JP2018020356A - Weldment monitoring method in electroseamed steel pipe welding process and weldment monitoring device - Google Patents

Weldment monitoring method in electroseamed steel pipe welding process and weldment monitoring device Download PDF

Info

Publication number
JP2018020356A
JP2018020356A JP2016153297A JP2016153297A JP2018020356A JP 2018020356 A JP2018020356 A JP 2018020356A JP 2016153297 A JP2016153297 A JP 2016153297A JP 2016153297 A JP2016153297 A JP 2016153297A JP 2018020356 A JP2018020356 A JP 2018020356A
Authority
JP
Japan
Prior art keywords
welding
welding point
image
metal plate
steel pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016153297A
Other languages
Japanese (ja)
Other versions
JP6762163B2 (en
Inventor
長谷川 昇
Noboru Hasegawa
昇 長谷川
宮本 誠
Makoto Miyamoto
誠 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Nippon Steel Pipe Co Ltd
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Nippon Steel and Sumikin Pipe Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp, Nippon Steel and Sumikin Pipe Co Ltd filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2016153297A priority Critical patent/JP6762163B2/en
Publication of JP2018020356A publication Critical patent/JP2018020356A/en
Application granted granted Critical
Publication of JP6762163B2 publication Critical patent/JP6762163B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To make it possible to perform diagnosis for a first kind area capable of fusion welding.SOLUTION: A weldment monitoring method in an electroseamed steel pipe welding process in which a blet-like metal plate is continuously formed into a cylindrical shape by a roll group while being transported, an upset is applied to the cylindrical metal plate from a lateral side thereof by a pair of squeeze rolls, and both ends of the metal plate in a circumferential direction, which converge in a V-shaped form, are heat-molten and abutted to each other while being heat input-controlled, whereby a steel pipe is manufactured. According to this weldment monitoring method, an image of an area including a weld zone, in which the metal plates converge in a V-shaped form and abut, is photographed, the photographed image is taken in, image processing for capturing an absolute position of a weld point and an arc occurring on a downstream side with respect to the weld point is executed based on the images which are photographed in a time sequence, existence or absence of any arc is discriminated, and further, existence or absence of any abnormality is discriminated in such a manner that a predetermined proper range of the weld point and a position of the weld point are compared.SELECTED DRAWING: Figure 6

Description

本発明は、電縫鋼管の溶接状態をリアルタイムで検出する監視方法及び監視装置に関するものである。   The present invention relates to a monitoring method and a monitoring device for detecting a welding state of an electric resistance welded pipe in real time.

従来から、高周波抵抗溶接(高周波電縫溶接)を利用して形成された鋼管である電縫鋼管が知られている。また、電縫鋼管の電縫溶接現象は、投入電力(入熱)が高くなるにつれて、冷接、第1種、第2種、過入熱といった溶接現象が発現することが知られている。この中でも第2種現象は広い入熱条件で安定した溶接部品質が得られると考えられていた。   Conventionally, an electric resistance steel pipe, which is a steel pipe formed using high frequency resistance welding (high frequency electric resistance welding), is known. Moreover, it is known that the electric resistance welding phenomenon of an electric resistance welded steel pipe will exhibit welding phenomena, such as cold welding, 1st type, 2nd type, and excessive heat input, as input electric power (heat input) becomes high. Among these, the second type phenomenon was thought to provide stable weld quality under a wide range of heat input conditions.

しかし、溶接欠陥に着目した品質と溶接現象の詳細な観察により、第2種は3つの現象に細分類されることが分かった。これらを入熱の低い方から「狭義の第2種」、「遷移領域」、「第2’種」と定義した。狭義の第2種は溶接する鋼材エッジが溶接点に直線的に収束する現象で、溶接点の近傍下流側にアーク発生を伴う特徴がある。第2’種は鋼材エッジの収束点よりも実際の衝合点が下流側に位置する2段収束を伴う現象である。これら両者の現象領域に挟まれた入熱条件に遷移領域があり、直線的な収束と初期の2段収束が不規則に発現するため、溶接欠陥が増加する可能性が高い。   However, it was found that the second type was subdivided into three phenomena by quality observation focusing on welding defects and detailed observation of welding phenomena. These were defined as “second type in a narrow sense”, “transition region”, and “second type” from the lowest heat input. The second type in a narrow sense is a phenomenon in which the steel material edge to be welded converges linearly at the welding point, and is characterized by arc generation in the vicinity downstream of the welding point. The second type is a phenomenon involving a two-stage convergence in which the actual abutting point is located downstream of the convergence point of the steel material edge. There is a transition region in the heat input condition sandwiched between these two phenomenon regions, and linear convergence and initial two-stage convergence appear irregularly, so there is a high possibility that welding defects will increase.

これまでに、第2’種における2段収束=全厚溶融であることを見出し、溶接スリットの長さを測定することで適切な溶接条件に制御する手法(特許文献1、特許文献2参照)、2段収束型第2種溶接現象を自動検出することによる溶融証明、入熱制御を行う技術や溶接点位置とスクイズロールセンター間の距離を測定することで入熱上限を監視する技術(特許文献3等)などを開発し、第2’種現象が発現する入熱状態に制御するためのシステムを構築、導入している。   So far, it has been found that two-stage convergence in the 2 ′ type = full-thickness melting, and a method of controlling to appropriate welding conditions by measuring the length of the welding slit (see Patent Document 1 and Patent Document 2) Melting proof by automatically detecting two-stage convergent type 2 welding phenomenon, technology to control heat input and technology to monitor the upper limit of heat input by measuring the distance between the welding point position and squeeze roll center (patent) Document 3 etc.) has been developed, and a system for controlling the heat input state in which the second type phenomenon appears is being constructed and introduced.

このように、第2種現象以上の領域を対象とした溶接診断を行ってきたが、電縫鋼管の中でも機械・構造管などのように、第2種領域で発生し始めるスパッタが欠陥の原因となって問題になる品種がある。スパッタは図8のように溶接時の投入電力、即ち入熱が大きくなるにつれて増加する傾向があるため、スパッタを発生させない所謂スパッタレス溶接を実現するには、できる限り入熱の小さい領域で溶接する必要がある。一方、V収束角や造管速度、スクイズロールによるアプセット量などの溶接条件によっては、入熱の小さい領域では冷接或いは未溶着領域も発生する。したがって、新たに低入熱側で操業する品種も対象として「溶融溶接可能な第1種領域」を的確に把握する必要が生じた。   In this way, welding diagnosis has been conducted for the area above the type 2 phenomenon, but spatter that starts to occur in the type 2 area, such as mechanical and structural pipes, is the cause of defects. There is a variety that becomes a problem. Since spatter tends to increase as the input power during welding, that is, heat input, increases as shown in FIG. 8, in order to realize so-called spatterless welding that does not generate spatter, welding is performed in a region where heat input is as small as possible. There is a need to. On the other hand, depending on the welding conditions such as the V convergence angle, the pipe making speed, and the amount of upset by the squeeze roll, a cold welding or non-welding region also occurs in a region where the heat input is small. Therefore, it is necessary to accurately grasp the “first type region that can be melt-welded” for new varieties that operate on the low heat input side.

特許第5014837号明細書Japanese Patent No. 5014837 国際公開第2011/118560号International Publication No. 2011/118560 特許第5510615号明細書Japanese Patent No. 5510615

ところで、第1種の中でも「溶融溶接可能な第1種領域」は、入熱の大きい側の第2種領域、入熱の小さい側の冷接或いは未溶着が発生する第1種領域に挟まれている。従って、冷接等を回避しつつできる限り低入熱で溶接するには、第1種領域の内、「溶融溶接可能な第1種領域」という非常に狭い領域に制御することが求められる。   By the way, among the first type, the “first type region that can be melt welded” is sandwiched between the second type region on the higher heat input side and the first type region where cold welding or unwelding occurs on the lower heat input side. It is. Therefore, in order to perform welding with the lowest possible heat input while avoiding cold welding or the like, it is required to control the first type region to a very narrow region called “first type region capable of being melt welded”.

この制御の指標になり得るものとして、例えば、第2種領域では溶接点下流側に微小なスリット(鋼材エッジの狭い間隙)が発生することが知られている。しかしながら、非常に狭いスリットであるため、その有無を識別することが難しい。更に、冷接領域〜第2種領域では溶接現象に変化がない(溶接点位置やV収束角など)と考えられていたため、「溶融溶接可能な第1種領域」の下限を判別する手段を見出すことは難しかった。つまり今までは、「溶融溶接可能な第1種領域」の上下限を判別する指標がないため、溶接状態を判断することが困難であった。   As an index of this control, it is known that, for example, in the second type region, a minute slit (a narrow gap between the steel material edges) is generated on the downstream side of the welding point. However, since it is a very narrow slit, it is difficult to identify its presence. Furthermore, since it was considered that there is no change in the welding phenomenon in the cold welding region to the second type region (such as the welding point position and the V convergence angle), means for determining the lower limit of the “first type region where fusion welding is possible” is provided. It was difficult to find. That is, until now, since there is no index for determining the upper and lower limits of the “first type region that can be melt welded”, it has been difficult to determine the welding state.

ところが、研究を重ねることにより、入熱を変化させたときに溶接部を高解像度で撮影すると、僅かに溶接点の絶対位置が変化することが分かった。また、第2種ではスリット内にアーキングが発生することが分かった。これにより溶接点位置を捉えることによって冷接及びスパッタが発生しない「溶融溶接可能な第1種領域」であることを診断することができるようになった。なお、入熱とは溶接部への投入電力(電圧×電流)で、操業に用いる基準値に対する増減を%で表した数値である。   However, as a result of repeated research, it was found that the absolute position of the welding point slightly changes when the weld is photographed with high resolution when the heat input is changed. Further, it was found that arcing occurs in the slit in the second type. As a result, it is possible to diagnose the “first type region capable of fusion welding” in which cold welding and spatter do not occur by capturing the welding point position. In addition, heat input is the electric power (voltage x current) applied to the welded portion, and is a numerical value representing an increase / decrease in% relative to the reference value used for operation.

本発明は、このような経緯でなされた発明であり、発明の課題は、溶融溶接可能な第一種領域であることを診断可能とすることである。   The present invention has been made with such circumstances, and an object of the present invention is to make it possible to diagnose that it is a first type region capable of being melt welded.

上記課題を解決するためになされた本発明は次の手段を採用する。先ず、第一の手段は、帯状の金属板を搬送しながらロール群により連続的に円筒状に成形し、前記円筒状の金属板に対してその側方から一対のスクイズロールによりアプセットを加えつつ、V字状に収束する金属板の周方向の両端部への入熱制御を行いながら高周波抵抗又は誘導加熱溶接により加熱溶融させて突き合わせて鋼管を製造する電縫鋼管の溶接工程の溶接監視方法であって、前記金属板がV字型に収束して衝合する溶接部を含む領域の画像を撮影し、前記撮影された画像を取り込み、撮影された画像に基づいて溶接点の絶対位置と溶接点より下流側に発生するアークを捉える画像処理を施し、前記アーク有無と、予め求めた溶接点適正範囲と前記溶接点の位置との比較結果を用いて、異常有無を判別することを特徴とする電縫鋼管の溶接工程の溶接監視方法である。   The present invention made to solve the above problems employs the following means. First, the first means continuously forms a cylindrical shape by a roll group while transporting a belt-shaped metal plate, and adds upset by a pair of squeeze rolls from the side to the cylindrical metal plate. Monitoring method for welding process of ERW steel pipe for manufacturing steel pipe by heating and melting by high-frequency resistance or induction heating welding while controlling heat input to circumferential ends of metal plate converging in V shape An image of a region including a welded portion where the metal plate converges and collides in a V shape, the captured image is captured, and the absolute position of the welding point is determined based on the captured image. Image processing for capturing an arc generated downstream from the welding point is performed, and the presence / absence of an abnormality is determined using a comparison result between the presence / absence of the arc and a previously determined welding point appropriate range and the position of the welding point. ERW steel pipe A welding method of monitoring the welding process.

第一の手段において、金属板がV字型に収束して衝合する溶接部を含む領域を撮影、処理し、溶接点とアークを捉えるに際し、撮影画像から円筒状に成形されつつある金属板のエッジを検出する領域を設定し、輝度変化の大きい箇所をエッジとして検出し、これらの箇所の直線近似を行い、2本の近似直線を算出し、これら近似線の交点を溶接点として検出し、当該溶接点より下流側で、周方向に対し所定の範囲の幅の矩形をアーク検出領域として設定する構成とすることが好ましい。   In the first means, when a region including a welded portion where the metal plate converges and collides in a V shape is photographed and processed, and a welding point and an arc are captured, the metal plate being formed into a cylindrical shape from the photographed image Set the area to detect the edge, detect the part with large luminance change as the edge, perform straight line approximation of these parts, calculate two approximate lines, and detect the intersection of these approximate lines as the welding point It is preferable that a rectangle having a width in a predetermined range with respect to the circumferential direction is set as the arc detection region on the downstream side from the welding point.

また、冷接発生有無の判定は、前記近似線の交点を溶接点とした後、当該溶接点が、予め設定した溶接点の最下流限度位置より上流にあるかどうかで判定する構成とすることが好ましい。   In addition, whether or not cold welding has occurred is determined by determining whether or not the welding point is upstream of the most downstream limit position of the preset welding point after the intersection of the approximate lines is a welding point. Is preferred.

また、第二の手段は、帯状の金属板を搬送しながらロール群により連続的に円筒状に成形し、前記円筒状の金属板に対してその側方から一対のスクイズロールによりアプセットを加えつつ、V字状に収束する金属板の周方向の両端部への入熱制御を行いながら高周波抵抗又は誘導加熱溶接により加熱溶融させて突き合わせて鋼管を製造する電縫鋼管の溶接工程の溶接監視装置であって、前記金属板がV字型に収束して衝合する溶接部を含む領域の画像を撮影する画像撮影手段と、前記画像撮影手段により撮影された画像を取り込み、撮影された画像に基づいて溶接点の位置と溶接点より下流側に発生するアークを捉える画像処理手段と、前記アーク有無と、予め求めた溶接点適正範囲と前記溶接点の位置との比較結果を用いて異常有無を判別する判別手段とが備えられていることを特徴とする、電縫鋼管の溶接工程の溶接監視装置である。   Further, the second means is to continuously form a cylindrical shape by a group of rolls while transporting the belt-shaped metal plate, and add upset by a pair of squeeze rolls from the side to the cylindrical metal plate. Welding monitoring device for welding process of ERW steel pipe that manufactures steel pipe by heating and melting by high frequency resistance or induction heating welding while controlling heat input to both ends in the circumferential direction of metal plate converging in V shape An image photographing means for photographing an image of an area including a welded portion where the metal plate converges and collides with a V-shape, and an image photographed by the image photographing means is captured and the photographed image is taken. Based on the image processing means for capturing the position of the welding point and the arc generated downstream from the welding point, the presence / absence of the arc, and the presence / absence of abnormality using a comparison result of the appropriate range of the welding point and the position of the welding point Determine Wherein the determining means is provided that is a welding monitoring device of the welding process the seam welded steel pipe.

第二の手段において、金属板がV字型に収束して衝合する溶接部を含む領域を撮影、処理し、溶接点とアークを捉える手段として、撮影画像から円筒状に成形されつつある金属板のエッジを検出する領域を設定し、輝度変化の大きい箇所をエッジとして検出し、これらの箇所の直線近似を行い、2本の近似直線を算出し、これら近似線の交点を溶接点として検出し、当該溶接点より下流側で、周方向に対し所定の範囲の幅の矩形をアーク検出領域として設定する手段を有する構成とすることが好ましい。   In a second means, a metal being formed into a cylindrical shape from a photographed image as a means for photographing and processing an area including a welded portion where the metal plate converges and collides in a V shape and captures a welding point and an arc. Set the area to detect the edge of the plate, detect the part with large luminance change as the edge, perform straight line approximation of these parts, calculate two approximate lines, and detect the intersection of these approximate lines as the welding point And it is preferable to set it as the structure which has a means to set the rectangle of the width | variety of the predetermined range with respect to the circumferential direction as an arc detection area | region downstream from the said welding point.

また、冷接発生有無の判定手段として、前記近似線の交点を溶接点とした後、当該溶接点が、予め設定した溶接点の最下流限度位置より上流にあるかどうかを判定する手段を有する構成とすることが好ましい。   Further, as means for determining whether or not cold welding has occurred, there is means for determining whether or not the welding point is located upstream of the most downstream limit position of a preset welding point after the intersection of the approximate lines is a welding point. A configuration is preferable.

第一の手段や第二の手段を用いると、溶融溶接可能な第一種領域であることを診断することが可能となる。   When the first means and the second means are used, it is possible to diagnose that it is a first type region that can be melt welded.

高周波電縫溶接部を監視している状態を示した鳥瞰図である。It is the bird's-eye view which showed the state which is monitoring the high frequency electric-welding welding part. 画像撮影処理手段と溶接部の位置関係を示した図である。It is the figure which showed the positional relationship of an imaging | photography process means and a welding part. 溶融溶接可能な第1種領域近傍における4種類の入熱条件下における撮影画像である。It is the picked-up image on four types of heat input conditions in the 1st type | mold area | region vicinity in which melt welding is possible. 基準となる入熱からのずれと、スクイズロールのセンターから溶接点までの距離の計測値との関係を示した図である。It is the figure which showed the relationship between the shift | offset | difference from the heat input used as a reference | standard, and the measured value of the distance from the center of a squeeze roll to a welding point. 実施形態における画像処理のアルゴリズムを示した図である。It is the figure which showed the algorithm of the image processing in embodiment. 撮影した画像と、近似線、溶接点、アーク検出領域などとの関係を表した図である。It is a figure showing the relationship between the image | photographed image, an approximate line, a welding point, an arc detection area | region, etc. FIG. 各入熱条件における実施例の判定結果と扁平試験による品質確認の結果を表した図である。It is a figure showing the result of the quality check by the determination result of the Example in each heat input condition, and a flat test. スパッタ発生量と適正入熱量との関係を表した図である。It is a figure showing the relationship between the amount of spatter generation, and the appropriate heat input.

以下では、発明の実施形態について説明する。図1、図2は、高周波電縫溶接部を監視している状態を示しており、図1はその鳥瞰図、図2は側面図である。また図1、図2は画像撮影手段12により電縫溶接部の上方から撮影することを示す。高周波電縫溶接を行うには、溶接に先立って、帯状の金属板22を搬送しながら図示しないロール群により、連続的に略円筒状に成形する。この略円筒状の金属板22に対して、その側方から一対のスクイズロール23によってアプセットを加えつつ、V字状に収束する金属板22の周方向の両端部への入熱制御を行いながら、高周波接触抵抗溶接又は高周波誘導抵抗溶接により加熱溶融させて突き合わせて鋼管を製造する。この鋼管の製造方法は、電縫溶接を用いた鋼管の製造方法としては、一般的なものである。   Hereinafter, embodiments of the invention will be described. 1 and 2 show a state in which a high-frequency electro-welded weld is being monitored. FIG. 1 is a bird's eye view and FIG. 2 is a side view. FIG. 1 and FIG. 2 show that the image photographing means 12 photographs from above the ERW weld. In order to perform high-frequency electric seam welding, prior to welding, the belt-shaped metal plate 22 is continuously formed into a substantially cylindrical shape by a roll group (not shown) while being conveyed. While applying an upset to the substantially cylindrical metal plate 22 by a pair of squeeze rolls 23 from the side, performing heat input control to both ends in the circumferential direction of the metal plate 22 converging in a V shape. Then, the steel pipe is manufactured by heating and melting by high-frequency contact resistance welding or high-frequency induction resistance welding. This method of manufacturing a steel pipe is a general method for manufacturing a steel pipe using electric resistance welding.

このような電縫溶接を用いた鋼管の製造方法において使用される本実施形態の溶接監視装置1は、金属板22がV字型に収束して衝合する溶接部42を含む領域の画像を撮影する画像撮影手段12を備えている。こうした画像撮影手段12により撮影された画像を取り込み、時系列で撮影された画像に基づいて溶接点の位置と溶接点より下流側に発生するアークを捉える画像処理手段14を備えている。また、アークの有無と、予め求めた溶接点適正範囲と前記溶接点の位置を比較して異常の有無を判別する判別手段16を備えている。このような溶接監視装置1を使用すれば、溶融溶接可能な第一種領域であることが診断可能となる。   The welding monitoring apparatus 1 according to the present embodiment used in the steel pipe manufacturing method using the electric resistance welding has an image of a region including the welded portion 42 where the metal plate 22 converges and collides with a V shape. An image photographing means 12 for photographing is provided. An image processing unit 14 is provided that captures an image captured by the image capturing unit 12 and captures the position of the welding point and an arc generated downstream from the welding point based on the image captured in time series. Further, a discriminating means 16 is provided for discriminating whether or not there is an abnormality by comparing the presence / absence of an arc with the welding point appropriate range determined in advance and the position of the welding point. If such a welding monitoring apparatus 1 is used, it can be diagnosed that it is a first type region where fusion welding is possible.

これは、帯状の金属板22を搬送しながらロール群により連続的に円筒状に成形し、前記円筒状の金属板22に対してその側方から一対のスクイズロール23によりアプセットを加えつつ、V字状に収束する金属板22の周方向の両端部への入熱制御を行いながら高周波抵抗又は誘導加熱溶接により加熱溶融させて突き合わせて鋼管を製造する電縫鋼管の溶接工程の溶接監視方法において、前記金属板22がV字型に収束して衝合する溶接部42を含む領域の画像を撮影し、前記撮影された画像を取り込み、時系列で撮影された画像に基づいて溶接点の絶対位置と溶接点より下流側に発生するアークを捉える画像処理を施し、前記アークの有無と、予め求めた溶接点適正範囲と前記溶接点の位置との比較結果により、異常の有無を判別することができるからである。   This is because the belt-shaped metal plate 22 is continuously formed into a cylindrical shape by a group of rolls, and an upset is applied to the cylindrical metal plate 22 by a pair of squeeze rolls 23 from the side. In the welding monitoring method of the welding process of the ERW steel pipe which manufactures a steel pipe by heat-melting it by high-frequency resistance or induction heating welding while performing heat input control to both ends in the circumferential direction of the metal plate 22 converged in a letter shape The image of the region including the weld 42 where the metal plate 22 converges and collides with the V shape is captured, the captured image is captured, and the absolute value of the welding point is determined based on the image captured in time series. Image processing is performed to capture the arc generated downstream of the position and the welding point, and the presence / absence of an abnormality is determined based on the result of comparison between the presence / absence of the arc and the predetermined welding point appropriate range and the position of the welding point. This is because it is.

なお、画像撮影手段12は、図1及び図2に示されている事項から理解されるように、金属板22がV字状に収束する溶接部42よりも上方に配置され、溶接部42を含む領域を撮影している。   As understood from the matters shown in FIGS. 1 and 2, the image photographing means 12 is disposed above the welded portion 42 in which the metal plate 22 converges in a V shape, and the welded portion 42 is disposed. Shooting the area that includes it.

本実施形態においては、円筒状に曲げられた金属板22の内部にインピーダ32が配置され、当該鋼板の周囲にワークコイル34が配置されている。このワークコイル34に対して高周波電源36から高周波電力が供給される形態の、高周波誘導抵抗溶接である。電縫溶接の形態としては、このような形態に限ることは無く、円筒状に曲げられた金属板22と接触させたコンタクトチップに対して高周波電力を供給する形態などの高周波接触抵抗溶接とすることも可能である。   In the present embodiment, an impeder 32 is disposed inside a metal plate 22 bent into a cylindrical shape, and a work coil 34 is disposed around the steel plate. This is high frequency induction resistance welding in which high frequency power is supplied from the high frequency power source 36 to the work coil 34. The form of the electric resistance welding is not limited to such a form, and high-frequency contact resistance welding such as a form in which high-frequency power is supplied to the contact tip brought into contact with the metal plate 22 bent into a cylindrical shape. It is also possible.

次に、画像撮影手段12により撮影した画像を示しながら、具体的に説明する。図3は入熱を操業で用いる基準入熱−10%〜+4%まで振った時に、溶接部42上方から分解能0.03μm、フレームレート40fpsで撮影した画像の代表例である。基準入熱としては操業上、造管開始前に入熱を変化させて溶接品質を調査し、正常な品質が得られる領域の平均或いは中心にあたる入熱を用いることができる。この基準入熱は、すでに保管しているデータを用いて造管前に予め決めておく、或いは製品の造管前に数段階入熱を振って溶接し、断面検鏡や扁平試験などで溶接品質を確認して決めればよい。尚、図3に示す例では上記領域の中心に当たる入熱を用いた。この画像例から、適正入熱−10%〜+4%の変化によって、僅か約7.4mmではあるが、溶接点の位置が移動することが観察された。入熱と溶接点の位置とのデータを更に取得し、まとめたものを図4に示す。図4はそれぞれの入熱条件におけるスクイズロール23のセンターから溶接点までの距離(溶接点位置)をプロットしたグラフである。なお、スクイズロール23は図3の画像の左端外にもイメージを示している。図4に示されている事項から、適正な入熱か否かの指標として溶接点の位置を利用できることが分かる。より具体的には、予め溶接点の適正範囲を定めておくことで、当該範囲と溶接点の位置を比較すれば、適正な入熱か否かの指標となることが分かる。   Next, a specific description will be given while showing an image photographed by the image photographing means 12. FIG. 3 is a representative example of an image taken at a resolution of 0.03 μm and a frame rate of 40 fps from above the welded portion 42 when the heat input is swung from −10% to + 4%, which is the reference heat input used in the operation. As the reference heat input, it is possible to use the heat input corresponding to the average or the center of the region where normal quality can be obtained by examining the welding quality by changing the heat input before the start of pipe making. This standard heat input is determined in advance before pipe making using already stored data, or it is welded with several stages of heat input before pipe making of the product, and is welded by cross-sectional inspection, flattening test, etc. Just check the quality. In the example shown in FIG. 3, the heat input corresponding to the center of the region is used. From this image example, it was observed that the position of the welding point moved, although it was only about 7.4 mm, due to a change in proper heat input of -10% to + 4%. FIG. 4 shows data obtained by further collecting data on heat input and the position of the welding point. FIG. 4 is a graph plotting the distance (welding point position) from the center of the squeeze roll 23 to the welding point under each heat input condition. The squeeze roll 23 also shows an image outside the left end of the image of FIG. From the items shown in FIG. 4, it can be seen that the position of the welding point can be used as an indicator of whether or not the heat input is appropriate. More specifically, by determining an appropriate range of the welding point in advance, comparing the range with the position of the welding point can be understood as an index of whether or not the heat input is appropriate.

溶接部42の断面を検鏡して溶接線(ボンド)の有無と対比させたところ、基準入熱−2%以下ではボンドが消失することが確認され、正常に溶接できる下限入熱が−2%超であることが分かった。一般的にボンドが消失すると溶接部42の強度が著しく低下することが知られており、図4右側の写真例に示されるボンド(白い線)のあることが正常な溶接部品質の指標の一つになっている。一方上限については、基準入熱+4%超でスパッタの発生と相関のあるアークが発生する現象が確認できた。アークは図3の+4%の画像例に示すように溶接点の下流側に高輝度発光する部位が現れる現象であり、アークに伴ってスパッタが発生すると考えられる。以上のことから、基準入熱−2%超〜+4%未満に制御することが好ましいことが分かる。   When the cross section of the welded portion 42 was examined and compared with the presence or absence of a weld line (bond), it was confirmed that the bond disappeared at a reference heat input of −2% or less, and the lower limit heat input that can be normally welded is −2. It was found to be over%. In general, it is known that when the bond disappears, the strength of the welded portion 42 is remarkably lowered, and the presence of the bond (white line) shown in the photograph example on the right side of FIG. It is connected. On the other hand, with respect to the upper limit, it was confirmed that an arc having a correlation with the occurrence of spatter occurred when the reference heat input exceeded + 4%. The arc is a phenomenon in which a high-luminance light emission appears on the downstream side of the welding point as shown in the image example of + 4% in FIG. 3, and it is considered that spatter is generated along with the arc. From the above, it can be seen that it is preferable to control the reference heat input to more than −2% to less than + 4%.

図4には造管速度を変化させた場合の溶接点の位置もプロットしているが、造管速度によらず、入熱が増加するほどスクイズロール23のセンターからの距離が遠くなる(上流側に移動する)ことが明確になった。これに基づき、高入熱上限の判定ではスパッタの発生と相関のあるアークを検出し、低入熱下限では溶接点の絶対位置に閾値を設け、溶融溶接可能な第1種条件であることを判定可能となる画像処理法及び判定法が構築できた。   FIG. 4 also plots the position of the welding point when the pipe making speed is changed, but the distance from the center of the squeeze roll 23 increases as the heat input increases regardless of the pipe making speed (upstream). To move to the side) became clear. Based on this, an arc having a correlation with the occurrence of spatter is detected in the determination of the high heat input upper limit, and a threshold value is set at the absolute position of the welding point at the low heat input lower limit, which is the first type condition that enables fusion welding. An image processing method and a determination method that can be determined have been constructed.

画像処理及び制御法は図5に示すフローを用いて以下に説明する。先ず、画像の撮影を行う(S001)。撮影画像から両鋼材のエッジを検出する領域を設定し、急激な輝度変化をする箇所をエッジ(図6の中の+印)として検出する。図5に示すフローでは、カラーカメラを用いて撮影した画像から赤色成分を抽出する(S002)。このとき、鋼材からの輻射輝度が最も高い赤色成分を処理に用いることが好ましいが、十分な輝度レベルで撮影できれば緑色或いは青色成分でも同様の処理が可能となる。またモノクロカメラを用いる場合は、色成分の抽出は不要である。   The image processing and control method will be described below using the flow shown in FIG. First, an image is taken (S001). An area for detecting the edges of both steel materials is set from the photographed image, and a portion where the brightness changes rapidly is detected as an edge (a + mark in FIG. 6). In the flow shown in FIG. 5, a red component is extracted from an image photographed using a color camera (S002). At this time, it is preferable to use the red component having the highest radiance from the steel material for the processing, but the same processing can be performed with the green or blue component as long as the image can be captured at a sufficient luminance level. In addition, when a monochrome camera is used, it is not necessary to extract color components.

このような抽出によって得られた点の直線近似を行い、2本の近似直線を算出する(S003)。カラーカメラを用いて撮影する場合は、撮影画像から赤色成分を抽出した後、同様の処理にて近似直線を求める。このステップにより図6に示したような二本の直線が得られる。   A straight line approximation of the points obtained by such extraction is performed, and two approximate straight lines are calculated (S003). When photographing using a color camera, an approximate straight line is obtained by extracting the red component from the photographed image and then performing the same processing. By this step, two straight lines as shown in FIG. 6 are obtained.

次に、これらの両近似線の交点を溶接点として検出する(S004)。なお、予め冷間で画像分解能とスクイズロール23のセンターと画像との相対位置を測定しておくことで、画像内の座標(画素単位)を実位置に焼き直すことができる。   Next, the intersection of these approximate lines is detected as a welding point (S004). In addition, by measuring the image resolution and the relative position between the center of the squeeze roll 23 and the image in advance in the cold, the coordinates (pixel unit) in the image can be reprinted to the actual position.

上記2本の近似直線の角の2等分線を算出する(S005)。次に、アーク検出領域を設定する(S006)。このエリアは、例えば溶接点より下流側で、画像左端まで管円周方向(画像の上下方向)に、好ましくは±3mm幅の矩形とし、ほぼ飽和した領域が存在するかどうかを検出する。アークは溶鋼の輻射に比べて著しく輝度が高いことから、アーク検出領域内で例えば画像の輝度レベルが0〜255レベルのうち、閾値200レベル以上の部位が存在するかどうかで判断できる。このような基準を基にアーク検出領域内で2値化処理を行う(S007)。   The bisector of the angle between the two approximate straight lines is calculated (S005). Next, an arc detection area is set (S006). This area is, for example, a rectangle with a width of ± 3 mm in the tube circumferential direction (up and down direction of the image) to the left end of the image on the downstream side from the welding point, and detects whether or not a substantially saturated region exists. Since the arc has remarkably higher luminance than the radiation of molten steel, it can be determined whether or not there is a portion having a threshold value of 200 levels or more in the arc detection region, for example, from 0 to 255 in the luminance level of the image. Based on such a reference, binarization processing is performed in the arc detection area (S007).

このときノイズを検出しないようにアークとして検出した領域の最小面積及びアスペクト(縦/横)比の上限を設定して一次判別することができる(S008)。この際、上限に至らなかった場合に「アークなし」と判別させることができる(S014)。また、一次判別の後、1秒間にアークを検出した頻度を測定する(S009)ことで、1種/2種の判別をすることができる(S010、S015)。   At this time, primary discrimination can be made by setting the minimum area of the area detected as an arc and the upper limit of the aspect (vertical / horizontal) ratio so as not to detect noise (S008). At this time, if the upper limit is not reached, it can be determined that there is no arc (S014). Further, after the primary discrimination, the frequency of detecting the arc per second is measured (S009), so that the discrimination of 1 type / 2 types can be made (S010, S015).

これらの閾値は、例えば、1種/2種の境界でアーク発生頻度を測定しつつ、溶接後に扁平試験によって溶接品質を評価(欠陥による割れが発生するかどうかを確認)することで、決定することができる。なお、図5に示す例においては、2種溶接現象が生じていると判断すると、入熱異常であることを出力している(S011)。   These threshold values are determined, for example, by measuring the arc occurrence frequency at the boundary between 1 type and 2 types and evaluating the welding quality by a flat test after welding (checking whether cracks due to defects occur). be able to. In the example shown in FIG. 5, when it is determined that the two-type welding phenomenon has occurred, it is output that the heat input is abnormal (S011).

一方、冷接発生有無の判定は、上記ステップ(S004)で算出した溶接点の位置が予め設定した最下流限度位置より上流にあるかどうかに基づいて行うことができる(S012)。図5に示す例においては、溶接点の位置が最下流限度位置を超えていれば、溶融溶接可能な第1種現象と判定する(S013)。逆に溶接点の位置が最下流限度位置を超えていなければ、冷接が発生していると判断する(S016)。図5に示す例の場合、冷接が生じていると判断すると、入熱異常であることを出力している(S017)。   On the other hand, whether or not cold welding has occurred can be determined based on whether or not the position of the welding point calculated in the above step (S004) is upstream from a preset most downstream limit position (S012). In the example shown in FIG. 5, if the position of the welding point exceeds the most downstream limit position, it is determined as a first type phenomenon that can be melt welded (S013). Conversely, if the position of the welding point does not exceed the most downstream limit position, it is determined that cold welding has occurred (S016). In the case of the example shown in FIG. 5, if it is determined that the cold welding has occurred, it is output that the heat input is abnormal (S017).

尚、最下流限度位置は、品種毎に入熱を変化させて、予め図4のようなデータを収集し、溶接部42の断面検鏡、つまり溶接線が消失する入熱下限とその時の画像上の溶接点位置を設定する。図4の例では基準入熱−2%のときのスクイズロール23センターからの距離21.8mmが最下流限度位置になる。   The most downstream limit position is obtained by changing the heat input for each product type and collecting data as shown in FIG. 4 in advance. The cross-section of the welded portion 42, that is, the heat input lower limit at which the weld line disappears and the image at that time Set the upper welding point position. In the example of FIG. 4, the distance of 21.8 mm from the center of the squeeze roll 23 when the reference heat input is −2% is the most downstream limit position.

本実施形態では、前記金属板22がV字型に収束して衝合する溶接部42を含む領域を撮影、処理し、溶接点とアークを捉える手段として、撮影画像から円筒状に成形されつつある金属板22のエッジを検出する領域を設定し、輝度変化の大きい箇所をエッジとして検出し、これらの箇所の直線近似を行い、2本の近似直線を算出し、これら近似線の交点を溶接点として検出し、当該溶接点より下流側で、周方向に対し所定の範囲の幅の矩形をアーク検出領域として設定する手段を有するため、適切に溶接点とアークをとらえることが可能となる。   In the present embodiment, the metal plate 22 is formed into a cylindrical shape from a photographed image as a means for capturing and processing an area including the weld portion 42 where the metal plate 22 converges and collides in a V shape and captures a welding point and an arc. An area for detecting an edge of a certain metal plate 22 is set, a part with a large luminance change is detected as an edge, a straight line approximation of these parts is performed, two approximate straight lines are calculated, and an intersection of these approximate lines is welded. Since it has means for detecting a point and setting a rectangle having a predetermined width in the circumferential direction as an arc detection region downstream from the welding point, it is possible to appropriately capture the welding point and the arc.

これは、前記金属板22がV字型に収束して衝合する溶接部42を含む領域を撮影、処理し、溶接点とアークを捉えるに際し、撮影画像から円筒状に成形されつつある金属板22のエッジを検出する領域を設定し、輝度変化の大きい箇所をエッジとして検出し、これらの箇所の直線近似を行い、2本の近似直線を算出し、これら近似線の交点を溶接点として検出し、当該溶接点より下流側で、周方向に対し所定の範囲の幅の矩形をアーク検出領域として設定することができるからである。   This is because the metal plate 22 is formed into a cylindrical shape from a photographed image when the region including the welded portion 42 where the metal plate 22 converges and collides with the V shape is photographed and processed to capture the welding point and the arc. Set 22 areas to detect edges, detect areas with large brightness changes as edges, perform straight line approximation of these areas, calculate two approximate lines, and detect the intersection of these approximate lines as welding points This is because a rectangle having a width in a predetermined range with respect to the circumferential direction can be set as the arc detection region downstream from the welding point.

また、冷接発生有無の判定手段として、前記近似線の交点を溶接点とした後、当該溶接点が、予め設定した溶接点の最下流限度位置より上流にあるかどうかを判定する手段を有するため、適切に冷接発生の有無を判定することができる。   Further, as means for determining whether or not cold welding has occurred, there is means for determining whether or not the welding point is located upstream of the most downstream limit position of a preset welding point after the intersection of the approximate lines is a welding point. Therefore, the presence or absence of occurrence of cold welding can be determined appropriately.

これは、冷接発生有無の判定は、前記近似線の交点を溶接点とした後、当該溶接点が、予め設定した溶接点の最下流限度位置より上流にあるかどうかで判定することができるからである。   The determination as to whether or not cold welding has occurred can be determined by determining whether or not the welding point is upstream from the most downstream limit position of the preset welding point after the intersection of the approximate lines is set as the welding point. Because.

以上のように、本発明によれば、狭い領域である溶融溶接可能な第1種領域に入熱を制御できるようになり、スパッタ発生がなく且つ冷接のない溶接が実現できる。また本判定結果に基づいて、適した入熱範囲外で溶接した部位を特定でき、マーキングやトラッキングと組み合わせることで高度な品質管理が実現できる。より具体的には、溶接直後にマーキング(インク方式)する或いはコイル先頭からの測長をしながら不良位置をプロコンに送信することで、精整工程で不良部を特定し、除去することもでき、高度な品質管理が実現できる。   As described above, according to the present invention, heat input can be controlled in the first type region that can be melt welded, which is a narrow region, and welding without spatter generation and cold welding can be realized. Moreover, based on this determination result, the site | part welded out of the suitable heat input range can be specified, and advanced quality control is realizable by combining with marking and tracking. More specifically, by marking (ink method) immediately after welding or sending the defective position to the process controller while measuring the length from the top of the coil, the defective portion can be identified and removed in the refining process. Advanced quality control can be realized.

次に実施例について、説明する。実際の製造ラインに撮影光学系を設置し、連続的に撮影と画像処理を行いながら溶接状態を判定した。対象としたパイプはφ100mm×5mmtの実管、撮像に用いたカメラは40フレーム/秒、露光時間は1/10000秒とした。造管後に先頭から扁平試験し、割れが発生した位置を実測した。入熱を変化させ、溶接後に扁平試験を行って判定結果と品質とを比較した(図7)。その結果、両者が非常によい一致をしていることが分かり、本発明の効果が実証された。なお、適正入熱+4%においては、アークが発生している状態としていない状態が繰り返されていたため、双方の画像を図7に示している。   Next, examples will be described. A photographic optical system was installed in the actual production line, and the welding state was judged while continuously performing photographing and image processing. The target pipe was a real tube of φ100 mm × 5 mmt, the camera used for imaging was 40 frames / second, and the exposure time was 1/10000 seconds. A flat test was conducted from the top after pipe making, and the position where the crack occurred was measured. The heat input was changed, a flat test was performed after welding, and the determination result was compared with the quality (FIG. 7). As a result, it was found that the two agreed very well, and the effect of the present invention was proved. In addition, since the state which is not made into the state which the arc has generate | occur | produced was repeated in appropriate heat input + 4%, both images are shown in FIG.

本発明は、以上の実施例には限定されることは無く、本発明の趣旨を逸脱しない範囲で適応可能なことは勿論のことである。例えば、いくつかのステップは省くことや他のステップに置き換えることも可能である。また、可能な範囲で各ステップの順番を入れ替えることも可能である。   The present invention is not limited to the above-described embodiments, and it goes without saying that the present invention can be applied without departing from the spirit of the present invention. For example, some steps can be omitted or replaced with other steps. In addition, the order of each step can be changed within a possible range.

1 溶接監視装置
12 画像撮影手段
14 画像処理手段
16 判別手段
22 金属板
23 スクイズロール
42 溶接部
DESCRIPTION OF SYMBOLS 1 Welding monitoring apparatus 12 Image photographing means 14 Image processing means 16 Discriminating means 22 Metal plate 23 Squeeze roll 42 Welded part

Claims (6)

帯状の金属板を搬送しながらロール群により連続的に円筒状に成形し、前記円筒状の金属板に対してその側方から一対のスクイズロールによりアプセットを加えつつ、V字状に収束する金属板の周方向の両端部への入熱制御を行いながら高周波抵抗又は誘導加熱溶接により加熱溶融させて突き合わせて鋼管を製造する電縫鋼管の溶接工程の溶接監視方法であって、
前記金属板がV字型に収束して衝合する溶接部を含む領域の画像を撮影し、
前記撮影された画像を取り込み、撮影された画像に基づいて溶接点の絶対位置と溶接点より下流側に発生するアークを捉える画像処理を施し、
前記アーク有無と、予め求めた溶接点適正範囲と前記溶接点の位置との比較結果を用いて、
異常有無を判別することを特徴とする電縫鋼管の溶接工程の溶接監視方法。
Metal that is continuously formed into a cylindrical shape by a group of rolls while transporting a belt-shaped metal plate, and is converged into a V shape while being upset by a pair of squeeze rolls from the side of the cylindrical metal plate. A welding monitoring method of a welding process of an ERW steel pipe that manufactures a steel pipe by heat-melting by high-frequency resistance or induction heating welding while performing heat input control to both ends in the circumferential direction of the plate,
Taking an image of the region including the weld where the metal plate converges and collides into a V shape,
The captured image is captured, and based on the captured image, an absolute image of the welding point and an image process for capturing an arc generated downstream from the welding point are performed.
Using the comparison result of the presence or absence of the arc, the welding point appropriate range determined in advance and the position of the welding point,
A welding monitoring method for a welding process of an electric resistance welded pipe characterized by determining the presence or absence of abnormality.
前記金属板がV字型に収束して衝合する溶接部を含む領域を撮影、処理し、溶接点とアークを捉えるに際し、
撮影画像から円筒状に成形されつつある金属板のエッジを検出する領域を設定し、輝度変化の大きい箇所をエッジとして検出し、これらの箇所の直線近似を行い、2本の近似直線を算出し、これら近似線の交点を溶接点として検出し、
当該溶接点より下流側で、周方向に対し所定の範囲の幅の矩形をアーク検出領域として設定することを特徴とする、請求項1に記載の電縫鋼管の溶接工程の溶接監視方法。
When capturing and processing a region including a welded portion where the metal plate converges and collides with a V shape, and captures a welding point and an arc,
Set an area to detect the edge of the metal plate that is being formed into a cylindrical shape from the photographed image, detect areas with large luminance changes as edges, perform linear approximation of these areas, and calculate two approximate lines , Detecting the intersection of these approximate lines as a welding point,
2. The welding monitoring method in the welding process for an ERW steel pipe according to claim 1, wherein a rectangle having a width in a predetermined range with respect to the circumferential direction is set as an arc detection area downstream of the welding point.
冷接発生有無の判定は、前記近似線の交点を溶接点とした後、当該溶接点が、予め設定した溶接点の最下流限度位置より上流にあるかどうかで判定することを特徴とする請求項2に記載の電縫鋼管の溶接工程の溶接監視方法。   The determination as to whether or not cold welding has occurred is made by determining whether or not the intersection point of the approximate line is a welding point, and then whether or not the welding point is upstream of a preset downstream limit position of the welding point. Item 3. A welding monitoring method for a welding process of an ERW steel pipe according to Item 2. 帯状の金属板を搬送しながらロール群により連続的に円筒状に成形し、前記円筒状の金属板に対してその側方から一対のスクイズロールによりアプセットを加えつつ、V字状に収束する金属板の周方向の両端部への入熱制御を行いながら高周波抵抗又は誘導加熱溶接により加熱溶融させて突き合わせて鋼管を製造する電縫鋼管の溶接工程の溶接監視装置であって、
前記金属板がV字型に収束して衝合する溶接部を含む領域の画像を撮影する画像撮影手段と、
前記画像撮影手段により撮影された画像を取り込み、撮影された画像に基づいて溶接点の位置と溶接点より下流側に発生するアークを捉える画像処理手段と、
前記アーク有無と、予め求めた溶接点適正範囲と前記溶接点の位置との比較結果を用いて異常有無を判別する判別手段と
が備えられていることを特徴とする、電縫鋼管の溶接工程の溶接監視装置。
Metal that is continuously formed into a cylindrical shape by a group of rolls while transporting a belt-shaped metal plate, and is converged into a V shape while being upset by a pair of squeeze rolls from the side of the cylindrical metal plate. A welding monitoring device for the welding process of an ERW steel pipe for producing a steel pipe by heating and melting by high-frequency resistance or induction heating welding while performing heat input control to both ends in the circumferential direction of the plate,
Image photographing means for photographing an image of a region including a welded portion where the metal plate converges and collides in a V shape;
Image processing means for capturing an image captured by the image capturing means and capturing an arc generated downstream of the position of the welding point and the welding point based on the captured image;
A welding process for an ERW steel pipe, characterized by comprising: a discriminating means for discriminating the presence or absence of an abnormality by using a comparison result between the presence / absence of the arc and a predetermined welding point appropriate range and the position of the welding point. Welding monitoring equipment.
前記金属板がV字型に収束して衝合する溶接部を含む領域を撮影、処理し、溶接点とアークを捉える手段として、
撮影画像から円筒状に成形されつつある金属板のエッジを検出する領域を設定し、輝度変化の大きい箇所をエッジとして検出し、これらの箇所の直線近似を行い、2本の近似直線を算出し、これら近似線の交点を溶接点として検出し、
当該溶接点より下流側で、周方向に対し所定の範囲の幅の矩形をアーク検出領域として設定する手段を有することを特徴とする、請求項4に記載の電縫鋼管の溶接工程の溶接監視装置。
As a means for capturing and processing a region including a welded portion where the metal plate converges and collides with a V shape, and captures a welding point and an arc,
Set an area to detect the edge of the metal plate that is being formed into a cylindrical shape from the photographed image, detect areas with large luminance changes as edges, perform linear approximation of these areas, and calculate two approximate lines , Detecting the intersection of these approximate lines as a welding point,
The welding monitoring of the welding process of the ERW steel pipe according to claim 4, further comprising means for setting a rectangle having a predetermined width in the circumferential direction as an arc detection area downstream from the welding point. apparatus.
冷接発生有無の判定手段として、前記近似線の交点を溶接点とした後、当該溶接点が、予め設定した溶接点の最下流限度位置より上流にあるかどうかを判定する手段を有することを特徴とする請求項5に記載の電縫鋼管の溶接工程の溶接監視装置。   As a means for determining whether or not cold welding has occurred, it has means for determining whether or not the welding point is upstream of the most downstream limit position of a preset welding point after the intersection of the approximate lines is a welding point. The welding monitoring apparatus for a welding process of an ERW steel pipe according to claim 5,
JP2016153297A 2016-08-04 2016-08-04 Welding monitoring method and welding monitoring device for welding process of electric resistance pipe Active JP6762163B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016153297A JP6762163B2 (en) 2016-08-04 2016-08-04 Welding monitoring method and welding monitoring device for welding process of electric resistance pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016153297A JP6762163B2 (en) 2016-08-04 2016-08-04 Welding monitoring method and welding monitoring device for welding process of electric resistance pipe

Publications (2)

Publication Number Publication Date
JP2018020356A true JP2018020356A (en) 2018-02-08
JP6762163B2 JP6762163B2 (en) 2020-09-30

Family

ID=61164103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016153297A Active JP6762163B2 (en) 2016-08-04 2016-08-04 Welding monitoring method and welding monitoring device for welding process of electric resistance pipe

Country Status (1)

Country Link
JP (1) JP6762163B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019198878A (en) * 2018-05-16 2019-11-21 日本製鉄株式会社 Metal pipe manufacturing method, management system, and program
JP2019202348A (en) * 2018-05-16 2019-11-28 日本製鉄株式会社 Manufacturing method of metal pipe, manufacturing device of metal pipe and program
JP2020011259A (en) * 2018-07-17 2020-01-23 日本製鉄株式会社 Electro-resistance-welded small diameter pipe welding operation management method and welding method
CN112935505A (en) * 2021-01-29 2021-06-11 燕山大学 High frequency welded tube impeder and method of using same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0871638A (en) * 1994-09-02 1996-03-19 Sumitomo Metal Ind Ltd Method of controlling heat input in electric resistance welded tube
JP2016078056A (en) * 2014-10-14 2016-05-16 新日鐵住金株式会社 Electro resistance weld operation management device and electro resistance weld operation management method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0871638A (en) * 1994-09-02 1996-03-19 Sumitomo Metal Ind Ltd Method of controlling heat input in electric resistance welded tube
JP2016078056A (en) * 2014-10-14 2016-05-16 新日鐵住金株式会社 Electro resistance weld operation management device and electro resistance weld operation management method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019198878A (en) * 2018-05-16 2019-11-21 日本製鉄株式会社 Metal pipe manufacturing method, management system, and program
JP2019202348A (en) * 2018-05-16 2019-11-28 日本製鉄株式会社 Manufacturing method of metal pipe, manufacturing device of metal pipe and program
JP7010138B2 (en) 2018-05-16 2022-01-26 日本製鉄株式会社 Metal tube manufacturing methods, management systems, and programs
JP2020011259A (en) * 2018-07-17 2020-01-23 日本製鉄株式会社 Electro-resistance-welded small diameter pipe welding operation management method and welding method
JP7143658B2 (en) 2018-07-17 2022-09-29 日本製鉄株式会社 Welding operation management method and welding method for electric resistance welded small-diameter pipe
CN112935505A (en) * 2021-01-29 2021-06-11 燕山大学 High frequency welded tube impeder and method of using same
CN112935505B (en) * 2021-01-29 2022-04-19 燕山大学 High frequency welded tube impeder and method of using same

Also Published As

Publication number Publication date
JP6762163B2 (en) 2020-09-30

Similar Documents

Publication Publication Date Title
EP3542917B1 (en) Apparatus,method, and program for monitoring operation of high-frequency resistance welding and induction heating welding of electric resistance welded steel pipe
JP2018020356A (en) Weldment monitoring method in electroseamed steel pipe welding process and weldment monitoring device
JP6221013B1 (en) Welding monitoring device and welding monitoring method
JP2017148841A (en) Welding processing system and welding failure detection method
JP5880794B1 (en) Welding state monitoring system and welding state monitoring method
JP2009072788A (en) Method and device for detecting spark of welding and method of manufacturing welded product
JP6323293B2 (en) ERW welding operation management device and ERW welding operation management method
CN108620714B (en) Welding deviation detection system based on GMAW (gas metal arc welding) molten pool profile characteristics and detection method thereof
JP5909872B2 (en) WELDING DEFECT DETECTING METHOD AND SYSTEM, ELECTRIC SEWING TUBE MANUFACTURING METHOD, AND WELDED PRODUCT MANUFACTURING METHOD
JP5625292B2 (en) ERW weld monitoring system
JP3423034B2 (en) Apparatus for detecting the amount of pressure contact in the high-frequency electric resistance welding process
RU2722957C1 (en) Method of controlling process of high-frequency welding of pipes and device for implementation thereof
JP5881942B2 (en) Weld defect detection system, method for manufacturing ERW steel pipe, and method for manufacturing welded product
WO2020184414A1 (en) Method for monitoring welding of electric resistance welded steel pipe, method for manufacturing electric resistance welded steel pipe, device for monitoring welding of electric resistance welded steel pipe, and device for manufacturing electric resistance welded steel pipe
JP2020069518A (en) Welding monitoring device and welding monitoring method
JP6745655B2 (en) Welding monitoring device and welding monitoring method for ERW steel pipe
JP6699116B2 (en) Upset control device and control method in electric resistance welding process
JP7143658B2 (en) Welding operation management method and welding method for electric resistance welded small-diameter pipe
JP7435930B1 (en) ERW steel pipe welding management device, ERW steel pipe welding management method, ERW steel pipe manufacturing method, and ERW steel pipe welding management system
KR102536439B1 (en) Welding abnormal diagnosis device
JP5440014B2 (en) ERW Weld Monitoring Method
JP2005319473A (en) Welding method for electric resistance welded tube having excellent weld quality
JP2023007638A (en) Welding management device of electric welded tube, welding management method of electric welded tube, manufacturing method of electric welded tube and welding management system of electric welded tube
JP2023182081A (en) Welding management device for erw steel pipes, welding management system, welding management method for erw steel pipes, and method for manufacturing erw steel pipes
JP6094690B2 (en) Laser irradiation position deviation detection method for laser welded steel pipe, steel pipe manufacturing method, laser irradiation position deviation detection apparatus, steel pipe laser welding apparatus, and steel pipe manufacturing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200317

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200818

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200908

R150 Certificate of patent or registration of utility model

Ref document number: 6762163

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250