JP2023182081A - Welding management device for erw steel pipes, welding management system, welding management method for erw steel pipes, and method for manufacturing erw steel pipes - Google Patents

Welding management device for erw steel pipes, welding management system, welding management method for erw steel pipes, and method for manufacturing erw steel pipes Download PDF

Info

Publication number
JP2023182081A
JP2023182081A JP2022095481A JP2022095481A JP2023182081A JP 2023182081 A JP2023182081 A JP 2023182081A JP 2022095481 A JP2022095481 A JP 2022095481A JP 2022095481 A JP2022095481 A JP 2022095481A JP 2023182081 A JP2023182081 A JP 2023182081A
Authority
JP
Japan
Prior art keywords
welding
temperature
edge
pipe
molten steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022095481A
Other languages
Japanese (ja)
Inventor
昌士 松本
Masashi Matsumoto
俊一 田中
Shunichi Tanaka
龍郎 勝村
Tatsuro Katsumura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2022095481A priority Critical patent/JP2023182081A/en
Publication of JP2023182081A publication Critical patent/JP2023182081A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a welding management device for electric resistance welded (ERW) steel pipes, a welding management system, a welding management method for ERW steel pipes, and a method for manufacturing ERW steel pipes, which are configured to suppress occurrence of welding defects.SOLUTION: A welding management device for ERW steel pipes comprises: an edge temperature detection unit; an edge temperature difference calculation unit; a V convergence angle calculation unit; a post-weld discharge molten steel area calculation unit; and welding state determination unit that determines whether electric resistance welding conditions are good or bad.SELECTED DRAWING: Figure 1

Description

本発明は、電縫鋼管の電縫溶接直前におけるオープン管エッジ部について温度分布を定量化し、電縫溶接現象の構成因子と組み合わせることで溶接欠陥を抑止するための電縫鋼管の溶接管理装置、溶接管理システム、および電縫鋼管の溶接管理方法および電縫鋼管の製造方法に関する。 The present invention provides a welding management device for ERW steel pipes, which quantifies the temperature distribution at the open pipe edge immediately before ERW welding, and suppresses welding defects by combining the temperature distribution with constituent factors of the ERW welding phenomenon. The present invention relates to a welding management system, a welding management method for ERW steel pipes, and a method for manufacturing ERW steel pipes.

電縫鋼管は、ロール成形を用いて、鋼板又は鋼帯に対して周方向に連続的な曲げ加工し、両端部を突き合わせて円形断面の空筒にした略管形のオープン管とし、その後突き合わせたオープン管両エッジ部を連続的に電縫溶接して製造される。 ERW steel pipes are produced by continuous bending of a steel plate or steel strip in the circumferential direction using roll forming, and the two ends are butted together to form a hollow tube with a circular cross section. It is manufactured by continuous electric resistance welding of both edges of the open tube.

電縫溶接時において、上記両エッジ部をコンタクトチップによる直接通電もしくは誘導コイルによる誘導電流で融点以上に加熱し、その直後に溶接ロール(スクイズロール)で両エッジの接合部を衝合(アプセット)する。その際、鋼板又は鋼帯の溶融加熱過程で発生する酸化物(ペネトレータ)をアプセットにより管の内外面に流出させ、余盛(ビード)と称する不要部分に排出させて溶接欠陥の発生を抑止している。電縫溶接後、余盛部は切削工具等により管から切削除去される。 During electric resistance welding, both edges are heated above the melting point by direct current using a contact tip or induced current by an induction coil, and immediately after that, the joints of both edges are abutted (upset) using a welding roll (squeeze roll). do. At that time, oxides (penetrators) generated during the melting and heating process of the steel plate or steel strip are caused to flow out to the inner and outer surfaces of the pipe using an upset, and are discharged into unnecessary parts called beads, thereby preventing the occurrence of welding defects. ing. After the electric resistance welding, the excess portion is removed from the tube using a cutting tool or the like.

溶接欠陥を抑制するために、ペネトレータの発生や、溶接されるまでのペネトレータ同士の凝集を極力抑制することが重要である。そのためには、前記溶融加熱過程から、両エッジの接合開始までの時間が過大にならないように溶接条件を調整する必要がある。また、アプセットの工程でペネトレータをビードへ滞りなく排出することも重要である。そのためには、接合開始までのエッジ部の肉厚方向の温度分布の偏差を小さくし、アプセット中の溶融エッジ部の凝固によるペネトレータの排出不良を抑制する必要がある。 In order to suppress welding defects, it is important to suppress the generation of penetrators and the aggregation of penetrators until welding as much as possible. For this purpose, it is necessary to adjust welding conditions so that the time from the melting heating process to the start of joining both edges does not become excessive. It is also important to discharge the penetrator smoothly into the bead during the upsetting process. To this end, it is necessary to reduce the deviation in the temperature distribution in the thickness direction of the edge portion until the start of welding, and to suppress failures in ejection of the penetrator due to solidification of the molten edge portion during upsetting.

上記問題を解決する方法として、電縫鋼管の製造における溶接欠陥抑止には種々の技術が開示されており、例えば、電縫溶接現象を映像化し、かつ、溶融加熱過程におけるエッジ部の温度を測定した溶接工程の溶接管理システムが提案されている。 As a method to solve the above problem, various techniques have been disclosed to prevent welding defects in the manufacture of ERW steel pipes. A welding management system for welding processes has been proposed.

特許文献1は、衝合前のオープン管の両エッジの外面および内面の角部位置の座標を、撮影した画像から検出すると共に両エッジの外面および内面の角部の温度分布を算出し、検出した座標と算出した温度分布とを照合してその検出座標におけるエッジの温度を求めて両エッジの加熱条件を制御する溶接温度測定方法が提案されている。 Patent Document 1 detects the coordinates of the corner positions of the outer surface and inner surface of both edges of an open tube before abutment from a photographed image, calculates the temperature distribution of the outer surface and inner corner portions of both edges, and detects the coordinates. A welding temperature measurement method has been proposed in which the temperature of the edge at the detected coordinates is determined by comparing the detected coordinates with the calculated temperature distribution and the heating conditions of both edges are controlled.

特許文献2は、電縫溶接の画像を取得し、衝合前のオープン管の両エッジがV字状に収束するV収束部位を含む領域の画像を取得し、前記画像において両エッジの衝合部、あるいは両エッジが幾何学的になす収束点のいずれかにおいて、肉厚内部における溶融部が表面へ排出し始める領域の温度を輝度レベルで温度変換し、その温度が閾値以上であることを判定する電縫溶接の操業上の監視装置が提案されている。 Patent Document 2 acquires an image of electric resistance welding, acquires an image of a region including a V-convergence region where both edges of an open pipe before abutment converge in a V-shape, and detects the abutment of both edges in the image. The temperature of the region where the melted part starts to discharge to the surface inside the wall thickness is converted to the brightness level at either the geometric convergence point of both edges, and it is determined that the temperature is above the threshold value. An operational monitoring device for electric resistance welding has been proposed.

特開平11‐33621号公報Japanese Patent Application Publication No. 11-33621 特許第5549963号公報Patent No. 5549963

特許文献1では、接合端面の内外面における角部の温度を測定しているため、衝合前の両端面同士のラップ状態の影響を監視することはできるが、電縫溶接の高周波加熱で最も加熱されにくい肉厚中央部の温度データが無いため、肉厚中央部の加熱不足が原因で十分な溶接部特性が得られない問題がある。 In Patent Document 1, since the temperature of the corners of the inner and outer surfaces of the joint end faces is measured, it is possible to monitor the influence of the lap state between both end faces before abutment, but it is Since there is no temperature data for the central part of the wall thickness, which is difficult to heat, there is a problem that sufficient weld characteristics cannot be obtained due to insufficient heating of the central part of the wall thickness.

特許文献2では、両エッジの衝合部、あるいは両エッジが幾何学的になす収束点のいずれかにおいて、外表面あるいは内表面の温度に対して、下限値を設定して溶接条件の良否判定を行っているが、こちらも特許文献1と同様に、肉厚中央部の温度データが無いため、十分な溶接部特性が得られない問題がある。 In Patent Document 2, the acceptability of welding conditions is determined by setting a lower limit value for the temperature of the outer surface or inner surface at either the abutting part of both edges or the convergence point formed geometrically by both edges. However, similarly to Patent Document 1, there is a problem that sufficient welding characteristics cannot be obtained because there is no temperature data at the center of the wall thickness.

本発明はかかる事情に鑑みてなされたものであり、溶接欠陥を抑止するための電縫鋼管の溶接管理装置、溶接管理システム、電縫鋼管の溶接管理方法、および電縫鋼管の製造方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and provides a welding management device for an ERW steel pipe, a welding management system, a welding management method for an ERW steel pipe, and a method for manufacturing an ERW steel pipe for suppressing weld defects. The purpose is to

本発明者らは、上記した目的を達成するために、電縫溶接における両エッジ端面の肉厚方向の温度分布、および、そのときの両エッジが成す直線が幾何学的に成す角度(V収束角度)が、スクイズロールによるアプセット後の溶接部に残存するペネトレータの形態および溶接部特性に及ぼす影響について鋭意研究を行った。その結果、以下のことが明らかになった。 In order to achieve the above object, the present inventors investigated the temperature distribution in the wall thickness direction of the end faces of both edges in electric resistance welding, and the angle (V convergence) formed geometrically by the straight lines formed by both edges at that time. We conducted extensive research on the influence of angle) on the morphology of the penetrator remaining in the weld after upsetting with a squeeze roll and on the properties of the weld. As a result, the following became clear.

ここでは、電縫溶接の流れについて、図3に示す電縫溶接の加熱から溶接までの一例をもって説明する。 Here, the flow of electric resistance welding will be explained using an example from heating to welding of electric resistance welding shown in FIG. 3.

従来、電縫溶接では、直接通電加熱方式、あるいは誘導加熱方式による高周波電流を用いた加熱を行っている。このとき、高周波加熱特有の加熱現象で、加熱の初期段階に表皮効果が発現する。そのため、肉厚中央部に比べて先にエッジ部の外表面および内表面側の温度が高温になる。このエッジ部の熱伝導により肉厚中央部への熱の移動が発生する。次いで、加熱過程が進行すると、端面同士の距離が近くなるため、近接効果が発現して肉厚中央部の昇温速度が増加する。そして、エッジ部全体の極表層部を融点まで加熱しながら、スクイズロールによるアプセットを経て衝合部202で電縫溶接が成される。このとき、エッジ部の溶融金属は表面に分布していたペネトレータとともに、管外部に排出されて溶接ビード207を形成する。 Conventionally, in electric resistance welding, heating is performed using a high-frequency current using a direct current heating method or an induction heating method. At this time, a skin effect occurs in the initial stage of heating due to a heating phenomenon unique to high-frequency heating. Therefore, the temperature of the outer surface and inner surface of the edge portion becomes higher than that of the central portion of the wall thickness. This heat conduction at the edge portion causes heat to move toward the thick center portion. Next, as the heating process progresses, the distance between the end faces becomes closer, so a proximity effect occurs and the temperature increase rate at the center of the wall thickness increases. Then, while heating the extreme surface layer of the entire edge portion to the melting point, electric resistance welding is performed at the abutting portion 202 through upsetting with a squeeze roll. At this time, the molten metal at the edge is discharged to the outside of the tube together with the penetrators distributed on the surface, forming a weld bead 207.

前述しているように電縫溶接では肉厚中央部の温度はエッジ部の内面および外面よりも加熱が遅延するため、温度が低くなりやすい。エッジ部の肉厚中央部の加熱が不十分であると、加熱過程において、肉厚中央部で発生したペネトレータを溶接ビード207へ排出するための十分な溶接金属量が得られない問題がある。そのため、加熱過程において、肉厚中央部の近接効果を早期に発現させて、肉厚方向の温度偏差を小さくする必要があり、そのために、V収束角度などのように両エッジの接合端面同士の突合せ状態を調整するための成形ロールのロールポジションを制御するなどの対策が必要になる。 As mentioned above, in electric resistance welding, the temperature at the center of the wall thickness tends to be low because heating is delayed compared to the inner and outer surfaces of the edge portions. If the heating of the center of the wall thickness of the edge portion is insufficient, there is a problem that a sufficient amount of weld metal cannot be obtained to discharge penetrators generated at the center of the wall thickness to the weld bead 207 during the heating process. Therefore, in the heating process, it is necessary to bring about the proximity effect at the center of the wall thickness at an early stage to reduce the temperature deviation in the wall thickness direction. Measures such as controlling the roll position of the forming rolls are required to adjust the butt state.

本発明は上記知見に基づくものであり、その要旨は以下の通りである。
[1] 鋼板又は鋼帯に対して周方向に曲げ加工を施し、両エッジ部を突き合わせてオープン管とし、その後突き合わせたオープン管両エッジ部に対して、スタンドを用いてアプセットする電縫溶接により製造する電縫鋼管の溶接管理装置であって、
電縫溶接前において、少なくとも一方のオープン管エッジ表面の温度分布の画像と、前記温度分布の画像の画素情報から変換した空間座標とに基づいて、
オープン管エッジ表面の外表面温度T、内表面温度T、肉厚中央部の温度Tcおよび温度測定をした位置の座標を検出する電縫溶接前エッジ温度検出部と、
前記オープン管エッジ表面の外表面と内表面との温度差分ΔTを算出するエッジ温度差算出部と、
前記オープン管両エッジ部に沿って収束する直線によって形成される接合点を含む領域の画像情報に基づいて、オープン管エッジ部に沿って収束する直線が成すV収束角度θを算出するV収束角度算出部と、
溶接方向に対して電縫溶接後の溶接スタンドのロールセンター直下位置より下流側の管外面に排出された溶鋼を含む画像情報に基づいて、溶接方向に対して前記溶接スタンドのロールセンター直下位置より下流側の管外面に排出された溶鋼面積Aを算出する溶接後排出溶鋼面積算出部と、
前記オープン管エッジ表面の外表面と内表面との温度差分ΔTと、前記肉厚中央部の温度Tcと、前記V収束角度θと、前記排出された溶鋼面積Aの情報に基づいて、電縫溶接条件の良否を判定する溶接状態判定部と、
を備える、電縫鋼管の溶接管理装置。
[2] 前記溶接方向に対して電縫溶接後の溶接スタンドのロールセンター直下位置より下流側の管外面に排出された溶鋼量に基づいて電縫溶接条件の良否を判定するにあたって、任意の前記V収束角度θに対して、所定の前記外表面温度T、所定の前記内表面温度T、所定の前記肉厚中央部の温度Tcが得られるよう溶接電力を調整する、[1]に記載の電縫鋼管の溶接管理装置。
[3] [1]または[2]に記載の電縫鋼管の溶接管理装置と、
電縫溶接前において、オープン管両エッジ表面の温度分布を撮像するエッジ温度分布撮影装置と、
電縫溶接前において、オープン管両エッジ部に沿って収束する直線によって形成される接合点、および
電縫溶接後において、溶接方向に対して溶接スタンドのロールセンター直下位置より下流側の管外面に排出された溶鋼を撮影する溶接部撮影装置と、
を備える、電縫鋼管の溶接管理システム。
[4] 鋼板又は鋼帯に対して周方向に曲げ加工を施し、両エッジ部を突き合わせてオープン管とし、その後突き合わせたオープン管両エッジ部に対して、スタンドを用いてアプセットする電縫溶接により製造する電縫鋼管の溶接管理方法であって、
電縫溶接前において、少なくとも一方のオープン管エッジ表面の温度分布の画像と、前記温度分布の画像の画素情報から変換した空間座標とに基づいて、オープン管エッジ表面の外表面温度T、内表面温度T、肉厚中央部の温度Tcおよび温度測定をした位置の座標を検出する電縫溶接前エッジ温度検出工程と、
前記オープン管エッジ表面の外表面と内表面との温度差分ΔTを算出するエッジ温度差算出工程と、
前記オープン管両エッジ部に沿って収束する直線によって形成される接合点を含む領域の画像情報に基づいて、オープン管エッジ部に沿って収束する直線が成すV収束角度θを算出するV収束角度算出工程と、
溶接方向に対して電縫溶接後の溶接スタンドのロールセンター直下位置より下流側の管外面に排出された溶鋼を含む画像情報に基づいて、溶接方向に対して前記溶接スタンドのロールセンター直下位置より下流側の管外面に排出された溶鋼面積Aを算出する溶接後排出溶鋼面積算出工程と、
前記オープン管エッジ表面の外表面と内表面との温度差分ΔTと、前記肉厚中央部の温度Tcと、前記V収束角度θと、前記排出された溶鋼面積Aの情報に基づいて、電縫溶接条件の良否を判定する溶接状態判定工程と、
を含む、電縫鋼管の溶接管理方法。
[5] 前記[4]に記載の電縫鋼管の溶接管理方法を用いて、電縫鋼管を製造する方法。
The present invention is based on the above findings, and the gist thereof is as follows.
[1] A steel plate or steel strip is bent in the circumferential direction, both edges are butted together to form an open tube, and then both edges of the butted open tube are upset using a stand by electric resistance welding. A welding control device for ERW steel pipes manufactured,
Before electric resistance welding, based on an image of the temperature distribution on the surface of at least one open pipe edge and spatial coordinates converted from pixel information of the image of the temperature distribution,
a pre-ERW welding edge temperature detection unit that detects the outer surface temperature T 0 of the open pipe edge surface, the inner surface temperature T i , the temperature Tc of the center of the wall thickness, and the coordinates of the temperature measurement position;
an edge temperature difference calculation unit that calculates a temperature difference ΔT between the outer surface and the inner surface of the open pipe edge surface;
A V convergence angle θ formed by straight lines converging along the open tube edge portion is calculated based on image information of a region including a junction point formed by straight lines converging along both edge portions of the open tube. A calculation section,
Based on image information including molten steel discharged to the outer surface of the pipe on the downstream side of the position directly below the roll center of the welding stand after electric resistance welding in the welding direction, from the position directly below the roll center of the welding stand in the welding direction a post-weld discharged molten steel area calculation unit that calculates a molten steel area A discharged to the outer surface of the downstream pipe;
Based on the information on the temperature difference ΔT between the outer surface and the inner surface of the open pipe edge surface, the temperature Tc at the center of the wall thickness, the V convergence angle θ, and the discharged molten steel area A, a welding condition determination section that determines whether welding conditions are acceptable;
A welding control device for electric resistance welded steel pipes.
[2] In determining the acceptability of the electric resistance welding conditions based on the amount of molten steel discharged to the outer surface of the pipe on the downstream side from the position directly below the roll center of the welding stand after electric resistance welding with respect to the welding direction, any of the above In [1], the welding power is adjusted to obtain a predetermined outer surface temperature T 0 , a predetermined inner surface temperature T i , and a predetermined temperature Tc at the center of the wall thickness for the V convergence angle θ. The described welding control device for ERW steel pipes.
[3] The welding control device for electric resistance welded steel pipes according to [1] or [2],
an edge temperature distribution imaging device that images the temperature distribution on both edge surfaces of an open tube before electric resistance welding;
Before ERW welding, the joint point formed by straight lines converging along both edges of the open pipe, and after ERW welding, on the outside of the pipe downstream of the position directly below the roll center of the welding stand in the welding direction. a welding part photographing device for photographing discharged molten steel;
A welding management system for ERW steel pipes.
[4] A steel plate or steel strip is bent in the circumferential direction, both edges are brought together to form an open tube, and then both edges of the butted open tube are upset using a stand by electric resistance welding. A welding control method for ERW steel pipes to be manufactured, the method comprising:
Before electric resistance welding, the outer surface temperature T 0 of the open tube edge surface, the inner surface temperature T 0 , and A pre-ERW welding edge temperature detection step of detecting the surface temperature T i , the temperature Tc at the center of the wall thickness, and the coordinates of the temperature measurement position;
an edge temperature difference calculation step of calculating a temperature difference ΔT between the outer surface and the inner surface of the open pipe edge surface;
A V convergence angle θ formed by straight lines converging along the open tube edge portion is calculated based on image information of a region including a junction point formed by straight lines converging along both edge portions of the open tube. calculation process,
Based on image information including molten steel discharged to the outer surface of the pipe on the downstream side of the position directly below the roll center of the welding stand after electric resistance welding in the welding direction, from the position directly below the roll center of the welding stand in the welding direction a post-weld discharge molten steel area calculation step of calculating an area A of molten steel discharged to the outer surface of the pipe on the downstream side;
Based on the information on the temperature difference ΔT between the outer surface and the inner surface of the open pipe edge surface, the temperature Tc at the center of the wall thickness, the V convergence angle θ, and the discharged molten steel area A, a welding condition determination step for determining whether welding conditions are acceptable;
Welding management method for ERW steel pipes, including:
[5] A method of manufacturing an ERW steel pipe using the welding control method for an ERW steel pipe described in [4] above.

本発明によれば、電縫溶接時の肉厚方向の温度分布、溶接条件を測定しながら溶接することで、優れた品質を有する電縫鋼管が得られる。 According to the present invention, an electric resistance welded steel pipe having excellent quality can be obtained by welding while measuring the temperature distribution in the wall thickness direction and welding conditions during electric resistance welding.

本発明を実施するための形態の1例を示す溶接管理装置およびそれを含めた溶接管理システムを説明するための図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram for explaining a welding management device and a welding management system including the same, showing an example of an embodiment of the present invention. 本実施の形態の溶接管理システムの処理手順を示すフローチャートである。It is a flowchart which shows the processing procedure of the welding management system of this embodiment. 電縫溶接の形態の一例を示す図である。It is a figure which shows an example of the form of electric resistance welding. 電縫溶接の溶接部画像の各部位の説明図である。It is an explanatory view of each part of a welding part image of electric resistance welding. 電縫溶接における肉厚中央部の温度Tcと、排出溶鋼面積Aの各条件におけるへん平試験の結果から溶接部の良否判定を行い、各肉厚中央部の温度Tcにおける排出溶鋼面積の上下限AmaxとAminを設定し、各上下限点を通る関数の導出方法の一例を説明するための図である。The quality of the weld is determined based on the results of a flattening test under various conditions of the temperature Tc at the center of the wall thickness and the area A of discharged molten steel in electric resistance welding, and the upper and lower limits of the area of discharged molten steel at the temperature Tc of the center of each thickness are determined. FIG. 6 is a diagram for explaining an example of a method of setting Amax and Amin and deriving a function that passes through each upper and lower limit point. 電縫溶接における肉厚中央部の温度Tcと、排出溶鋼面積Aの各条件におけるへん平試験の結果から溶接部の良否判定を行い、各肉厚中央部の温度Tcにおける排出溶鋼面積の上下限AmaxとAminを設定し、各上下限点を通る関数を導出した後、溶接部不良を排除するための指定位置の管エッジ表面の外表面と内表面との温度差分の上下限ΔTmaxとΔTminの導出方法の一例を説明するための図である。The quality of the weld is determined based on the results of a flattening test under various conditions of the temperature Tc at the center of the wall thickness and the area A of discharged molten steel in electric resistance welding, and the upper and lower limits of the area of discharged molten steel at the temperature Tc of the center of each thickness are determined. After setting Amax and Amin and deriving a function that passes through each upper and lower limit point, determine the upper and lower limits ΔTmax and ΔTmin of the temperature difference between the outer and inner surfaces of the pipe edge surface at the specified position to eliminate weld defects. FIG. 3 is a diagram for explaining an example of a derivation method. 電縫溶接における各V収束角度θにおいて、肉厚中央部の温度Tcと、排出溶鋼面積Aの各条件におけるへん平試験の結果から、肉厚中央部の温度Tcと、排出溶鋼面積Aの関係から溶接の許容範囲の分布を導出し、前記溶接の許容範囲の分布を、各V収束角度θで内挿し、任意の溶接条件における許容範囲の導出方法の一例を説明するための図である。At each V convergence angle θ in electric resistance welding, the relationship between the temperature Tc at the center of the wall thickness and the area A of discharged molten steel is determined from the results of the flattening test under each condition of the temperature Tc at the center of the wall thickness and the area A of discharged molten steel. FIG. 3 is a diagram for explaining an example of a method for deriving a tolerance range under arbitrary welding conditions by deriving a distribution of a welding tolerance range from , and interpolating the distribution of the welding tolerance range at each V convergence angle θ. V収束角度θが5°における、指定位置の肉厚中央部の温度Tcと排出溶鋼面積Aの許容範囲を導出した結果を示した図である。FIG. 7 is a diagram showing the results of deriving the allowable range of the temperature Tc at the center of the wall thickness at the designated position and the discharged molten steel area A when the V convergence angle θ is 5 degrees.

以下、図面を参照して、本発明の一実施形態である溶接管理装置およびそれを含めた溶接管理システム、および電縫鋼管の溶接管理方法を詳細に説明する。なお、この実施の形態により本発明が限定されるものではない。また、図面の記載において、同一部分には同一の符号を付して示している。 EMBODIMENT OF THE INVENTION Hereinafter, a welding management device, a welding management system including the same, and a welding management method for electric resistance welded steel pipes, which are one embodiment of the present invention, will be described in detail with reference to the drawings. Note that the present invention is not limited to this embodiment. In addition, in the description of the drawings, the same parts are denoted by the same reference numerals.

まず、図1を参照して、本実施の形態の対象とする処理の流れと、溶接管理システムを含む溶接管理装置の概略構成について説明する。図1は、本発明を実施するための形態の1例を示す溶接管理装置およびそれを含めた溶接管理システムを説明するための図である。鋼板(又は鋼帯)は、ロール成形によって連続的に円筒形状へと成形された後、図中の溶接方向4に進みながら、フィンパスロール2によって円筒形状の安定性が確保されつつ、両エッジ部の突き合わせ位置がセンタリングされながらオープン管1へと成形される。その後、オープン管1の両エッジ部は、高周波発振装置3から一対のコンタクトチップ31a、31bを介して高周波電流が供給されて、溶融するまで加熱される。コンタクトチップ31a、31bの代わりに誘導加熱のワークコイルを用いることも可能である。 First, with reference to FIG. 1, a flow of processing targeted by this embodiment and a schematic configuration of a welding management apparatus including a welding management system will be described. FIG. 1 is a diagram for explaining a welding management device and a welding management system including the same, showing one example of an embodiment of the present invention. After the steel plate (or steel strip) is continuously formed into a cylindrical shape by roll forming, while proceeding in the welding direction 4 in the figure, the stability of the cylindrical shape is ensured by the fin pass rolls 2, and both edges are The open tube 1 is formed while centering the butt positions of the parts. Thereafter, a high frequency current is supplied from the high frequency oscillator 3 to both edges of the open tube 1 through the pair of contact tips 31a and 31b, and the edges are heated until they melt. It is also possible to use an induction heating work coil instead of the contact tips 31a, 31b.

次に、オープン管1は、スクイズロール41a、41b、トップロール42a、42bからなるロール群で囲まれた溶接スタンド40を通過しながら両エッジ部が圧接され、溶鋼が外面(管状の鋼板の外周面)に排出されながら溶接(電縫溶接)される。 Next, the open tube 1 passes through a welding stand 40 surrounded by a roll group consisting of squeeze rolls 41a, 41b and top rolls 42a, 42b, and both edges are pressed together, and molten steel is applied to the outer surface (the outer periphery of the tubular steel plate). It is welded (erw welding) while being discharged to the surface).

エッジ温度分布撮影装置10は、例えばサーモグラフィのように温度分布を2次元画像で計測可能な温度計であり、コンタクトチップ31a、31bと溶接スタンド40の間に位置するオープン管1のエッジ部の肉厚全体を撮影できるように設置され、少なくとも向い合う一方のエッジ部において外面から内面まで加熱された表面を撮影する。このとき、温度計は放射温度計、あるいは、二色温度計など温度分布を測定できる温度計であればいずれでも良い。また、エッジ温度分布撮影装置10には光学系の調整のためのズームレンズや露光調整器などの調整器も含まれる。撮影視野100mm×40mmで分解能を500μm/画素以下を確保することが好ましい。より好ましくは100μm/画素以下であり、このとき、カメラの画素数は1920×1080以上であることが好ましい。分解能が500μm/画素超の大きな分解能であるとエッジ部温度の検出精度が著しく悪化する場合がある。 The edge temperature distribution imaging device 10 is a thermometer capable of measuring temperature distribution in a two-dimensional image, such as a thermography device, and is a thermometer that can measure the temperature distribution in a two-dimensional image, for example, by measuring the flesh of the edge portion of the open tube 1 located between the contact tips 31a, 31b and the welding stand 40. It is installed so that the entire thickness can be photographed, and the heated surface from the outer surface to the inner surface is photographed at least at one of the opposing edges. At this time, the thermometer may be any thermometer that can measure temperature distribution, such as a radiation thermometer or a two-color thermometer. The edge temperature distribution photographing device 10 also includes adjusters such as a zoom lens and an exposure adjuster for adjusting the optical system. It is preferable to ensure a resolution of 500 μm/pixel or less with a photographic field of view of 100 mm×40 mm. More preferably, it is 100 μm/pixel or less, and in this case, the number of pixels of the camera is preferably 1920×1080 or more. If the resolution is high, such as more than 500 μm/pixel, the edge temperature detection accuracy may deteriorate significantly.

溶接部撮影装置11は、例えばカメラを用いて、溶接方向4に対して溶接スタンド40のスクイズロールセンターを基準に下流側、上流側を撮影可能に設置され、オープン管1の両エッジ部(溶接部)が加熱されて溶融し圧接される様子を撮影する。この溶接部撮影装置11により撮影される撮影画像には、後述する接合点(V収束点)、およびスクイズロールのロールセンターが含まれるように、溶接部撮影装置11の位置調整を行う。このとき、カメラはカラー画像撮影用あるいは、モノクロ画像撮影用のいずれでも良い。また、溶接部撮影装置11には光学系の調整のためのズームレンズや露光調整器などの調整器も含まれる。撮影視野100mm×40mmで分解能を100μm/画素以下を確保することが好ましい。より好ましくは50μm/画素以下であり、このとき、カメラの画素数は1920×1080以上であることが好ましい。分解能が100μm/画素よりも大きい分解能であると溶鋼の検出精度が著しく悪化する場合がある。
また、電縫溶接の溶接速度は、100m/minを超える速度で溶接される場合があり、撮影視野100mmの領域以内で、任意の撮影点を1回以上撮影するためにはフレーム速度を20fps以上に設定することが好ましい。フレーム速度が20fps未満の場合、電縫管の溶接部には溶接の画像解析が実施できていない領域が発生し、溶接欠陥を見逃す可能性がある。
The welding part photographing device 11 is installed to be able to photograph the downstream and upstream sides of the welding direction 4 with respect to the squeeze roll center of the welding stand 40 using, for example, a camera. (part) is heated, melted, and pressed together. The position of the welding part photographing device 11 is adjusted so that the photographed image taken by this welding part photographing device 11 includes a joining point (V convergence point), which will be described later, and the roll center of the squeeze roll. At this time, the camera may be for capturing color images or monochrome images. The welding part photographing device 11 also includes adjusters such as a zoom lens and an exposure adjuster for adjusting the optical system. It is preferable to ensure a resolution of 100 μm/pixel or less with a photographic field of view of 100 mm×40 mm. More preferably, it is 50 μm/pixel or less, and in this case, the number of pixels of the camera is preferably 1920×1080 or more. If the resolution is greater than 100 μm/pixel, the detection accuracy of molten steel may deteriorate significantly.
In addition, the welding speed of electric resistance welding may exceed 100 m/min, and in order to photograph any shooting point more than once within a field of view of 100 mm, the frame speed must be set to 20 fps or more. It is preferable to set it to . If the frame speed is less than 20 fps, there will be areas in the welded portion of the electric resistance welded pipe where image analysis of welding cannot be performed, and welding defects may be overlooked.

溶接管理装置1000は、エッジ温度分布撮影データ入力部100および溶接部撮影データ入力部110により、それぞれエッジ温度分布撮影装置10および溶接部撮影装置11で撮像された溶接部の画像を取得する。溶接管理装置1000は、ワークステーションやパソコン等の汎用コンピュータで構成され、CPUなどによる演算処理機能、GPUなどによる画像処理機能、後述の記憶部1403の一例としてのROMやRAMなどの各種メモリ機能を有し、その他、データ通信端子で接続されたハードディスクなどの記録媒体、グラフィックへの表示装置やアラーム装置等の出力を備える。溶接管理装置1000では処理プログラム等を記憶したメモリおよび処理プログラムを実行するCPUなどを用いて、温度分布処理部121において、電縫溶接前エッジ温度検出部122で高周波電流によって加熱された少なくとも一方のエッジ部の外面から内面までの肉厚方向の温度分布の検出、座標空間算出部123により温度分布を撮像した空間の座標(位置)を変換、データ処理部124による上記加熱されたエッジの外面から内面までの温度分布における、管長手方向の指定位置の温度分布の抽出、エッジ温度差算出部125により、上記指定位置におけるオープン管エッジ表面の外表面と内表面との温度差分ΔTの算出を行う、といった一連の処理が行われる。並列して溶接画像処理部131において、管エッジ画像検出部132によるV収束点周辺の赤熱した両端部のエッジの検出、V収束角度算出部133によるV収束角度θおよびV収束点の算出、接合点検出部134による実際に管両エッジが接合する位置の検出、溶接後排出溶鋼面積算出部135による溶接スタンドより下流側の管外面に排出された排出溶鋼面積Aの算出、といった一連の処理が行われる。さらに、溶接状態判定部1401による溶接判定、および出力部1402による判定結果の出力等を行い、溶接管理処理を実行する。 The welding management device 1000 uses an edge temperature distribution imaging data input unit 100 and a welded area imaging data input unit 110 to acquire images of the welded portion captured by the edge temperature distribution imaging device 10 and the welded portion imaging device 11, respectively. The welding management device 1000 is composed of a general-purpose computer such as a workstation or a personal computer, and has arithmetic processing functions such as a CPU, an image processing function such as a GPU, and various memory functions such as ROM and RAM as examples of a storage unit 1403 described later. It also has outputs such as a recording medium such as a hard disk connected to a data communication terminal, a graphic display device, and an alarm device. In the welding management device 1000, the temperature distribution processing unit 121 uses a memory that stores a processing program, etc., a CPU that executes the processing program, etc. Detection of temperature distribution in the wall thickness direction from the outer surface to the inner surface of the edge portion, converting the coordinates (position) of the space where the temperature distribution is imaged by the coordinate space calculation section 123, and detecting the temperature distribution from the outer surface of the heated edge by the data processing section 124. Extracting the temperature distribution at a specified position in the pipe longitudinal direction in the temperature distribution up to the inner surface, and calculating the temperature difference ΔT between the outer surface and the inner surface of the open pipe edge surface at the specified position using the edge temperature difference calculation unit 125. A series of processes such as , etc. are performed. In parallel, in the welding image processing section 131, the tube edge image detection section 132 detects red-hot edges at both ends around the V convergence point, the V convergence angle calculation section 133 calculates the V convergence angle θ and the V convergence point, and welding. A series of processes are performed, such as detection of the position where both edges of the pipe actually join by the point detection unit 134, and calculation of the area A of discharged molten steel discharged to the outer surface of the pipe downstream from the welding stand by the post-weld discharge molten steel area calculation unit 135. It will be done. Further, the welding state determination unit 1401 performs welding determination, the output unit 1402 outputs the determination results, and performs welding management processing.

ここで、図2のフローチャートを参照して、溶接管理装置1000による溶接管理処理手順について説明する。図2は、本実施の形態の溶接管理装置の処理手順を示すフローチャートである。図2のフローチャートでは、例えば、操作者によりエッジ温度分布撮影データ入力部100および溶接部撮影データ入力部110への溶接管理処理開始の指示入力があったタイミングで開始となり、ステップS1およびステップS6の処理が同時並行に進む。 Here, the welding management processing procedure performed by the welding management apparatus 1000 will be described with reference to the flowchart of FIG. 2. FIG. 2 is a flowchart showing the processing procedure of the welding management device of this embodiment. In the flowchart of FIG. 2, for example, the start occurs at the timing when the operator inputs an instruction to start the welding management process to the edge temperature distribution imaging data input unit 100 and the welding area imaging data input unit 110, and steps S1 and S6 start. Processing proceeds in parallel.

ステップS1の処理では、エッジ温度分布撮影装置10から、高周波加熱によって加熱されたオープン管1の両エッジ部の少なくとも一方に対し、溶接されるまでの区間において、電縫溶接前エッジ温度検出部122が、溶接前のエッジ部の全厚にわたる2次元の温度分布データを取得する。ここでは撮像された温度分布データから、エッジ部の接合面上の、すなわち、管長手方向と肉厚方向の2次元の温度分布データを抽出する。これにより、ステップS1の処理は完了し、溶接管理処理はステップS2の処理に進む。 In the process of step S1, the pre-ERW welding edge temperature detecting unit 122 detects a signal from the edge temperature distribution photographing device 10 to at least one of both edges of the open pipe 1 heated by high-frequency heating in a section until welding. acquires two-dimensional temperature distribution data over the entire thickness of the edge portion before welding. Here, two-dimensional temperature distribution data on the joint surface of the edge portion, that is, in the pipe longitudinal direction and wall thickness direction, is extracted from the captured temperature distribution data. Thereby, the process of step S1 is completed, and the welding management process proceeds to the process of step S2.

ステップS2の処理では、ステップS1の処理で撮像した2次元の温度分布データ、あるいは、エッジ温度分布撮影装置10に付属しているCCDカメラによって撮影された画像から、複数の座標標準点を検出し、座標空間算出部123が画素から長さの単位へと空間座標変換を行う。ここでいう座標標準点は、予め座標位置あるいは、各々の標準点間距離が自明なマーカーであることが好ましいが、この限りではない。任意の2点の標準点間距離を検出し、該標準点間距離の実空間距離を入力することで、座標空間算出部123が温度分布データの画像内の空間座標変換を行う。同時に前記温度分布データの画像において、任意の位置に2次元座標の原点の設定を行う。また、画素から長さの単位へ座標変換するために必要な演算式を、前もって導出しておいても良い。これにより、ステップS2の処理は完了し、溶接管理処理はステップS3の処理に進む。 In the process of step S2, a plurality of coordinate standard points are detected from the two-dimensional temperature distribution data captured in the process of step S1 or the image captured by the CCD camera attached to the edge temperature distribution imaging device 10. , the coordinate space calculation unit 123 performs spatial coordinate conversion from pixels to units of length. The coordinate standard points referred to herein are preferably markers whose coordinate positions or distances between each standard point are obvious in advance, but this is not a limitation. By detecting the distance between two arbitrary standard points and inputting the real spatial distance of the distance between the standard points, the coordinate space calculation unit 123 performs spatial coordinate transformation in the image of temperature distribution data. At the same time, the origin of the two-dimensional coordinates is set at an arbitrary position in the image of the temperature distribution data. Further, the arithmetic expressions necessary for coordinate transformation from pixels to units of length may be derived in advance. Thereby, the process of step S2 is completed, and the welding management process proceeds to the process of step S3.

ステップS3の処理では、データ処理部124が、上記の空間座標変換処理後の温度分布データから、任意の管の長手位置における、管エッジ部の肉厚方向の温度分布を座標値とともに抽出する。データ処理部124が、抽出する範囲は指定した管の長手位置に対して±0.5mmの長手方向の領域を含み、管エッジ部の全厚の領域を抽出する。管エッジ部の外表面および内表面に該当する角部は高周波加熱特有の表皮効果によって加熱が顕著である。そのため、肉厚方向の温度分布においては、管エッジ部の外面および内面の角部位置を中心に温度が高くなっている。全厚領域の判定として、肉厚方向の温度分布の管エッジ部の外面および内面位置におけるピーク間の距離を温度分布から検出される管の肉厚とし、予め入力していた管の肉厚との誤差が3%以下であれば、管エッジ部の外面周辺の温度分布のピーク頂点を原点とし、管エッジ部周辺の温度分布のピーク頂点までの、肉厚方向の温度分布を抽出する。
前記誤差が3%超であれば、適切な温度分布が取れていないと判断され、エッジ温度分布撮影装置10の視野調整(エッジ温度分布撮影装置10に付属しているCCDカメラによって撮影された画像から、複数の座標標準点を検出し、座標空間算出部123にて画素から長さの単位へと空間座標変換を行う作業)を行い、再度、ステップS1からの処理を行い、前記誤差が3%以下になるまで繰り返す。これにより、ステップS3の処理は完了し、溶接管理処理はステップS4の処理に進む。
In the process of step S3, the data processing unit 124 extracts the temperature distribution in the wall thickness direction of the pipe edge portion at an arbitrary longitudinal position of the pipe together with coordinate values from the temperature distribution data after the above-described spatial coordinate conversion process. The data processing unit 124 extracts a range including a region in the longitudinal direction of ±0.5 mm with respect to the specified longitudinal position of the pipe, and extracts a region of the entire thickness of the pipe edge portion. Corners corresponding to the outer and inner surfaces of the pipe edge are heated significantly due to the skin effect peculiar to high-frequency heating. Therefore, in the temperature distribution in the wall thickness direction, the temperature is high mainly at the corners of the outer surface and inner surface of the tube edge portion. To determine the full thickness region, the distance between the peaks at the outer and inner surface positions of the tube edge in the temperature distribution in the wall thickness direction is taken as the tube wall thickness detected from the temperature distribution, and the tube wall thickness that was input in advance is compared with the tube wall thickness detected from the temperature distribution. If the error is 3% or less, the temperature distribution in the wall thickness direction is extracted from the peak apex of the temperature distribution around the outer surface of the tube edge portion as the origin to the peak apex of the temperature distribution around the tube edge portion.
If the error exceeds 3%, it is determined that an appropriate temperature distribution is not obtained, and the field of view adjustment of the edge temperature distribution photographing device 10 (the image photographed by the CCD camera attached to the edge temperature distribution photographing device 10) is performed. , a plurality of coordinate standard points are detected, and the coordinate space calculation unit 123 performs spatial coordinate transformation from pixels to units of length).The process from step S1 is performed again, and the error is 3. Repeat until it is below %. Thereby, the process of step S3 is completed, and the welding management process proceeds to the process of step S4.

ステップS4の処理では、前記抽出した肉厚方向の温度分布データを用いて、データ処理部124が管エッジ部の外表面および内表面位置における温度のピーク間の中央部位置の温度を抽出し、これを肉厚中央部の温度Tcとする。また、同時に、管エッジ部の外表面および内表面位置周辺の温度分布のピーク頂点位置の温度をそれぞれ、外表面温度T、内表面温度Tとして抽出する。
これにより、ステップS4の処理は完了し、溶接管理処理はステップS5の処理に進む。
In the process of step S4, the data processing unit 124 extracts the temperature at the center position between the temperature peaks at the outer surface and inner surface positions of the pipe edge portion using the extracted temperature distribution data in the wall thickness direction, This is defined as the temperature Tc of the central portion of the wall thickness. At the same time, the temperatures at the peak apex positions of the temperature distribution around the outer surface and inner surface positions of the pipe edge portion are extracted as the outer surface temperature T o and the inner surface temperature T i , respectively.
Thereby, the process of step S4 is completed, and the welding management process proceeds to the process of step S5.

ステップS5の処理では、エッジ温度差算出部125が、前記抽出した管エッジ部の外表面温度T、内表面温度Tを用いて、これらの温度差分ΔTを算出する。ここでは、上記の温度差分ΔTは内表面温度Tから外表面温度Tを差し引く計算を行い、差分値に正負の符号が付いたまま記憶する。これにより、ステップS5の処理は完了し、溶接管理処理はステップS9の処理に進む。 In the process of step S5, the edge temperature difference calculation unit 125 calculates the temperature difference ΔT using the extracted outer surface temperature T o and inner surface temperature T i of the pipe edge portion. Here, the above-mentioned temperature difference ΔT is calculated by subtracting the outer surface temperature T o from the inner surface temperature T i and is stored with the positive or negative sign attached to the difference value. Thereby, the process of step S5 is completed, and the welding management process proceeds to the process of step S9.

上記のステップS1~S5と並行して行われるステップS6の処理では、高周波加熱によって赤熱に加熱されている管エッジ部を、溶接部撮影装置11により撮像された画像に基づいて、溶接画像処理部131の管エッジ画像検出部132がエッジ検出を行う。ここでは、エッジ検出方法については微分法を用いるが、これに限らない。具体的に図3および図4を示しながら説明する。図3は電縫溶接の形態の一例を示す図であり、図4は電縫溶接の溶接部画像の各部位の説明図である。
まず、撮像された画像を用いて加熱部201周辺の輝度の変化から、溶接部のエッジ検出画像20を得る。なお、具体的には、一次微分を用いた勾配法により輝度が大きな溶鋼部と、輝度が小さな溶鋼部以外との境界を、輝度変化の極値が示される位置として判断する。
この溶接部のエッジ検出画像20において、両エッジ部同士が接合していない状態の開口部205から、鉛直方向に画像処理を行い、最初にエッジを検出した位置を各エッジ部上の点とする。この処理を開口部205の長手方向の全長のうちの数点で同様の処理を行い、各エッジ部上に検出された複数の点から最小二乗法によって、オープン管の両エッジ端面を近似した直線La、Lbを近似する。ここでは開口部205は、両エッジの加熱部201に挟まれた領域であり、各エッジ部上の点を検出する前に予め、開口部205に含まれる位置を手動で指定することなどがあるが、これに限らない。これにより、ステップS6の処理は完了し、溶接管理処理はステップS7の処理に進む。
In the process of step S6, which is performed in parallel with steps S1 to S5, the welding image processing unit analyzes the tube edge portion, which is heated red-hot by high-frequency heating, based on the image taken by the welding portion photographing device 11. A tube edge image detection unit 132 of 131 performs edge detection. Here, a differential method is used as the edge detection method, but the method is not limited to this. This will be explained in detail with reference to FIGS. 3 and 4. FIG. 3 is a diagram showing an example of a form of electric resistance welding, and FIG. 4 is an explanatory diagram of each part of a welded part image of electric resistance welding.
First, an edge detection image 20 of the welding part is obtained from changes in brightness around the heating part 201 using a captured image. Specifically, by a gradient method using a first-order differential, the boundary between a molten steel part with high brightness and a part other than molten steel parts with low brightness is determined as a position where the extreme value of the brightness change is shown.
In this edge detection image 20 of the welded part, image processing is performed in the vertical direction from the opening 205 where both edges are not joined, and the position where the edge is first detected is set as a point on each edge. . This process is repeated at several points along the entire length of the opening 205 in the longitudinal direction, and a straight line is obtained by approximating the end faces of both edges of the open pipe using the least squares method from the plurality of points detected on each edge. Approximate La and Lb. Here, the opening 205 is an area sandwiched between the heating parts 201 on both edges, and the positions included in the opening 205 may be manually specified in advance before detecting points on each edge. However, it is not limited to this. Thereby, the process of step S6 is completed, and the welding management process proceeds to the process of step S7.

ステップS7の処理では、V収束角度算出部133が、上記のオープン管両エッジの検出により算出された直線La、Lbを用いてV収束角度θを算出し、抽出する。溶接部のエッジ検出画像におけるV収束角度θはLa、Lbの2直線が成す角度であり、開口部205側の鋭角の角度とする。これにより、ステップS7の処理は完了し、溶接管理処理はステップS8の処理に進む。 In the process of step S7, the V convergence angle calculation unit 133 calculates and extracts the V convergence angle θ using the straight lines La and Lb calculated by detecting both edges of the open pipe described above. The V convergence angle θ in the edge detection image of the weld is an angle formed by two straight lines La and Lb, and is an acute angle on the opening 205 side. Thereby, the process of step S7 is completed, and the welding management process proceeds to the process of step S8.

ステップS8の処理では、溶接後排出溶鋼面積算出部135が、溶接スタンド(SQスタンド)40以降の、管の外面に排出された溶鋼面積Aを算出する。ここで、SQスタンド40以降の位置とは、溶接方向に対してSQスタンドのロールセンター直下位置204よりも下流側のことを示し、その位置は予め指定しておく。指定方法は座標位置を直接指定する方法や、SQスタンドのロールセンター直下位置204を示すマーカーの座標位置を検出する方法があるが、この限りではない。溶接部撮影装置11により撮像された画像を用いて、SQスタンドのロールセンター直下位置204よりも下流側にある排出された溶鋼をSQスタンド以降の排出溶鋼203とする。このSQスタンド以降の排出溶鋼203が占める画素の面積を管の外面に排出された溶鋼面積として検出し、所定の閾値よりも大きい輝度を有する画素群を溶鋼面積と判定する。前記検出した管の外面に排出された溶鋼面積について、同一視野における50枚の画像で処理を行い、その検出された溶鋼面積の平均値を算出し、その数値を管の外面に排出された溶鋼面積Aとする。平均処理を行う画像群はSQロールの回転の1周期分以上であることが好ましい。これにより、ステップS8の処理は完了し、溶接管理処理はステップS9の処理に進む。 In the process of step S8, the post-weld discharged molten steel area calculation unit 135 calculates the area A of molten steel discharged to the outer surface of the pipe after the welding stand (SQ stand) 40. Here, the position after the SQ stand 40 indicates a position downstream from the position 204 directly below the roll center of the SQ stand in the welding direction, and the position is specified in advance. The specification method includes a method of directly specifying the coordinate position and a method of detecting the coordinate position of a marker indicating the position 204 directly below the roll center of the SQ stand, but is not limited to this method. Using the image captured by the welding part photographing device 11, the discharged molten steel downstream of the position 204 directly below the roll center of the SQ stand is defined as the discharged molten steel 203 after the SQ stand. The area of pixels occupied by the discharged molten steel 203 after this SQ stand is detected as the area of molten steel discharged to the outer surface of the tube, and a group of pixels having a brightness greater than a predetermined threshold is determined to be the area of molten steel. The area of the detected molten steel discharged onto the outside surface of the pipe is processed using 50 images in the same field of view, the average value of the detected molten steel area is calculated, and that value is used to determine the area of molten steel discharged onto the outside surface of the pipe. Let the area be A. It is preferable that the image group subjected to the averaging process is equal to or more than one period of rotation of the SQ roll. Thereby, the process of step S8 is completed, and the welding management process proceeds to the process of step S9.

ステップS9の処理では、溶接状態判定部1401が、ステップ5とステップ8の処理が完了した後に算出や検出された、上記指定位置の肉厚中央部の温度Tcと、上記指定位置の管エッジ表面の外表面と内表面との温度差分ΔTと、上記V収束角度θと、上記溶接スタンド以降の排出溶鋼面積Aに基づいて溶接条件の良否判定を行う。具体的には、種々の溶接条件により得られた鋼管を用いて、オフラインで溶接部の評価試験を行い、得られた溶接部の特性と、溶接管理装置1000により算出や検出された、上記指定位置の管肉厚中央部の温度Tcと、上記指定位置の管エッジ表面の外表面と内表面との温度差分ΔTと、上記V収束角度θと、上記溶接スタンド以降の排出溶鋼面積Aとの関係性を予め明らかにし、所望の溶接部の品質が得られる上記指定位置の肉厚中央部Tcと上記指定位置の管エッジ表面の外表面と内表面との温度差分ΔTの許容範囲の上下限を設定しておく。 In the process of step S9, the welding state determination unit 1401 calculates and detects the temperature Tc of the central part of the wall thickness at the specified position, which is calculated or detected after the processes of steps 5 and 8 are completed, and the temperature Tc of the pipe edge surface at the specified position. The quality of the welding conditions is determined based on the temperature difference ΔT between the outer surface and the inner surface, the V convergence angle θ, and the discharged molten steel area A after the welding stand. Specifically, using steel pipes obtained under various welding conditions, an offline evaluation test of the welded part is performed, and the characteristics of the obtained welded part and the above specifications calculated and detected by the welding management device 1000 are evaluated. The temperature Tc at the center of the pipe wall thickness at the position, the temperature difference ΔT between the outer and inner surfaces of the pipe edge surface at the specified position, the V convergence angle θ, and the discharged molten steel area A after the welding stand. Clarify the relationship in advance and determine the upper and lower limits of the allowable temperature difference ΔT between the wall thickness central portion Tc at the specified position and the outer and inner surfaces of the pipe edge surface at the specified position so that the desired quality of the welded part can be obtained. Set.

上記許容範囲の設定においては、上記V収束角度θごとに実施し、その方法を以下に示す。あるV収束角度θで溶接を行った時の上記指定位置の肉厚中央部Tcと上記溶接スタンドを通過した後の排出溶鋼面積Aをパラメーターとして扱う許容範囲の境界は、上記溶接スタンドを通過した後の排出溶鋼面積Aおよび、上記指定位置の管エッジ表面の外表面と内表面との温度差分ΔTを用いて許容範囲の上下限を決定する。オフラインでの溶接部の評価試験はへん平試験、溶接部中の酸化物を検知する超音波探傷試験、溶接部から試験片を切出したシャルピー衝撃試験などがあるが、所望される特性に合わせて試験方法を選定する。 The setting of the above-mentioned allowable range is carried out for each of the above-mentioned V convergence angles θ, and the method thereof is shown below. When welding is performed at a certain V convergence angle θ, the boundary of the allowable range that treats the wall thickness center Tc at the specified position and the area A of discharged molten steel after passing through the welding stand as parameters is The upper and lower limits of the allowable range are determined using the subsequent area A of discharged molten steel and the temperature difference ΔT between the outer surface and the inner surface of the pipe edge surface at the specified position. Off-line evaluation tests for welds include a flattening test, an ultrasonic flaw detection test to detect oxides in the weld, and a Charpy impact test in which test pieces are cut from the weld. Select a test method.

上記排出溶鋼面積Aと上記指定位置の管エッジ表面の外表面と内表面との温度差分ΔTの許容範囲の上下限の設定方法例を図5、図6および図7に示しながら以下に説明するが、この限りではない。図5は、電縫溶接における肉厚中央部の温度Tcと、排出溶鋼面積Aの各条件におけるへん平試験の結果から溶接部の良否判定を行い、各肉厚中央部の温度Tcにおける排出溶鋼面積の上下限AmaxとAminを設定し、各上下限点を通る関数の導出方法の一例を説明するための図である。まず、種々の溶接条件によって検出された溶接スタンドを通過した後の排出溶鋼面積Aと、検出したときに溶接を行っていた鋼管溶接部に所望される特性とを対応させる。ここでは、鋼管の溶接部に所望される特性として、へん平試験で測定される溶接部のへん平率を用いる。ここで、へん平率はJIS G3478:2015に記載のへん平試験方法に基づき、算出することができ、H/D(管の外径D、へん平試験において溶接部に割れが発生し始めるときの平板間の距離H)として求められる。へん平率H/Dが小さいほど溶接部の強度が大きく、優れた溶接部の特性であることを示す指標である。また、へん平率は鋼管の種類によって許容される上限値が定められている。 An example of how to set the upper and lower limits of the allowable range of the temperature difference ΔT between the discharged molten steel area A and the outer and inner surfaces of the pipe edge surface at the specified position will be described below with reference to FIGS. 5, 6, and 7. However, this is not the case. Figure 5 shows the quality of the welded part determined from the results of a flattening test under various conditions of the temperature Tc at the center of the wall thickness and the area A of discharged molten steel in electric resistance welding, and the discharged molten steel at the temperature Tc of the center of each wall thickness. FIG. 6 is a diagram for explaining an example of a method of setting upper and lower limits Amax and Amin of area and deriving a function that passes through each upper and lower limit point. First, the area A of discharged molten steel after passing through a welding stand detected under various welding conditions is made to correspond to the characteristics desired for the welded portion of the steel pipe that was being welded at the time of detection. Here, the flatness ratio of the welded part measured by a flattening test is used as the desired characteristic for the welded part of the steel pipe. Here, the flattening ratio can be calculated based on the flattening test method described in JIS G3478:2015, and H/D (outer diameter D of the pipe, when cracks start to occur in the welded part in the flattening test) It is determined as the distance H) between the flat plates. The smaller the flattening ratio H/D, the greater the strength of the weld, which is an index showing that the weld has excellent characteristics. Furthermore, the upper limit of the flattening ratio is determined depending on the type of steel pipe.

まず、任意のV収束角度θにおける、排出溶鋼面積Aおよび上記指定位置の肉厚中央部Tcおよびへん平率H/Dの関係を明らかにする。上記任意のV収束角度θを一定にした電縫溶接を行うためには、成形に用いるフィンパスロールのフィン幅やスクイズロールのロールポジションを変更せずに電縫溶接を行う。電縫溶接を行うにあたって、エッジ温度分布撮影装置10による指定位置の肉厚中央部Tcと上記指定位置の管エッジ表面の外表面と内表面との温度差分ΔTの測定、および、溶接部撮影装置11によるV収束角度θと排出溶鋼面積Aの算出を行う。そして、溶接電力を調整した電縫溶接を行い、得られた管に対して上記へん平試験を行って、へん平率H/Dを測定する。 First, the relationship between the discharged molten steel area A, the thickness central portion Tc at the specified position, and the flattening ratio H/D at an arbitrary V convergence angle θ is clarified. In order to perform electric resistance welding with the arbitrary V convergence angle θ constant, electric resistance welding is performed without changing the fin width of the fin pass roll used for forming or the roll position of the squeeze roll. When performing electric resistance welding, the edge temperature distribution photographing device 10 measures the temperature difference ΔT between the wall thickness center Tc at the specified position and the outer surface and inner surface of the pipe edge surface at the specified position, and the welding part photographing device 11, the V convergence angle θ and the discharged molten steel area A are calculated. Then, electric resistance welding is performed with the welding power adjusted, and the flattening test described above is performed on the obtained tube to measure the flattening ratio H/D.

次いで、スクイズロールよりも上流側にある成形に用いるロールのロールポジション、を変更し、オープン管の端部周辺の外径曲率を変更させて、電縫溶接における両エッジの突合せ角度の調整を行う。ここで示す突合せ角度とは、オープン管を正面から見て両エッジの向かい合う端面同士が成す角度のことである。
ロールポジションを変更する成形に用いるロールは、エッジフォーミングやフィンパスロールなどを示すが、この限りではない。両エッジの突合せ角度を変更したとき、上記同様に溶接電力を調整した電縫溶接を行い、得られた管に対して上記へん平試験を行って、へん平率H/Dを測定する。電縫溶接における両エッジの突合せ角度を変更したとき、オープン管正面からその断面を見て、オープン管の開口部の幅が外面側の方が広いとき(V字型突合せ)のとき、近接効果の差によって外表面温度Tは内表面温度Tよりも小さくなり、上記指定位置の管エッジ表面の外表面と内表面との温度差分ΔTは正になる。また、逆に、オープン管の開口部の幅が外面側の方が狭いとき(逆V字型突合せ)のとき、近接効果の差によって外表面温度Tは内表面温度Tよりも大きくなり、上記指定位置の管エッジ表面の外表面と内表面との温度差分ΔTは負になる。
上記のようにして繰り返し行った電縫溶接において、図5に示すように、指定位置の肉厚中央部Tcと排出溶鋼面積Aの組合せを有する電縫鋼管において測定されたへん平率H/Dをプロットさせる。ここで、溶接部特性が〇は、目標のへん平率H/D以下である、すなわち、目標の溶接部の強度を満たしており、×は、目標のへん平率H/D超、すなわち、目標の溶接部の強度を満たしていない。各座標データにおいて、所望のへん平率を満たすことができる条件の、各指定位置の肉厚中央部Tcにおける排出溶鋼面積Aの上下限の境界を求める。各Tcにおける排出溶鋼面積Aの上限および下限の境界はそれぞれ、Tcを一定条件のもと、排出溶鋼面積Aの増加方向、減少方向に3プロット以上連続して溶接部特性が×となるデータ群の領域に対して、上限であれば上記×となるデータ群の領域に近接している溶接部特性が〇である最大値の排出溶鋼面積、下限であれば上記×となるデータ群の領域に近接している溶接部特性が〇である最小値の排出溶鋼面積とする。
そして、各指定位置の肉厚中央部Tcにおける排出溶鋼面積Aの上限Amax、および、下限Aminを最小二乗法などの計算手法を用いて、排出溶鋼面積Aの許容範囲を求める。ここでは境界の与え方については指定が無いが、計算コストを小さくするために、直線近似による境界の算出方法でも可能である。上記排出溶鋼面積がAmin未満であれば、溶接において、スクイズロールの圧接により、外部へ排出されるエッジ部の溶鋼が不十分となり、溶接部に酸化物が残存して、へん平率が悪化し、また、上記排出溶鋼面積がAmax超の場合、溶接において、エッジ部が過加熱となり、エッジ部表面の酸化物の生成、成長が顕著になるため、へん平率が悪化するため、排出溶鋼面積Aの許容範囲はAmin~Amaxとする。
Next, the roll position of the roll used for forming, which is located upstream of the squeeze roll, is changed to change the outer diameter curvature around the end of the open tube, and the butt angle of both edges in electric resistance welding is adjusted. . The butt angle shown here is the angle formed by the opposing end surfaces of both edges when looking at the open tube from the front.
Rolls used for forming that changes the roll position include edge forming and fin pass rolls, but are not limited to these. When the abutting angle of both edges is changed, electric resistance welding is performed with the welding power adjusted in the same manner as above, and the flattening test is performed on the obtained tube to measure the flattening ratio H/D. When changing the butt angle of both edges in ERW welding, when the cross section of the open tube is viewed from the front, the width of the opening of the open tube is wider on the outside surface side (V-shaped butt), the proximity effect Due to the difference, the outer surface temperature T 0 becomes smaller than the inner surface temperature T i , and the temperature difference ΔT between the outer surface and the inner surface of the pipe edge surface at the specified position becomes positive. Conversely, when the width of the opening of an open tube is narrower on the outer surface side (inverted V-shaped butt), the outer surface temperature T 0 becomes larger than the inner surface temperature T i due to the difference in proximity effect. , the temperature difference ΔT between the outer surface and the inner surface of the tube edge surface at the specified position becomes negative.
In the repeated electric resistance welding as described above, the flattening ratio H/D was measured in the electric resistance welded steel pipe having the combination of the wall thickness center Tc at the specified position and the discharged molten steel area A, as shown in FIG. Plot. Here, when the welding part property is 〇, it is less than or equal to the target flatness H/D, that is, it satisfies the target welding part strength, and when the welding part property is ×, it is more than the target flatness H/D, that is, The target strength of the welded part is not met. In each coordinate data, the boundaries of the upper and lower limits of the discharged molten steel area A at the thickness center portion Tc of each specified position are determined under the conditions that the desired flattening ratio can be satisfied. The boundaries of the upper and lower limits of the discharged molten steel area A at each Tc are a data group in which the weld characteristics are × for three or more consecutive plots in the increasing direction and decreasing direction of the discharged molten steel area A under a constant Tc condition, respectively. For the region of The area of discharged molten steel with the minimum value for which the properties of adjacent welds are 〇 is taken as the area.
Then, the permissible range of the discharged molten steel area A is determined using a calculation method such as the least squares method for the upper limit Amax and the lower limit Amin of the discharged molten steel area A at the wall thickness central portion Tc of each designated position. Here, there is no specification as to how to give the boundary, but in order to reduce the calculation cost, it is also possible to calculate the boundary by linear approximation. If the above discharged molten steel area is less than Amin, insufficient molten steel will be discharged to the outside due to the pressure of the squeeze roll during welding, and oxides will remain in the welded part, resulting in a worsening of the flattening ratio. In addition, if the discharged molten steel area exceeds Amax, the edge part will be overheated during welding, and the generation and growth of oxides on the edge part surface will become noticeable, resulting in a worsening of the flattening ratio. The allowable range of A is Amin to Amax.

次いで、上記にようにして排出溶鋼面積Aの上下限の境界を定められた座標データに対し、許容範囲内に存在する各指定位置の肉厚中央部Tcにおける排出溶鋼面積Aの組合せのうち、各排出溶鋼面積Aにおける指定位置の肉厚中央部Tcの上下限の境界を求める。図6は、電縫溶接における肉厚中央部の温度Tcと、排出溶鋼面積Aの各条件におけるへん平試験の結果から溶接部の良否判定を行い、各肉厚中央部の温度Tcにおける排出溶鋼面積の上下限AmaxとAminを設定し、各上下限点を通る関数を導出した後、溶接部不良を排除するための指定位置の管エッジ表面の外表面と内表面との温度差分の上下限ΔTmaxとΔTminの導出方法の一例を説明するための図である。肉厚中央部Tcの上下限の境界を求めるにあたっては、図6に示すように各点において算出された指定位置の管エッジ表面の外表面と内表面との温度差分ΔTに基づいた境界の導出を行う。ここでは、各点における指定位置の管エッジ表面の外表面と内表面との温度差分ΔTが、0℃以上10℃未満、―10℃以上0℃未満というように、一定間隔のデータ群に区分を行う。例えば、図6中のΔT1は、-200℃以上-150℃未満、ΔT2は-150℃以上-100℃未満、ΔT4は250℃以上300℃未満である。上記のようにして区分されたデータ群の中にあるデータがAmin~Amaxの範囲内において全て所望の溶接部特性を満たす温度差分ΔTの最大値ΔTmax及び最小値ΔTminのデータ群を抽出し、指定位置の肉厚中央部Tcと排出溶鋼面積Aのグラフ中から、これら温度差分最大値ΔTmax及び最小値ΔTminの範囲を満たす境界を求める。境界線は例えば最小二乗法などの計算手法を用いて求める。ここでは境界の与え方については指定が無いが、計算コストを小さくするために、直線近似による境界の算出方法でも可能である。上記のように、図5で求めた排出溶鋼面積Aの境界に対して管エッジ表面の外表面と内表面との温度差分ΔTを適用することで、溶接部特性が〇であるプロット群の中に混在している×の水準を取り除くことができ、溶接部特性が×となる条件を排除することが可能となる。また技術的な観点から、上記指定位置の肉厚中央部Tcが下限ΔTmin未満であれば、管外面側の過加熱が顕著になり、管外面へ排出される溶鋼面積を過大に評価される。そのため、肉厚中央部が十分加熱されていないのにも関わらず、溶接部撮影装置11を用いた画像分析では、外面へ排出される溶鋼面積は合格であると誤った判定を行うため、結果として所望の溶接部のへん平率を満たせない。また、上記指定位置の肉厚中央部Tcが上限ΔTmax超であれば、エッジ部外面の加熱が不十分となり、スクイズロールによるアップセットにおいて、エッジ部外面近傍の溶融部が早期に凝固し、外面側外部への溶鋼排出の経路を塞ぐため、酸化物を含んだ溶鋼が十分に排出されなくなり、所望のへん平率が得られない問題がある。 Next, with respect to the coordinate data in which the upper and lower limits of the discharged molten steel area A are determined as described above, among the combinations of the discharged molten steel area A at the wall thickness center portion Tc of each designated position that exists within the tolerance range, The upper and lower boundaries of the thickness center portion Tc at the specified position in each discharged molten steel area A are determined. Figure 6 shows the quality of the welded part determined based on the results of flattening tests under various conditions of the temperature Tc at the center of the wall thickness and the area A of the discharged molten steel during electric resistance welding. After setting the upper and lower limits Amax and Amin of the area and deriving a function that passes through each upper and lower limit point, set the upper and lower limits of the temperature difference between the outer and inner surfaces of the pipe edge surface at the specified position to eliminate weld defects. FIG. 6 is a diagram for explaining an example of a method for deriving ΔTmax and ΔTmin. In order to find the upper and lower limits of the wall thickness center Tc, the boundaries are derived based on the temperature difference ΔT between the outer surface and the inner surface of the pipe edge surface at the specified position calculated at each point as shown in FIG. I do. Here, the temperature difference ΔT between the outer surface and the inner surface of the pipe edge surface at the designated position at each point is divided into data groups at regular intervals, such as 0°C or more and less than 10°C, -10°C or more and less than 0°C. I do. For example, ΔT1 in FIG. 6 is -200°C or more and less than -150°C, ΔT2 is -150°C or more and less than -100°C, and ΔT4 is 250°C or more and less than 300°C. The data in the data groups classified as above all satisfy the desired welding zone characteristics within the range of Amin to Amax, and extract the data group with the maximum value ΔTmax and minimum value ΔTmin of the temperature difference ΔT, and specify the data group. A boundary that satisfies the range of the maximum temperature difference ΔTmax and the minimum value ΔTmin is determined from the graph of the wall thickness center portion Tc of the position and the discharged molten steel area A. The boundary line is determined using a calculation method such as the method of least squares. Here, there is no specification as to how to give the boundary, but in order to reduce the calculation cost, it is also possible to calculate the boundary by linear approximation. As mentioned above, by applying the temperature difference ΔT between the outer and inner surfaces of the pipe edge surface to the boundary of the discharged molten steel area A obtained in Fig. 5, it is possible to It is possible to remove the level of × mixed in the welding area, and it is possible to eliminate the conditions where the welding part characteristics become ×. Furthermore, from a technical standpoint, if the wall thickness central portion Tc at the designated position is less than the lower limit ΔTmin, overheating on the outside surface of the tube becomes significant, and the area of molten steel discharged to the outside surface of the tube is overestimated. Therefore, even though the central part of the wall thickness is not sufficiently heated, image analysis using the welding part imaging device 11 incorrectly determines that the area of molten steel discharged to the outside is acceptable. As a result, the desired flatness of the welded area cannot be met. In addition, if the thickness center portion Tc at the specified position exceeds the upper limit ΔTmax, the outer surface of the edge portion will not be heated sufficiently, and during upset by the squeeze roll, the molten portion near the outer surface of the edge portion will solidify early, and the outer surface Since the path for discharging the molten steel to the outside is blocked, the molten steel containing oxides cannot be sufficiently discharged, resulting in a problem that the desired flatness cannot be obtained.

図7は、電縫溶接における各V収束角度θにおいて、肉厚中央部の温度Tcと、排出溶鋼面積Aの各条件におけるへん平試験の結果から、肉厚中央部の温度Tcと、排出溶鋼面積Aの関係から溶接の許容範囲の分布を導出し、前記溶接の許容範囲の分布を、各V収束角度θで内挿し、任意の溶接条件における許容範囲の導出方法の一例を説明するための図である。上記のへん平率H/Dに基づいた、排出溶鋼面積Aおよび上記指定位置の肉厚中央部Tcの組合せの許容範囲の導出について、V収束角度θを変更し、同様の処理を繰り返し行うことで、図7に示す溶接の許容範囲2000を決定する。ここで、V収束角度θのピッチは特に指定しないが、通常の操業条件において、プリセットするV収束角度θの最大値と最小値の間で5分割以上分けて許容範囲の導出を行うことが好ましい。また、上記のように直接許容範囲を求めていないV収束角度θの条件については、その前後で許容範囲を求めたV収束角度θの許容範囲を内挿して近似するなどの処理を行う。この処理で得られた結果については、記憶部1403に記録しておくことができる。これにより、ステップS9の処理は完了し、溶接管理処理はステップS10の処理に進む。 Figure 7 shows the temperature Tc at the center of the wall thickness and the discharged molten steel from the results of the flattening test under each condition of the temperature Tc at the center of the wall thickness and the area A of discharged molten steel at each V convergence angle θ in electric resistance welding. To explain an example of a method of deriving a tolerance range for welding from the relationship of area A, interpolating the distribution of the tolerance range for welding at each V convergence angle θ, and deriving the tolerance range under arbitrary welding conditions. It is a diagram. Regarding the derivation of the permissible range of the combination of the discharge molten steel area A and the wall thickness center portion Tc at the specified position based on the above-mentioned flattening ratio H/D, change the V convergence angle θ and repeat the same process. Then, a welding tolerance range 2000 shown in FIG. 7 is determined. Here, the pitch of the V convergence angle θ is not particularly specified, but under normal operating conditions, it is preferable to derive the allowable range by dividing the maximum and minimum values of the preset V convergence angle θ into 5 or more divisions. . Furthermore, for the condition of the V convergence angle θ for which the allowable range has not been directly determined as described above, processing is performed such as interpolating and approximating the allowable range of the V convergence angle θ for which the allowable range has been determined before and after the condition. The results obtained through this process can be recorded in the storage unit 1403. Thereby, the process of step S9 is completed, and the welding management process proceeds to the process of step S10.

ステップS10の処理では、出力部1402が、ステップS9で得られた溶接条件の良否判定を外部へ出力する。外部への出力にはオペレータが判定結果を認知する必要があるため、溶接管理装置1000に備えらえたグラフィック装置やアラーム装置等へ出力することが好ましい。これにより、ステップS10の処理は完了し、一連の溶接管理処理を終了させる。 In the process of step S10, the output unit 1402 outputs the quality determination of the welding conditions obtained in step S9 to the outside. Since it is necessary for the operator to recognize the determination result in order to output it to the outside, it is preferable to output it to a graphic device, an alarm device, etc. provided in the welding management device 1000. Thereby, the process of step S10 is completed, and the series of welding management processes is ended.

以上、本発明の実施形態として、電縫鋼管の溶接管理装置について説明した。
また、本発明では、上述した溶接管理装置を有する溶接管理システムも提供される。
また、上記の溶接管理装置を有する溶接管理システムは、電縫鋼管を製造する際に用いることができ、具体的に、電縫鋼管の製造方法は、鋼板又は鋼帯に対して周方向に連続的な曲げ加工を施し、両エッジ部を突き合わせてオープン管とし、その後突き合わせたオープン管の両エッジ部に対して、溶接スタンドを用いて連続的にアプセットする電縫溶接により製造するが、電縫溶接の際、前述した溶接システムにより行われる処理により溶接管理を行う。電縫鋼管の溶接管理方法も上記で説明した方法にて実施される。さらに、上述した電縫鋼管の溶接管理方法を用いて、電縫鋼管を製造することができる。
The welding management device for electric resistance welded steel pipes has been described above as an embodiment of the present invention.
Further, the present invention also provides a welding management system having the above-described welding management device.
In addition, the welding management system having the above-mentioned welding management device can be used when manufacturing ERW steel pipes, and specifically, the manufacturing method of ERW steel pipes is continuous in the circumferential direction with respect to the steel plate or steel strip. It is manufactured by ERW welding, in which both edges are butted together to form an open tube, and then both edges of the abutted open tube are continuously upset using a welding stand. During welding, welding management is performed by the processing performed by the welding system described above. The welding control method for electric resistance welded steel pipes is also carried out by the method explained above. Furthermore, an ERW steel pipe can be manufactured using the above-described welding management method for an ERW steel pipe.

このように、本発明によれば、電縫溶接時の端面の加熱分布や突合せ状態を精度高く測定し、溶接後の排出溶鋼量も考慮することで、溶接欠陥を抑制することができる。 As described above, according to the present invention, it is possible to suppress welding defects by accurately measuring the heating distribution and abutting state of the end face during electric resistance welding and by also taking into account the amount of discharged molten steel after welding.

また、上述した本発明の実施の形態について、これら実施の形態は本発明を実施するための一例に過ぎない。よって、本発明は上述した実施の形態に限定されることなく、その趣旨を逸脱しない範囲内であれば、当業者等によりなされる他の実施の形態、実施例および運用技術等は全て本発明の範疇に含まれる。 Further, regarding the embodiments of the present invention described above, these embodiments are merely examples for implementing the present invention. Therefore, the present invention is not limited to the embodiments described above, and all other embodiments, examples, operational techniques, etc. made by those skilled in the art are included in the present invention as long as they do not depart from the spirit thereof. included in the category of

管厚5mmで鋼管外径がφ90mmの種々の電縫溶接管に対して、まず、溶接条件の許容範囲を導出するために、V収束角度θを3~7°、エッジ肉厚中央部の温度Tcを測定する位置を溶接スタンドのスクイズロールの軸直下から上流側へ6mm離れた位置とし、成形中のエッジベンド成形を調整して、同位置における管内外面温度の差分値ΔTを-300℃~+300℃、溶接速度を40m/minとして電縫溶接を行った。V収束角度θはフィンパスロールのフィンロール幅を変更して調整した。また、管内外面温度の温度差分ΔTを調整するために、フィンパスロールのロールポジションを変更し、特にエッジ部周辺の曲げ変形を調整した。 First, in order to derive the allowable range of welding conditions for various ERW welded pipes with a pipe thickness of 5 mm and a steel pipe outer diameter of φ90 mm, we set the V convergence angle θ to 3 to 7 degrees, and the temperature at the center of the edge wall thickness. Set the position at which Tc is to be measured to be 6 mm away from just below the axis of the squeeze roll on the welding stand upstream, adjust the edge bend forming during forming, and adjust the difference value ΔT between the inner and outer surfaces of the tube at the same position by -300°C to +300°C. Electric resistance welding was performed at a temperature of 40 m/min and a welding speed of 40 m/min. The V convergence angle θ was adjusted by changing the fin roll width of the fin pass roll. In addition, in order to adjust the temperature difference ΔT between the inner and outer surfaces of the tube, the roll position of the fin pass roll was changed, and the bending deformation especially around the edge portion was adjusted.

種々の電縫溶接において、溶接電力を変更しながら2色式温度計カメラを用いて、フレームレート20fps、管長手方向の画素数を1920画素、管肉厚方向の画素数を1080画素、管長手方向の視野を50mmとして溶接前の温度分布の2次元画像を取得した。また、種々の電縫溶接においてCCDカメラを用いて、フレームレート20fps、管長手方向の画素数を1920画素、管長手方向の視野を60mmとして、溶接中の溶接部前後の画像を取得した。これら取得した画像から、各フレームの指定位置の肉厚中央部の温度Tcと、前記指定位置の管エッジ表面の外表面と内表面との温度差分ΔTと、前記V収束角度θと、前記溶接スタンドを通過した後の排出溶鋼面積Aを抽出し、V収束角度θを所定の値に固定にした時のTc、ΔT、Aについてはスクイズロールの一回転分の平均値を算出した。得られた鋼管を100mm長さに切り出し、JIS G3478:2015に基づいて溶接部のへん平試験を行い、鋼管を2枚の平板で挟み、溶接部に割れが生じた時の2枚の平板間の距離Hを測定し、平板間の距離Hを鋼管の初期外径Dで除したへん平率H/Dを算出した。へん平率H/Dが2/3以下であれば合格とした。これらの一連の作業について、V収束角度を3°~7°まで1°間隔で溶接条件の許容範囲を導出した。 In various types of electric resistance welding, a two-color thermometer camera was used while changing the welding power, the frame rate was 20 fps, the number of pixels in the pipe longitudinal direction was 1920 pixels, the number of pixels in the pipe thickness direction was 1080 pixels, and the number of pixels in the pipe longitudinal direction was 20 fps. A two-dimensional image of the temperature distribution before welding was obtained with a directional field of view of 50 mm. In addition, images before and after the welded part during welding were acquired using a CCD camera in various electric resistance welding operations at a frame rate of 20 fps, a pixel count in the tube longitudinal direction of 1920 pixels, and a field of view in the tube longitudinal direction of 60 mm. From these acquired images, the temperature Tc of the center wall thickness at the designated position of each frame, the temperature difference ΔT between the outer surface and the inner surface of the pipe edge surface at the designated position, the V convergence angle θ, and the welding The discharged molten steel area A after passing through the stand was extracted, and the average values of Tc, ΔT, and A for one rotation of the squeeze roll were calculated when the V convergence angle θ was fixed at a predetermined value. The obtained steel pipe was cut to a length of 100 mm, a flattening test was performed on the welded part based on JIS G3478:2015, the steel pipe was sandwiched between two flat plates, and the difference between the two flat plates when a crack occurred in the welded part was measured. The distance H between the plates was measured, and the flattening ratio H/D was calculated by dividing the distance H between the flat plates by the initial outer diameter D of the steel pipe. If the flattening ratio H/D was 2/3 or less, it was considered to be a pass. For these series of operations, the allowable range of welding conditions was derived for the V convergence angle from 3° to 7° at 1° intervals.

代表として、V収束角度θが5°における、上記指定位置の肉厚中央部の温度Tcと上記排出溶鋼面積Aの許容範囲を導出した結果を図8に示す。各上記指定位置の肉厚中央部の温度Tcと上記排出溶鋼面積Aの許容範囲の上下限については、各一定の上記排出溶鋼面積Aにおける指定位置の肉厚中央部の温度Tcの上限値および下限値のそれぞれを最小二乗法による直線近似を行った。同様に、各一定の指定位置の肉厚中央部の温度Tcにおける排出溶鋼面積Aの上限値および下限値のそれぞれを最小二乗法による直線近似を行った。ここでは、指定位置の管エッジ表面の外表面と内表面との温度差分ΔTの上限(ΔTmax)は250℃であり、下限(ΔTmin)は-80℃であった。 As a representative example, FIG. 8 shows the result of deriving the allowable range of the temperature Tc at the center of the wall thickness at the specified position and the discharged molten steel area A when the V convergence angle θ is 5 degrees. Regarding the upper and lower limits of the allowable range of the temperature Tc at the center of the wall thickness at each specified position and the area A of discharged molten steel, A linear approximation was performed for each of the lower limit values using the least squares method. Similarly, the upper and lower limits of the discharged molten steel area A at the temperature Tc of the central portion of the wall thickness at each fixed designated position were linearly approximated using the least squares method. Here, the upper limit (ΔTmax) of the temperature difference ΔT between the outer surface and the inner surface of the pipe edge surface at the specified position was 250°C, and the lower limit (ΔTmin) was -80°C.

表1に発明例と比較例の肉厚中央部の温度Tc、内外面温度差分値ΔT、V収束角度θ、排出溶鋼面積Aおよび鋼管のへん平率の合格率を示す。発明例は、管エッジ表面の外表面と内表面との温度差分ΔTを約+100℃、V収束角度を約5°となるようにロールポジションのセットアップを行い、エッジ肉厚中央部の温度Tcが1400℃±10℃、排出溶鋼面積が3.2±0.2mmを満たすように溶接電力を調整した。これに対して、比較例は電縫溶接時の溶接管理を行わず、溶接電力を調整し、排出溶鋼の状態を目視のみで確認した。 Table 1 shows the temperature Tc at the center of the wall thickness, the temperature difference ΔT between the inner and outer surfaces, the V convergence angle θ, the area A of discharged molten steel, and the acceptance rate of the flattening ratio of the steel pipes of the invention example and the comparative example. In the invention example, the roll position is set up so that the temperature difference ΔT between the outer surface and the inner surface of the pipe edge surface is about +100°C and the V convergence angle is about 5°, and the temperature Tc at the center of the edge wall thickness is Welding power was adjusted so that the discharged molten steel area satisfied 1400°C ± 10°C and 3.2 ± 0.2 mm 2 . On the other hand, in the comparative example, welding control during electric resistance welding was not performed, the welding power was adjusted, and the state of discharged molten steel was checked only visually.

得られた電縫鋼管から切り出した100mm長さのサンプル100本に対して、JIS G3478:2015に基づいて溶接部のへん平試験を行い、へん平率H/Dを測定した。へん平率H/Dの合格率は、2/3以下を満たした鋼管の本数が占める割合としており、合格率が95%以上であると適切に電縫溶接できていると判断される。発明例である鋼管No.1では合格率が100%であり、適切に電縫溶接できているのに対し、比較例である鋼管No.2では合格率が92%であり、所定の電縫溶接ができていない。 For 100 samples of 100 mm length cut out from the obtained electric resistance welded steel pipes, a flattening test of the welded portion was performed based on JIS G3478:2015, and the flattening ratio H/D was measured. The pass rate of flattening ratio H/D is determined by the number of steel pipes that satisfy 2/3 or less, and if the pass rate is 95% or more, it is judged that electric resistance welding has been properly performed. Invention example steel pipe No. The pass rate for No. 1 was 100%, and the electric resistance welding was properly performed, whereas steel pipe No. In No. 2, the pass rate was 92%, and the specified electric resistance welding could not be performed.

Figure 2023182081000002
Figure 2023182081000002

1 オープン管
2 フィンパスロール
3 高周波発振装置
4 溶接方向
10 エッジ温度分布撮影装置
11 溶接部撮影装置
20 溶接部のエッジ検出画像
31a、31b コンタクトチップ
40 溶接スタンド
41a、41b スクイズロール
42a、42b トップロール
100 エッジ温度分布撮影データ入力部
110 溶接部撮影データ入力部
121 温度分布処理部
122 電縫溶接前エッジ温度検出部
123 座標空間算出部
124 データ処理部
125 エッジ温度差算出部
131 溶接画像処理部
132 管エッジ画像検出部
133 V収束角度算出部
134 接合点検出部
135 溶接後排出溶鋼面積算出部
201 加熱部
202 衝合部
202a、202b オープン管両エッジ端面
203 溶接スタンド以降の排出溶鋼
204 溶接スタンドのロールセンター直下位置
205 開口部
θ V収束角度
207 溶接ビード
1000 溶接管理装置
1001 溶接管理システム
1401 溶接状態判定部
1402 出力部
1403 記憶部
La、Lb オープン管の両エッジ端面を近似した直線
2000 許容範囲
1 Open pipe 2 Fin pass roll 3 High frequency oscillator 4 Welding direction 10 Edge temperature distribution imaging device 11 Welding area imaging device 20 Edge detection image of welding area 31a, 31b Contact tip 40 Welding stand 41a, 41b Squeeze roll 42a, 42b Top roll 100 Edge temperature distribution photography data input unit 110 Welding part photography data input unit 121 Temperature distribution processing unit 122 Edge temperature detection unit before ERW welding 123 Coordinate space calculation unit 124 Data processing unit 125 Edge temperature difference calculation unit 131 Welding image processing unit 132 Pipe edge image detection section 133 V convergence angle calculation section 134 Junction point detection section 135 Discharged molten steel area calculation section after welding 201 Heating section 202 Abutting section 202a, 202b Open pipe both edge end faces 203 Discharged molten steel after welding stand 204 Discharged molten steel of welding stand Position directly below the roll center 205 Opening θ V convergence angle 207 Weld bead 1000 Welding management device 1001 Welding management system 1401 Welding state determination section 1402 Output section 1403 Memory section La, Lb Straight line approximating both edge end faces of open pipe 2000 Tolerance range

Claims (5)

鋼板又は鋼帯に対して周方向に曲げ加工を施し、両エッジ部を突き合わせてオープン管とし、その後突き合わせたオープン管両エッジ部に対して、スタンドを用いてアプセットする電縫溶接により製造する電縫鋼管の溶接管理装置であって、
電縫溶接前において、少なくとも一方のオープン管エッジ表面の温度分布の画像と、前記温度分布の画像の画素情報から変換した空間座標とに基づいて、
オープン管エッジ表面の外表面温度T、内表面温度T、肉厚中央部の温度Tcおよび温度測定をした位置の座標を検出する電縫溶接前エッジ温度検出部と、
前記オープン管エッジ表面の外表面と内表面との温度差分ΔTを算出するエッジ温度差算出部と、
前記オープン管両エッジ部に沿って収束する直線によって形成される接合点を含む領域の画像情報に基づいて、オープン管エッジ部に沿って収束する直線が成すV収束角度θを算出するV収束角度算出部と、
溶接方向に対して電縫溶接後の溶接スタンドのロールセンター直下位置より下流側の管外面に排出された溶鋼を含む画像情報に基づいて、溶接方向に対して前記溶接スタンドのロールセンター直下位置より下流側の管外面に排出された溶鋼面積Aを算出する溶接後排出溶鋼面積算出部と、
前記オープン管エッジ表面の外表面と内表面との温度差分ΔTと、前記肉厚中央部の温度Tcと、前記V収束角度θと、前記排出された溶鋼面積Aの情報に基づいて、電縫溶接条件の良否を判定する溶接状態判定部と、
を備える、電縫鋼管の溶接管理装置。
An electric current manufactured by bending a steel plate or steel strip in the circumferential direction, then butting both edges to form an open tube, and then using a stand to upset both edges of the butted open tube. A welding control device for sewn steel pipes,
Before electric resistance welding, based on an image of the temperature distribution on the surface of at least one open pipe edge and spatial coordinates converted from pixel information of the image of the temperature distribution,
a pre-ERW welding edge temperature detection unit that detects the outer surface temperature T 0 of the open pipe edge surface, the inner surface temperature T i , the temperature Tc of the center of the wall thickness, and the coordinates of the temperature measurement position;
an edge temperature difference calculation unit that calculates a temperature difference ΔT between the outer surface and the inner surface of the open pipe edge surface;
A V convergence angle θ formed by straight lines converging along the open tube edge portion is calculated based on image information of a region including a junction point formed by straight lines converging along both edge portions of the open tube. A calculation section,
Based on image information including molten steel discharged to the outer surface of the pipe on the downstream side of the position directly below the roll center of the welding stand after electric resistance welding in the welding direction, from the position directly below the roll center of the welding stand in the welding direction a post-weld discharged molten steel area calculation unit that calculates a molten steel area A discharged to the outer surface of the downstream pipe;
Based on the information on the temperature difference ΔT between the outer surface and the inner surface of the open pipe edge surface, the temperature Tc at the center of the wall thickness, the V convergence angle θ, and the discharged molten steel area A, a welding condition determination section that determines whether welding conditions are acceptable;
A welding control device for electric resistance welded steel pipes.
前記溶接方向に対して電縫溶接後の溶接スタンドのロールセンター直下位置より下流側の管外面に排出された溶鋼量に基づいて電縫溶接条件の良否を判定するにあたって、任意の前記V収束角度θに対して、所定の前記外表面温度T、所定の前記内表面温度T、所定の前記肉厚中央部の温度Tcが得られるよう溶接電力を調整する、請求項1に記載の電縫鋼管の溶接管理装置。 In determining the acceptability of the electric resistance welding conditions based on the amount of molten steel discharged to the outer surface of the pipe on the downstream side from the position directly below the roll center of the welding stand after electric resistance welding with respect to the welding direction, the arbitrary V convergence angle The welding power according to claim 1, wherein the welding power is adjusted to obtain a predetermined outer surface temperature T 0 , a predetermined inner surface temperature T i , and a predetermined temperature Tc at the center of the wall thickness with respect to θ. Welding control device for sewn steel pipes. 請求項1または2に記載の電縫鋼管の溶接管理装置と、
電縫溶接前において、オープン管両エッジ表面の温度分布を撮像するエッジ温度分布撮影装置と、
電縫溶接前において、オープン管両エッジ部に沿って収束する直線によって形成される接合点、および
電縫溶接後において、溶接方向に対して溶接スタンドのロールセンター直下位置より下流側の管外面に排出された溶鋼を撮影する溶接部撮影装置と、
を備える、電縫鋼管の溶接管理システム。
The welding management device for electric resistance welded steel pipes according to claim 1 or 2;
an edge temperature distribution imaging device that images the temperature distribution on both edge surfaces of an open tube before electric resistance welding;
Before ERW welding, the joint point formed by straight lines converging along both edges of the open pipe, and after ERW welding, on the outside of the pipe downstream of the position directly below the roll center of the welding stand in the welding direction. a welding part photographing device for photographing discharged molten steel;
A welding management system for ERW steel pipes.
鋼板又は鋼帯に対して周方向に曲げ加工を施し、両エッジ部を突き合わせてオープン管とし、その後突き合わせたオープン管両エッジ部に対して、スタンドを用いてアプセットする電縫溶接により製造する電縫鋼管の溶接管理方法であって、
電縫溶接前において、少なくとも一方のオープン管エッジ表面の温度分布の画像と、前記温度分布の画像の画素情報から変換した空間座標とに基づいて、オープン管エッジ表面の外表面温度T、内表面温度T、肉厚中央部の温度Tcおよび温度測定をした位置の座標を検出する電縫溶接前エッジ温度検出工程と、
前記オープン管エッジ表面の外表面と内表面との温度差分ΔTを算出するエッジ温度差算出工程と、
前記オープン管両エッジ部に沿って収束する直線によって形成される接合点を含む領域の画像情報に基づいて、オープン管エッジ部に沿って収束する直線が成すV収束角度θを算出するV収束角度算出工程と、
溶接方向に対して電縫溶接後の溶接スタンドのロールセンター直下位置より下流側の管外面に排出された溶鋼を含む画像情報に基づいて、溶接方向に対して前記溶接スタンドのロールセンター直下位置より下流側の管外面に排出された溶鋼面積Aを算出する溶接後排出溶鋼面積算出工程と、
前記オープン管エッジ表面の外表面と内表面との温度差分ΔTと、前記肉厚中央部の温度Tcと、前記V収束角度θと、前記排出された溶鋼面積Aの情報に基づいて、電縫溶接条件の良否を判定する溶接状態判定工程と、
を含む、電縫鋼管の溶接管理方法。
An electric current manufactured by bending a steel plate or steel strip in the circumferential direction, then butting both edges to form an open tube, and then using a stand to upset both edges of the butted open tube. A welding management method for a sewn steel pipe, the method comprising:
Before electric resistance welding, the outer surface temperature T 0 of the open tube edge surface, the inner surface temperature T 0 , and A pre-ERW welding edge temperature detection step of detecting the surface temperature T i , the temperature Tc at the center of the wall thickness, and the coordinates of the temperature measurement position;
an edge temperature difference calculation step of calculating a temperature difference ΔT between the outer surface and the inner surface of the open pipe edge surface;
A V convergence angle θ formed by straight lines converging along the open tube edge portion is calculated based on image information of a region including a junction point formed by straight lines converging along both edge portions of the open tube. calculation process,
Based on image information including molten steel discharged to the outer surface of the pipe on the downstream side of the position directly below the roll center of the welding stand after electric resistance welding in the welding direction, from the position directly below the roll center of the welding stand in the welding direction a post-weld discharge molten steel area calculation step of calculating an area A of molten steel discharged to the outer surface of the pipe on the downstream side;
Based on the information on the temperature difference ΔT between the outer surface and the inner surface of the open pipe edge surface, the temperature Tc at the center of the wall thickness, the V convergence angle θ, and the discharged molten steel area A, a welding condition determination step for determining whether welding conditions are acceptable;
Welding management method for ERW steel pipes, including:
請求項4に記載の電縫鋼管の溶接管理方法を用いて、電縫鋼管を製造する方法。 A method of manufacturing an ERW steel pipe using the welding management method for an ERW steel pipe according to claim 4.
JP2022095481A 2022-06-14 2022-06-14 Welding management device for erw steel pipes, welding management system, welding management method for erw steel pipes, and method for manufacturing erw steel pipes Pending JP2023182081A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022095481A JP2023182081A (en) 2022-06-14 2022-06-14 Welding management device for erw steel pipes, welding management system, welding management method for erw steel pipes, and method for manufacturing erw steel pipes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022095481A JP2023182081A (en) 2022-06-14 2022-06-14 Welding management device for erw steel pipes, welding management system, welding management method for erw steel pipes, and method for manufacturing erw steel pipes

Publications (1)

Publication Number Publication Date
JP2023182081A true JP2023182081A (en) 2023-12-26

Family

ID=89310160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022095481A Pending JP2023182081A (en) 2022-06-14 2022-06-14 Welding management device for erw steel pipes, welding management system, welding management method for erw steel pipes, and method for manufacturing erw steel pipes

Country Status (1)

Country Link
JP (1) JP2023182081A (en)

Similar Documents

Publication Publication Date Title
KR101447793B1 (en) Operation management device, operation management method, and operation management program for high-frequency resistance welding and induction welding
EP3542917B1 (en) Apparatus,method, and program for monitoring operation of high-frequency resistance welding and induction heating welding of electric resistance welded steel pipe
KR101476594B1 (en) Monitoring device, method, and computer readable storage medium storing program for seam welding
JP5332287B2 (en) ERW welding system
JP5125670B2 (en) A method for manufacturing ERW welded pipes with excellent welding quality.
JP2018020356A (en) Weldment monitoring method in electroseamed steel pipe welding process and weldment monitoring device
JP2023182081A (en) Welding management device for erw steel pipes, welding management system, welding management method for erw steel pipes, and method for manufacturing erw steel pipes
JP7435930B1 (en) ERW steel pipe welding management device, ERW steel pipe welding management method, ERW steel pipe manufacturing method, and ERW steel pipe welding management system
WO2024090051A1 (en) Electrical resistance welded steel pipe welding management device, electrical resistance welded steel pipe welding management method, electrical resistance welded steel pipe manufacturing method, and electrical resistance welded steel pipe welding management system
JP2515460B2 (en) ERW welded pipe manufacturing method
JP6028765B2 (en) ERW welding monitoring method and monitoring device
JP3423034B2 (en) Apparatus for detecting the amount of pressure contact in the high-frequency electric resistance welding process
JP7119561B2 (en) MONITORING METHOD, MONITORING SYSTEM AND MONITORING PROGRAM FOR ERW WELDING
JP2023007638A (en) Welding management device of electric welded tube, welding management method of electric welded tube, manufacturing method of electric welded tube and welding management system of electric welded tube
JP2803928B2 (en) Method of calculating and controlling squeeze amount of ERW pipe
WO2020184414A1 (en) Method for monitoring welding of electric resistance welded steel pipe, method for manufacturing electric resistance welded steel pipe, device for monitoring welding of electric resistance welded steel pipe, and device for manufacturing electric resistance welded steel pipe
JP6699116B2 (en) Upset control device and control method in electric resistance welding process
JP7010138B2 (en) Metal tube manufacturing methods, management systems, and programs
Hasegawa et al. Development of a New Optical Monitoring System of Welding Conditions for Producing HF-ERW Line Pipes With High Weld Seam Toughness: Advanced Welding Process of HF-ERW 2
JP7188270B2 (en) Metal tube manufacturing method, metal tube manufacturing apparatus and program
JPS63303684A (en) Method and device for controlling heat input of resistance welded tube welding
JP2017225995A (en) Device and method for monitoring welding of electroseamed steel pipe
JPH02263581A (en) Welding method for resistance welded tube
JPH10192963A (en) Manufacture of high energy beam welded tube
JPH04301709A (en) Measuring method for butted shape of seam converging part of metal pipe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240126