H0234714 B2 JPH0234714 B2 JP H0234714B2
Authority
JP
Japan
Prior art keywords
heat input
input control
amount
period
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56106574A
Other languages
Japanese (ja)
Other versions
JPS589781A (en
Inventor
Kazuyuki Hotsuta
Yutaka Katayama
Yoshasu Kitagawa
Masao Tatsuwaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP10657481A priority Critical patent/JPS589781A/en
Publication of JPS589781A publication Critical patent/JPS589781A/en
Publication of JPH0234714B2 publication Critical patent/JPH0234714B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K13/00Welding by high-frequency current heating
    • B23K13/01Welding by high-frequency current heating by induction heating
    • B23K13/02Seam welding

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Induction Heating (AREA)
  • Control Of Metal Rolling (AREA)

Description

【発明の詳細な説明】 本発明は電縫管製造ミルにおけるミルの立上期
間及びミルの定常操業期間における溶接入熱の制
御方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for controlling welding heat input in an electric resistance welded tube manufacturing mill during the start-up period of the mill and during the steady operation period of the mill.

通電電縫管は素材たるストリツプを成形ロール
にてその両側エツジ部が相対向するよう順次断面
O形状に曲成し、これを誘導コイルに通すことに
よつて、或いは相対向せしめた両側エツジ部にコ
ンタクトチツプを摺接せしめることによつて両側
エツジ部に高周波電流を通流し、この部分をジユ
ール熱にて加熱溶融せしめつつスクイズロール間
に通して衝合溶接することにより製造されてい
る。
Electric current-carrying electric resistance welded pipes are produced by sequentially bending a strip of raw material into an O-shaped cross section using forming rolls so that the edges on both sides face each other, and passing this through an induction coil, or by bending the strip with the edges on both sides facing each other. It is manufactured by sliding a contact chip onto the contact tip, passing a high frequency current through the edge portions on both sides, heating and melting these portions with gel heat, and passing them between squeeze rolls for butt welding.

ところで上述の如き電縫管の製造方法において
は溶接条件、特にそのうちの入熱量の適否は溶接
品質を左右する極めて重要な要件とされており、
例えば入熱量が不足すると、両側エツジ部同士が
溶接されない、所謂冷欠陥が発生し、また入熱量
が過大になると、両側エツジ部が溶融落下してし
まう、所謂溶け落ち現象を生じて管品質を低下さ
せてしまうこととなる。このため旧来にあつては
熟練作業者が被溶接部の火色、溶接ビード外観等
を監視し、経験的に諸条件を設定調整することが
行なわれていたが、個人差が大きく正確な制御を
行い得なかつた。このため最近にあつては入熱量
の自動制御システムも試みられるようになつてき
た。このような方法の一つとして、電縫管製造ミ
ルの安定操業中における電縫管素材たるストリツ
プの厚さ及び移送速度、つまり管の溶接速度を検
出し、この検出値を基準値として記憶し、操業中
に検出したストリツプの厚さ、移送速度を検出
し、これらを前記各基準値とを比較し、基準値に
対する検出値の偏差に応じてストリツプに対する
通流電流を制御する方法が提案されている(特開
昭52−69842号)。しかしこの方法においては入熱
量に過不足を生ぜしめる要因として、ストリツプ
の厚さと移送速度とに着目しているが入熱制御に
影響を与える要素としてはストリツプの厚さ、移
送速度の外にストリツプ材質、製造すすべき電縫
管外径、材質、アプセツト量、溶接温度等種々の
要因があり、特にアプセツト量と溶接入熱につい
ては極めて深い関係があるにもかかわらず、これ
らの要因が無視されており、溶接部温度の検出が
溶接点下流側に設置した放射温度計によるもので
あるから十分な効果を上げ得ないという欠点があ
り、またミル立上り時からミル安定操業に到到る
までの間に制御されていないので、この間におい
て製造された管の溶接部品質が劣悪で不良品とな
り製管歩留が悪いという欠点があるものであつ
た。
By the way, in the manufacturing method of electric resistance welded pipes as described above, the welding conditions, especially the appropriateness of the heat input amount, are extremely important requirements that affect the welding quality.
For example, if the amount of heat input is insufficient, the edges on both sides will not be welded together, a so-called cold defect will occur, and if the amount of heat input is too much, the edges on both sides will melt and fall off, a so-called burn-through phenomenon, which will deteriorate the quality of the pipe. This will result in lowering the value. For this reason, in the past, skilled workers monitored the flame color of the part to be welded, the appearance of the weld bead, etc., and set and adjusted various conditions empirically. could not be done. For this reason, in recent years, attempts have been made to automatically control the amount of heat input. One such method is to detect the thickness and transfer speed of the strip, which is the material for the ERW tube, during stable operation of the ERW tube manufacturing mill, that is, the welding speed of the tube, and to store these detected values as reference values. A method has been proposed in which the thickness and transfer speed of the strip detected during operation are compared with the respective reference values, and the current flowing through the strip is controlled according to the deviation of the detected value from the reference value. (Japanese Patent Application Laid-open No. 52-69842). However, this method focuses on the strip thickness and transfer speed as factors that cause excess or deficiency in the amount of heat input. There are various factors such as the material, the outer diameter of the ERW pipe to be manufactured, the material, the amount of upset, and the welding temperature, and even though there is a very close relationship between the amount of upset and welding heat input, these factors are often ignored. However, since the welding zone temperature is detected by a radiation thermometer installed downstream of the welding point, it has the disadvantage that it cannot be sufficiently effective. Since this process was not controlled, the quality of the welded parts of the pipes produced during this period was poor, resulting in defective products and poor pipe manufacturing yields.

本発明はかかる従来技術の欠点を解消すべくな
されたものであつて、その目的とするところは、
溶接入熱に対する影響要素として重要なストリツ
プ移送速度、つまり管の溶接速度の変化率が小さ
くて略一定となる管製造設備(製造ミル)の安定
操業期間と、それに至るまでの、変化率が大きい
立上り期間とに分けて、夫々別異の関係式に基い
て入熱制御を行い、またアプセツト量も制御に用
いることとして、電縫管品質と製管歩留の大幅な
向上を図れるようにした電縫管の溶接入熱制御方
法を提供するにある。
The present invention has been made to eliminate the drawbacks of the prior art, and its purpose is to:
There is a period of stable operation of the tube manufacturing equipment (manufacturing mill) in which the strip transfer speed, which is an important factor influencing welding heat input, in other words, the rate of change in the tube welding speed is small and almost constant, and the rate of change is large until then. Heat input control is performed based on different relational expressions for each start-up period, and the amount of upset is also used for control, making it possible to significantly improve the quality of ERW pipes and the pipe manufacturing yield. The present invention provides a method for controlling welding heat input of electric resistance welded pipes.

本発明に係る電縫管の溶接入熱制御方法は金属
帯の両側エツジ部が相対向するよう筒状に曲成し
てなるオープンパイプの前記両側エツジ部を加熱
溶融させつつ衝合溶接する電縫管の製造過程にお
いて、金属帯の肉厚、被溶接部温度、アプセツト
量及び溶接速度を検出し、溶接速度の変化率が管
製造設備の立上り期間と安定操業期間との判別の
基準値を越える期間中は立上り期間であるとして
溶接速度の変化率に関連する第1入熱制御量と、
前記肉厚、被溶接部温度及び溶接速度の検出値に
基くフイードバツクの第2入熱制御量とを入熱制
御に用い、溶接速度の変化率が前記基準値以下で
ある期間内は安定操業期間であるとして前記第2
入熱制御量と、前記肉厚の検出値に基くフイード
フオワードの第3入熱制御量と、前記アプセツト
量の検出値に基く第4入熱制御量とを入熱制御に
用いることを特徴とする。
The heat input control method for welding an electric resistance welded pipe according to the present invention is to apply electric current to butt weld while heating and melting both edge portions of an open pipe, which is formed by bending into a cylindrical shape so that both edge portions of a metal band face each other. In the manufacturing process of welded pipes, the thickness of the metal strip, the temperature of the part to be welded, the amount of upset, and the welding speed are detected, and the rate of change in the welding speed is used as a reference value for determining the start-up period and stable operation period of the pipe manufacturing equipment. A first heat input control amount related to the rate of change of the welding speed, assuming that the period exceeding the period is a rising period;
The second heat input control amount of the feedback based on the detected values of the wall thickness, the temperature of the welded part, and the welding speed is used for heat input control, and the period in which the rate of change of the welding speed is below the reference value is a stable operation period. The second
A heat input control amount, a third heat input control amount of a feed forward based on the detected value of the wall thickness, and a fourth heat input control amount based on the detected value of the upset amount are used for heat input control. Features.

以下本発明をその実施状態を示す図面に基いて
具体的に説明する。第1図は本発明に係る電縫管
の溶接入熱制御方法(以下本発明方法という)の
実施に用いる製管ミル及びその制御系を示すブロ
ツク図であり、図中SQはスクイズロール、ICは
誘導コイル、OPはオープンパイプを示している。
オープンパイプOPはアンコイラUCから繰り出さ
れたストリツプSPをトリマーTMにて幅寸法を
切り揃えた後、成形ロール群FRに通して断面C
形から両側エツジ部E,Eが相対向する断面O形
に曲成してなり、誘導コイルICに通されて両側
エツジ部E,Eを加熱させつつ、スクイズロール
SQ側に向けて白抜矢符方向に移送され、両側エ
ツジ部E,Eが加熱溶融されると同時にスクイズ
ロールSQ間に達して側圧を加えられ、両側エツ
ジ部E,E同士が衝合溶接されて管Pに製造され
るようになつている。そしてこのような製管工程
において、厚み計1によつてストリツプSPの厚
さdが、またアプセツト量測定装置2によつて製
管時のアプセツト量Uが、更に速度計3によつて
管P、換言すればストリツプSPの移送速度vが、
そして溶接部温度パターン測定装置4によつて溶
接点直前におけるオープンパイプOPのエツジ部
端面の温間分布が測定されるようになつている。
厚み計1はストリツプSPの表裏面に転接せしめ
たロール5a,5b間のロールギヤツプを検出す
ることによつてストリツプSPの長手方向におけ
る厚さを測定するようになつている。また速度計
3は管Pに転接せしめたロール4aに連繋するパ
ルスジエネレータ等にて構成されており、ロール
4aの回転数に応じて発せられるパルス数から管
Pの移送速度、換言すれば溶接速度を検出するよ
うにしてある。なお前記厚み計1は図示の構成の
ものに限らず、超音波厚み計等周知のものを用い
ることが出来ることはいうまでもない。
The present invention will be specifically explained below based on drawings showing its implementation state. FIG. 1 is a block diagram showing a tube mill and its control system used to implement the welding heat input control method for electric resistance welded pipes according to the present invention (hereinafter referred to as the method of the present invention), and in the figure, SQ is a squeeze roll, an IC indicates an induction coil, and OP indicates an open pipe.
The open pipe OP is made by cutting the strip SP fed out from the uncoiler UC to the same width using a trimmer TM, and passing it through a group of forming rolls FR to form a cross section C.
Due to its shape, the edge parts E and E on both sides are bent into an O-shaped cross section facing each other, and the edge parts E and E are passed through an induction coil IC to heat the edge parts E and E, and the squeeze roll is heated.
It is transferred toward the SQ side in the direction of the white arrow, and the edge parts E and E on both sides are heated and melted. At the same time, it reaches between the squeeze rolls SQ and side pressure is applied, and the edge parts E and E on both sides are butt-welded. It is designed to be manufactured into a pipe P. In such a pipe manufacturing process, the thickness meter 1 measures the thickness d of the strip SP, the upset amount measuring device 2 measures the amount of upset U during tube manufacturing, and the speed meter 3 measures the amount of the tube P. , in other words, the transport speed v of the strip SP is
The welding part temperature pattern measuring device 4 is adapted to measure the warm distribution on the edge end face of the open pipe OP immediately before the welding point.
The thickness meter 1 measures the thickness of the strip SP in the longitudinal direction by detecting a roll gap between rolls 5a and 5b which are brought into rolling contact with the front and back surfaces of the strip SP. The speed meter 3 is composed of a pulse generator etc. connected to a roll 4a which is in rolling contact with the pipe P, and the transfer speed of the pipe P is determined from the number of pulses emitted according to the rotation speed of the roll 4a, in other words. It is designed to detect welding speed. It goes without saying that the thickness gauge 1 is not limited to the one having the configuration shown in the drawings, and a known thickness gauge such as an ultrasonic thickness gauge can be used.

アプセツト量測定装置2は最終段のフインパス
ロールFR1の上部外周面に臨ませせたギヤツプ計
G1、スクイズロールSQの相対向面側と反対側の
外周面に臨ませたギヤツプ計G2(1個のみが表わ
れている)を備えており、ギヤツプ計G1からは
ギヤツプ計G1とフインパスロールFR1との離隔寸
法d1を、またギヤツプ計G2からはギヤツプ計G2
と各スクイズロールSQ周面との離隔寸法d2,d3
を読み込み、下記(1)式に従つてアプセツト量Uを
検出するようにしてある。
The upset amount measuring device 2 is a gap meter facing the upper outer peripheral surface of the final stage fin pass roll FR 1 .
G 1 is equipped with a gap meter G 2 (only one is shown) facing the outer peripheral surface on the opposite side to the opposite side of the squeeze roll SQ, and the gap meter G 1 is connected to the gap meter G 1 . The separation dimension d 1 between the and Finpass roll FR 1 , and the gap gauge G 2 from the gap gauge G 2 .
and the distance between each squeeze roll SQ circumferential surface d 2 , d 3
is read in, and the upset amount U is detected according to the following equation (1).

U=2(GF−GS)+2RF(θF−α/2) −2RS・θS …(1) 但し、GF=d1゜−d1+GF゜ GS=(d2゜−d2)+(d3゜−d3)+GS゜ GF:フインパスロールのロールギヤツ
プ GS:スクイズロールのロールギヤツプ RF:フインパスロールのキヤリバ径 RS:スクイズロールのキヤリバ径 θF:フインパスロールのキヤリバ断面の
円弧がその中心に対してはさむ角
度 θS:スクイズロールのキヤリバ断面の円
弧がその中心に対してはさむ角度 d1゜,d2゜,d3゜,GF゜,GS゜はいずれも初期設定値 オープンパイプOPのエツジ部E,Eの温度パ
ターン測定装置4は既に本出願人によつて出願さ
れている(特開昭57−77924号公報)ものである
がその概略を示すと第2図に示す如く構成されて
いる。第2図は温度パターン測定装置4のブロツ
ク図であり、図中41はイメージガイド、42は
レンズを示している。イメージガイド42のみ物
側端末はオープンパイプOPにおけるエツジ部E,
E及びその近傍を視野内に捉え得るよう配設され
ており、また他端末はレンズ42に臨ませてあ
り、このレンズ42を通してイメージガイド41
の端末が臨む部分の視野を撮像管43a,43
b,43cにて撮像するようにしてあある。イメ
ージガイド41にて捉えられた像はハーフミラ4
4a、透過波長成分のピーク波長がλ1である光学
フイルタ44bを経て撮像管43aに入射し、ま
た光学フイルタ44bで反射された一部の光は反
射波長成分のピーク波長がλ2(λ1<λ2)である光
学フイルタ44cを経て撮像管43bに入射し、
更にハーフミラ44aにて反射された光はカラー
用撮像管43cに入射されるようにしてある。撮
像管43cはオープンパイプOPの溶接部の形状
を捉えるためのものであつてビジコン等が用いら
れ、これに対して撮像管43a,43bは後述の
如き2色温度演算を行なわせるための情報を得る
べく設けられており、イメージデイセクタ等ラン
ダム走査が可能な光電変換素子を用いている。撮
像管43a,43bには共通のX偏光信号(水平
方向)、Y偏光信号(垂直方向)が演算位置設定
器45、走査制御回路46を通じて入力されてお
り、各撮像管43a,43bから夫々発せられた
ビデオ信号VD1,VD2は信号処理回路47に取り
込まれて二色温度演算された後、温度パターン信
号として映像信号制御回路48に入力される。映
像信号制御回路48にあつては撮像管43cから
の映像信号と、温度パターン信号とを合成し、画
像合成温度パターン信号としてモニタ49に、例
えば第3図に示す如くで示す画像表示部におい
てはイメージガイド41が捉えた部分の画像を、
またで示す画線表示部では水平方向(管軸方
向)の温度パターンを、更にで示す画像表示部
では垂直方向(管周方向)の温度パターンが表示
されるようになつている。これによつてオープン
パイプOPにおける溶接直前の両側エツジ部E,
Eの温合がオープンパイプOPの移動方向の温度
分布、並びに管周方向の温度分布として捉えられ
ることとなる。
U=2(G F −G S )+2R FF −α/2) −2R S・θ S …(1) However, G F = d 1゜−d 1 +G F゜ G S = (d 2゜−d 2 ) + (d 3゜−d 3 )+G S゜ G F : Roll gap of fin pass roll G S : Roll gap of squeeze roll R F : Caliber diameter of fin pass roll R S : Caliber diameter θ of squeeze roll F : Angle between the arc of the cross section of the balance of the fin pass roll and its center θ S : Angle of the arc of the cross section of the squeeze roll's balance with the center d 1゜, d 2゜, d 3゜, G F゜, G S゜ are both initial setting values. The temperature pattern measuring device 4 at the edge portions E and E of the open pipe OP has already been applied for by the present applicant (Japanese Patent Laid-Open No. 77924/1983). However, its outline is shown in FIG. 2. FIG. 2 is a block diagram of the temperature pattern measuring device 4, in which numeral 41 indicates an image guide and numeral 42 indicates a lens. The object side terminal of the image guide 42 is the edge part E in the open pipe OP,
The other terminals are placed so as to be able to capture E and its vicinity within the field of view, and the other terminals are placed facing the lens 42, through which the image guide 41
The field of view of the part facing the terminal is captured by the image pickup tubes 43a, 43.
The images are taken at points b and 43c. The image captured by Image Guide 41 is Half Mira 4
4a, the light enters the image pickup tube 43a through the optical filter 44b whose transmitted wavelength component has a peak wavelength of λ 1 , and some of the light reflected by the optical filter 44b has a reflected wavelength component whose peak wavelength is λ 212 ) and enters the image pickup tube 43b through the optical filter 44c,
Further, the light reflected by the half mirror 44a is made to enter a color image pickup tube 43c. The image pickup tube 43c is for capturing the shape of the welded part of the open pipe OP, and a vidicon or the like is used, whereas the image pickup tubes 43a and 43b capture information for performing two-color temperature calculations as described below. A photoelectric conversion element capable of random scanning, such as an image disector, is used. A common X polarized light signal (horizontal direction) and Y polarized light signal (vertical direction) are inputted to the image pickup tubes 43a and 43b through a calculation position setter 45 and a scan control circuit 46, and are emitted from each image pickup tube 43a and 43b, respectively. The video signals VD 1 and VD 2 thus obtained are taken into a signal processing circuit 47 and subjected to two-color temperature calculation, and then inputted to a video signal control circuit 48 as a temperature pattern signal. In the video signal control circuit 48, the video signal from the image pickup tube 43c and the temperature pattern signal are combined and displayed on the monitor 49 as an image composite temperature pattern signal, for example, in the image display section shown in FIG. The image of the part captured by the image guide 41,
In the image display section indicated by , a temperature pattern in the horizontal direction (tube axis direction) is displayed, and in the image display section indicated by , a temperature pattern in the vertical direction (tube circumferential direction) is displayed. As a result, both edge portions E of the open pipe OP immediately before welding,
The temperature of E can be understood as the temperature distribution in the moving direction of the open pipe OP and the temperature distribution in the pipe circumferential direction.

6は演算制御装置であつて、厚み計1からはス
トリツプSPの長手方向における板厚データを、
アプセツト量測定装置2からは製管に際してのア
プセツト量に関するデタを、速度計3からは管P
の移送速度、即ち溶接速度に関するデータを、そ
して温度パターン測定装置4からは両側エツジ部
E,Eを含む溶接点直前の長手方向の温度パター
ン又は溶接直前の短側エツジ部E,Eの特定位置
の温度を読み込み、製管ミルの立上り時1と、製
管ミルの安定操業時2とに分けて夫々以下に示す
如き演算を行い誘導コイルICに対する印加電圧
を調節すべく電圧印加装置7に指令信号を発する
ようにしてある。
Reference numeral 6 is an arithmetic and control unit, and from the thickness gauge 1, the plate thickness data in the longitudinal direction of the strip SP is transmitted.
The upset amount measuring device 2 provides data regarding the amount of upset during pipe manufacturing, and the speed meter 3 provides data regarding the amount of upset during pipe manufacturing.
data on the transfer speed, that is, the welding speed, and the temperature pattern in the longitudinal direction immediately before the welding point including both edge portions E, E or the specific position of the short side edge portions E, E immediately before welding from the temperature pattern measuring device 4. The temperature is read, and the calculations shown below are performed separately for 1 when the tube mill starts up and 2 when the tube mill is in stable operation, and a command is given to the voltage application device 7 to adjust the voltage applied to the induction coil IC. It is designed to emit a signal.

(1) 製管ミルの立上り期間における入熱制御 演算制御装置6はストリツプSPの板厚d、
移送速度(溶接速度)v、アプセツト量U及び
両側エツジ部E,E同士の衝合溶接点直前特定
位置のエツジ部E,Eの温度Tを読み込み、こ
れらと予め設定されている製造すべき管Pの外
径D等に基いて、経験的に定められる下記(2)式
に基いて印加電圧V、換言すれば入熱量を演算
する。
(1) Heat input control during the startup period of the tube mill The arithmetic and control unit 6 controls the thickness d of the strip SP,
The transfer speed (welding speed) v, the upset amount U, and the temperature T of the edge portions E, E at a specific position immediately before the butt welding point between the edge portions E, E on both sides are read, and these and the preset pipe to be manufactured are read. Based on the outer diameter D of P, etc., the applied voltage V, in other words, the amount of heat input, is calculated based on the empirically determined equation (2) below.

V=K・f(v,d,D,T,U) ……(2) なお、上記(2)式において板厚dは溶接点直前
の温度測定位置と異なる位置のものであるから
トラツキングを行なつて温度測定位置のものを
算出して入力するものとする。
V=K・f(v, d, D, T, U) ...(2) In addition, in the above equation (2), the plate thickness d is at a different position from the temperature measurement position just before the welding point, so tracking is not necessary. Then, calculate and input the temperature measurement position.

管Pの外径D、定数Kについては予めテーブ
ル化されており製管条件が変更される毎に適宜
に選択採用されるようにしてある。
The outer diameter D and constant K of the pipe P are prepared in advance in a table, and are selected and adopted as appropriate each time the pipe manufacturing conditions are changed.

(2)式に基いて演算した入熱量を実現すべく演
算制御装置6から電圧印加制御装置7に指令信
号が発せられるが、上述した如き各データの読
み込みは所定のタイミングにて繰り返され、ス
トリツプ移送速度v、板厚d等に変化が生じた
場合にはそれに応じた入熱制御量を演算し、そ
の都度演算制御装置6から電圧印加制御装置7
に印加電圧を修正すべく指令信号が発せられ
る。
A command signal is issued from the arithmetic control device 6 to the voltage application control device 7 in order to realize the amount of heat input calculated based on equation (2), but the reading of each data as described above is repeated at a predetermined timing, and the strip When a change occurs in the transfer speed v, plate thickness d, etc., the heat input control amount is calculated accordingly, and the voltage application control device 7 is sent from the calculation control device 6 each time.
A command signal is issued to modify the applied voltage.

上述の制御は製管ミルの立上り期間、換言す
ればストリツプSPの移送速度の時間当りの変
化率が基準値a以上dv/dt>aとなつている
期間中、順次反復継続され、dv/dtaとな
つて製管ミルが安定した操業状態に達した後は
後述する(2)の安定操業期間中の入熱制御に切替
えられる。
The above control is sequentially repeated and continued during the start-up period of the tube mill, in other words, during the period when the rate of change per hour of the transfer speed of the strip SP is equal to or higher than the reference value a and dv/dt > a. After the tube mill reaches a stable operating state, it switches to heat input control during the stable operating period (2), which will be described later.

製管ミルの立上り期間中における具体的な制
御手順を第4図に示すフローチヤートに従つて
説明する。先ず速度計3によつて所定のタイミ
ングで管Pの移送速度v1,v2…vi-1,vi…を読
み込み(ステツプ)、読み込んだ各移送速度
vi-1とviとの差Δvi(vi−vi-1)を演算し(ステツ
プ)、移送速度Δvi(dv/dtつまり溶接速度の
変化率に相当する)が予め定めた一定値aより
も大きいか否かを判別し(ステツプ)、NO
の場合、即ちΔviaのときは後述する製管ミ
ルの安定操業期間のルーチンに移り、また
YESの場合、即ちΔvi>aのときは製管スケジ
ユールに基いて決定されている管外径D、厚み
計1から入力されるストリツプSPの肉厚di
びアプセツト量測定装置2から入力されるアプ
セツト量Uiに基いて選定した比例定数Kvを定
数テーブルから読み込み、移送速度の変化分に
対応すべき入熱制御量ΔViを下記(3)式に基いて
演算する(ステツプ)。
The specific control procedure during the start-up period of the tube mill will be explained according to the flowchart shown in FIG. First, the speed meter 3 reads the transfer speeds v 1 , v 2 ...v i-1 , v i ... of the pipe P at predetermined timing (step), and each read transfer speed
The difference Δv i (v i −v i-1 ) between v i -1 and v i is calculated (step), and the transfer speed Δv i (corresponding to dv/dt, that is, the rate of change in welding speed) is determined in advance. Determine whether it is larger than a certain value a (step) and NO
In the case of Δv i a, the process moves to the routine for the stable operation period of the tube mill, which will be described later.
In the case of YES, that is, when Δv i >a, the pipe outer diameter D determined based on the pipe manufacturing schedule, the wall thickness d i of the strip SP input from the thickness gauge 1, and the upset amount measuring device 2 are input. The proportional constant Kv selected based on the upset amount U i is read from the constant table, and the heat input control amount ΔV i corresponding to the change in transfer speed is calculated based on the following equation (3) (step).

ΔVi=Kv・Δvi ……(3) 次にこの入熱制御量ΔViと先のサイクルで演
算され、設定された入熱量Vi-1と、後述する製
管外径D、移送速度vi、板厚diに基いて選定し
た比例定数Kfbにより定められる入熱制御量
ΔVfbとから新たに設定すべき入熱量Viを下記
(4)式に基いて演算し(ステツプ)、この入熱
量Viを実現すべく電圧印加制御装置7に指令信
号を発することとなる(ステツプ)。Δvi>a
の間は再びステツプに戻つて上述の過程を順
次反復してゆくこととなる。
ΔV i = Kv・Δv i ...(3) Next, this heat input control amount ΔV i , the heat input amount V i-1 calculated and set in the previous cycle, the outside diameter D of pipe manufacturing, and the transfer speed described later The heat input amount V i to be newly set from v i and the heat input control amount ΔVfb determined by the proportionality constant Kfb selected based on the plate thickness d i is as follows.
Calculation is performed based on equation (4) (step), and a command signal is issued to the voltage application control device 7 to realize this heat input amount V i (step). Δv i >a
During this time, the process returns to step 1 and the above-described process is repeated in sequence.

Vi=ΔVi+Vi-1+ΔVfb ……(4) ここでΔViは前述の第1入熱制御量に相当
し、ΔVfbは第2入熱制御量に対応する。
V i =ΔV i +V i-1 +ΔVfb (4) Here, ΔV i corresponds to the above-mentioned first heat input control amount, and ΔVfb corresponds to the second heat input control amount.

(2) 製管ミルの安定操業期間における入熱制御 前述の如くステツプにおいて移送速度又は
溶接速度の変化率Δviが基準値a以下となつた
場合、即ちΔviaとなつた場合には、製管ミ
ルが安定操業状態に入つたものとして入熱制御
は以下のルーチンに従つて行なわれる。温度パ
ターン測定装置4から、衝合溶接される直前特
定位置の両側エツジ部E,Eの温度T1,T2
…Ti-1,Ti…を読み込み(ステツプ)、この
検出値と予め製管スケジユールにおけるストリ
ツプSPの板厚d、材質M及び製管外径Dに基
いて定められる溶接直前の両側エツジ部E,E
の目標温度T0との差ΔTi(=Ti−T0)を順次演
算し(ステツプ)、次いで製管外径Dに基い
て選定した比例定数Kp、厚み計1にて検出し
た板厚di及び速度計3にて検出した移送速度vi
等のフイードバツクデータに基いて選定した比
例定数KI並びにその他の比例定数KDと、前記
温度差ΔTiとに基いてこれらエツジ部温度等の
変化に相応する入熱制御量ΔVfbを下記(5)式に
基いて演算する(ステツプ)。
(2) Heat input control during the stable operation period of a tube mill As mentioned above, when the rate of change Δv i of the transfer speed or welding speed in a step becomes less than the reference value a, that is, when it becomes Δv i a, Assuming that the tube mill has entered a stable operating state, heat input control is performed according to the following routine. From the temperature pattern measurement device 4, temperatures T 1 , T 2 , T 2 ,
...T i -1 , T i ... are read (step), and the edge portions on both sides immediately before welding are determined based on the detected values and the thickness d, material M, and outside diameter D of the strip SP in the pipe manufacturing schedule. E,E
The difference ΔT i (=T i - T 0 ) from the target temperature T 0 of Transfer speed v i detected by d i and speedometer 3
Based on the proportionality constant K I and other proportionality constants K D selected based on the feedback data of Calculate based on formula (5) (step).

ΔVfb=Kp(ΔTi−ΔTi-1)+KIΔTi +KD(ΔTi−2ΔTi-1+ΔTi-2) ……(5) なおこのステツプ迄におけるΔVfbを求め
る演算はΔvi>aの場合にも適用するものとす
る。
ΔVfb=K p (ΔT i −ΔT i-1 )+K I ΔT i +K D (ΔT i −2ΔT i-1 +ΔT i-2 ) ……(5) The calculation to obtain ΔVfb up to this step is Δv i > This shall also apply to case a.

次に上述したストリツプSPの板厚di、管移
送速度vi等のフイードバツクデータに基く入熱
制御量ΔVfbと、ストリツプSPのフイードフオ
ワードデータに基づく第3入熱制御量ΔVffと、
アプセツト量測定装置2によつて検出されたア
プセツト量Uiの変化に対応する第4入熱制御量
ΔVuとに基いて被溶接部たる両側エツジ部E,
Eを目標温度T0に一致せしめるに必要な全入
熱制御量ΔViを下記(6)式に従つて演算する(ス
テツプ)。
Next, the heat input control amount ΔVfb is based on the feedback data such as the plate thickness d i of the strip SP and the pipe transfer speed v i , and the third heat input control amount ΔVff is based on the feedback data of the strip SP. ,
Based on the fourth heat input control amount ΔVu corresponding to the change in the amount of upset U i detected by the amount of upset measuring device 2, the edge portions on both sides E, which are the parts to be welded, are
The total heat input control amount ΔV i required to make E match the target temperature T 0 is calculated according to the following equation (6) (step).

ΔVi=ΔVfb+ΔVff+ΔVu ……(6) そしてこの全入熱制御量ΔViと先のサイクル
で設定された入熱量Vi-1とに基いて新たに設定
すべき入熱量Viを下記(7)式に従つて演算し(ス
テツプ)、これを実現すべく電圧印加制御装
置7に指令信号を発する(ステツプ)。
ΔV i = ΔVfb + ΔVff + ΔVu ...(6) Then, based on this total heat input control amount ΔV i and the heat input amount V i-1 set in the previous cycle, the heat input amount V i to be newly set is as follows (7) The calculation is performed according to the formula (step), and a command signal is issued to the voltage application control device 7 to realize the calculation (step).

Vi=ΔVi+Vi-1 ……(7) Δviaの間はステツプに戻つてステツプ
〜の過程を順次反復してゆくこととなる。
V i =ΔV i +V i-1 (7) During Δv i a, the process returns to step 1 and repeats the process from step to sequentially.

なお、上述のステツプにおいて用いるフイ
ードフオワードデータであるストリツプSPの
板厚変化に対応する入熱制御量ΔVff、アプセ
ツト量Uの変化に対応する入熱制御量ΔVU
次のような処理にて求められる。即ち、入熱制
御量ΔVffは先ず厚み計1からストリツプSPの
板厚d1,d2…di-1,di…に関するデータを所定
のタイミングで読み込み、これに基いて定数テ
ーブルから夫々に対応する比例定数Kffを選定
する。一方、読み込んだ板厚di-1,diの差Δdi
(=di−di-1)を演算し、次いでこの板厚変化量
Δdiと比例定数Kffとに基いて板厚変化に対応
する入熱制御量ΔVffは下記(8)式に従つて演算
することにより得られる。
In addition, the heat input control amount ΔVff corresponding to the change in the thickness of the strip SP and the heat input control amount ΔV U corresponding to the change in the upset amount U, which are the feed forward data used in the above steps, are processed as follows. is required. That is, the heat input control amount ΔVff is determined by first reading data regarding the plate thicknesses d 1 , d 2 . . . d i-1 , d i . Select the corresponding proportionality constant Kff. On the other hand, the difference Δd i between the read plate thicknesses d i-1 and d i
(=d i −d i-1 ), and then, based on this plate thickness change amount Δd i and the proportionality constant Kff, the heat input control amount ΔVff corresponding to the plate thickness change is calculated according to the following equation (8). Obtained by calculation.

ΔVff=Kff・Δdi ……(8) また入熱制御量ΔVuについても同様であつ
て、アプセツト量測定装置2から所定のタイミ
ングでアプセツト量U1,U2,…Ui-1,Ui…を
読み込み、これに基いて定数テーブルから夫々
に対応する比例定数Kuを選定する。一方、読
み込んだアプセツト量Ui-1,Uiの差ΔUi(Ui
Ui-1)を演算し、次いでこのアプセツト変化量
ΔUiと比例定数KUとに基いてアプセツト量の
変化に対応する入熱制御量ΔVUを下記(9)式に
従つて演算することにより得られる。
ΔVff=Kff・Δd i ...(8) The same applies to the heat input control amount ΔVu, and the upset amounts U 1 , U 2 , ...U i-1 , U i ..., and based on this, select the corresponding proportionality constant Ku from the constant table. On the other hand, the difference ΔU i ( U i
U i-1 ), and then, based on this upset change amount ΔU i and proportionality constant K U , calculate the heat input control amount ΔV U corresponding to the change in the upset amount according to equation (9) below. It is obtained by

ΔVU=KU・ΔUi ……(9) 以上の如く本発明にあつては管製造設備の立上
り期間と安定操業期間とで異なる入熱制御量を用
いることとしているので従来は制御されていなか
つた立上り期間についても溶接入熱制御が行わ
れ、この期間の溶接品質が高まり、歩留りが向上
することは勿論、安定操業期間においてはアプセ
ツト量による入熱制御も行うのでこの期間での制
御精度が向上して溶接品質が高まるという効果が
得られる。
ΔV U =K U・ΔU i ...(9) As described above, in the present invention, different heat input control amounts are used during the start-up period and the stable operation period of the pipe manufacturing equipment, so that the amount of heat input that was conventionally controlled is different. Welding heat input control is performed even during the start-up period, which improves the welding quality and yield during this period.In addition, heat input control is performed using the upset amount during the stable operation period, which improves control accuracy during this period. The effect is that the welding quality is improved by improving the welding quality.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法の実施状態を示す模式図、
第2図は本発明方法において用いる被溶接部の温
度パターン測定装置の模式図、第3図は温度測定
装置のモニタにおける表示態様を示す説明図、第
4図は制御過程を示すフローチヤートである。 1…厚み計、2…アプセツト量測定装置、3…
速度計、4…温度パターン測定装置、5…演算制
御部、7…電圧印加制御装置、SP…ストリツプ、
SQ…スクイズロール、IC…誘導コイル。
FIG. 1 is a schematic diagram showing the implementation state of the method of the present invention,
Fig. 2 is a schematic diagram of a temperature pattern measuring device for a welded part used in the method of the present invention, Fig. 3 is an explanatory diagram showing the display mode on the monitor of the temperature measuring device, and Fig. 4 is a flow chart showing the control process. . 1... Thickness gauge, 2... Upset amount measuring device, 3...
Speedometer, 4...Temperature pattern measuring device, 5...Arithmetic control section, 7...Voltage application control device, SP...Strip,
SQ...squeeze roll, IC...induction coil.

Claims (1)

【特許請求の範囲】 1 金属帯の両側エツジ部が相対向するよう筒状
に曲成してなるオープンパイプの前記両側エツジ
部を加熱溶融させつつ衝合溶接する電縫管の製造
過程において、 金属帯の肉厚、被溶接部温度、アプセツト量及
び溶接速度を検出し、 溶接速度の変化率が管製造設備の立上り期間と
安定操業期間との判別の基準値を越える期間中は
立上り期間であるとして 溶接速度の変化率に関連する第1入熱制御量
と、前記肉厚、被溶接部温度及び溶接速度の検出
値に基くフイードバツクの第2入熱制御量とを入
熱制御に用い、 溶接速度の変化率が前記基準値以下である期間
内は安定操業期間であるとして 前記第2入熱制御量と、前記肉厚の検出値に基
くフイードフオワードの第3入熱制御量と、前記
アプセツト量の検出値に基く第4入熱制御量とを
入熱制御に用いる ことを特徴とする電縫管の溶接入熱制御方法。
[Scope of Claims] 1. In the process of manufacturing an electric resistance welded pipe in which both edge portions of an open pipe are formed by bending into a cylindrical shape so that the edge portions on both sides of a metal band face each other are butt-welded while being heated and melted, The thickness of the metal strip, the temperature of the part to be welded, the amount of upset, and the welding speed are detected, and the period during which the rate of change in welding speed exceeds the reference value for distinguishing between the startup period and the stable operation period of pipe manufacturing equipment is considered to be the startup period. If there is, a first heat input control amount related to the rate of change of the welding speed and a second heat input control amount of feedback based on the detected values of the wall thickness, the temperature of the welded part and the welding speed are used for heat input control, The period in which the rate of change of the welding speed is less than or equal to the reference value is considered to be a stable operation period, and the second heat input control amount and the third heat input control amount of the feed forward based on the detected value of the wall thickness are calculated. , and a fourth heat input control amount based on the detected value of the upset amount for heat input control.
JP10657481A 1981-07-07 1981-07-07 Welding heat input controlling method for electric welded tube Granted JPS589781A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10657481A JPS589781A (en) 1981-07-07 1981-07-07 Welding heat input controlling method for electric welded tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10657481A JPS589781A (en) 1981-07-07 1981-07-07 Welding heat input controlling method for electric welded tube

Publications (2)

Publication Number Publication Date
JPS589781A JPS589781A (en) 1983-01-20
JPH0234714B2 true JPH0234714B2 (en) 1990-08-06

Family

ID=14437002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10657481A Granted JPS589781A (en) 1981-07-07 1981-07-07 Welding heat input controlling method for electric welded tube

Country Status (1)

Country Link
JP (1) JPS589781A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5617193A (en) * 1979-07-20 1981-02-18 Meidensha Electric Mfg Co Ltd High frequency induction heating welding equipment

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5617193A (en) * 1979-07-20 1981-02-18 Meidensha Electric Mfg Co Ltd High frequency induction heating welding equipment

Also Published As

Publication number Publication date
JPS589781A (en) 1983-01-20

Similar Documents

Publication Publication Date Title
JP2685725B2 (en) Method for process control and / or quality control during laser butt welding of plates, and laser welding apparatus for implementing the method
JPH029538B2 (en)
JP2009255132A (en) Electric welding system
JPH0234714B2 (en)
JP3423034B2 (en) Apparatus for detecting the amount of pressure contact in the high-frequency electric resistance welding process
JP4050897B2 (en) Steel material tracking method and apparatus in continuous rolling
JPH03155479A (en) Welding control method for resistance welded tube
JPH0871638A (en) Method of controlling heat input in electric resistance welded tube
JPH11254031A (en) Manufacture of tube by high frequency
JPS5825883A (en) Controlling method for rate of upsetting for high frequency welded steel pipe
JP6699116B2 (en) Upset control device and control method in electric resistance welding process
JPS63303684A (en) Method and device for controlling heat input of resistance welded tube welding
JP7435930B1 (en) ERW steel pipe welding management device, ERW steel pipe welding management method, ERW steel pipe manufacturing method, and ERW steel pipe welding management system
KYOGOKU et al. Automatic welding control system for electric-resistance weld tube mill
MIHARA et al. A new automatic heat input control for production of electric resistance welded pipe
Ohshima Observation and control of weld pool phenomena in arc welding
WO2024090051A1 (en) Electrical resistance welded steel pipe welding management device, electrical resistance welded steel pipe welding management method, electrical resistance welded steel pipe manufacturing method, and electrical resistance welded steel pipe welding management system
JPH05318142A (en) Method and device for monitoring resistance welded tube welding and resistance welded tube welding controller
JPS60213373A (en) Method for controlling weld heat input for electric welded steel pipe
Doubenskaia et al. On-line optical monitoring of Nd: YAG laser lap welding of Zn-coated steel sheets
JP2023182081A (en) Welding management device for erw steel pipes, welding management system, welding management method for erw steel pipes, and method for manufacturing erw steel pipes
JPH04147780A (en) Method for controlling weld heat input of electro-resistance welded pipe
JPH0241399B2 (en)
JPH071167A (en) Seam profile control method for combined heat source welding
JPH0246311B2 (en)