JPH04147780A - Method for controlling weld heat input of electro-resistance welded pipe - Google Patents
Method for controlling weld heat input of electro-resistance welded pipeInfo
- Publication number
- JPH04147780A JPH04147780A JP27072790A JP27072790A JPH04147780A JP H04147780 A JPH04147780 A JP H04147780A JP 27072790 A JP27072790 A JP 27072790A JP 27072790 A JP27072790 A JP 27072790A JP H04147780 A JPH04147780 A JP H04147780A
- Authority
- JP
- Japan
- Prior art keywords
- welding
- pipe
- heat input
- value
- control output
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 31
- 238000003466 welding Methods 0.000 claims abstract description 83
- 238000012937 correction Methods 0.000 claims abstract description 6
- 238000004519 manufacturing process Methods 0.000 claims description 26
- 230000010355 oscillation Effects 0.000 claims description 17
- 238000010438 heat treatment Methods 0.000 abstract description 10
- 230000015556 catabolic process Effects 0.000 abstract 1
- 238000006731 degradation reaction Methods 0.000 abstract 1
- 229910000831 Steel Inorganic materials 0.000 description 7
- 239000010959 steel Substances 0.000 description 7
- 238000007796 conventional method Methods 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 2
- 239000000498 cooling water Substances 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 239000013643 reference control Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Landscapes
- General Induction Heating (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は製管速度、板厚及び溶接温度等の溶接条件の変
化に対応して最適の溶接入熱を設定し得るようにした電
縫管の溶接入熱制御方法に関する。[Detailed Description of the Invention] [Industrial Application Field] The present invention provides an electric resistance welding method that allows the optimal welding heat input to be set in response to changes in welding conditions such as pipe manufacturing speed, plate thickness, and welding temperature. This invention relates to a pipe welding heat input control method.
溶接管の製造に用いるストレートシーム製管溶接方法に
は、サブマージアーク溶接法、プラズマ溶接法、 TI
G熔接法、高周波電縫溶接法等があり、このうち高周波
電縫溶接法は製管溶接プロセスの中テ最も高能率なプロ
セスであることから広く採用されている。Straight seam pipe welding methods used to manufacture welded pipes include submerged arc welding, plasma welding, and TI.
There are G-welding methods, high-frequency electric resistance welding methods, and the like, and among these, the high-frequency electric resistance welding method is widely adopted because it is the most efficient process among pipe manufacturing welding processes.
高周波電縫溶接による電縫管の製造は、帯鋼を筒状に成
形して接合端縁が平面視で溶接衝合点を頂点とする7字
型をなすオーブンパイプとなした後、接合端縁を高周波
電流を通して加熱し、溶接温度に到達せしめて衝合点で
スクイズロールにて接合せしめることにより行われる。To manufacture ERW pipes by high-frequency ERW welding, a steel band is formed into a cylindrical shape to form an oven pipe in which the joint edge forms a figure 7 shape with the apex at the weld abutment point in plan view. This is done by heating the materials by passing a high-frequency current to reach the welding temperature, and then joining them using a squeeze roll at the abutting point.
この様な電縫管の溶接過程においては、溶接入熱は電縫
溶接部の品質を左右する最も重要な因子であり、例えば
溶接入熱が低い場合は接合面が十分に溶融しないため冷
接欠陥が発生し、接合部の強度が不十分となる。逆に高
い場合はペネトレー夕と呼ばれる微小な酸化物欠陥が溶
接面に残留する。In the process of welding such ERW pipes, welding heat input is the most important factor that affects the quality of the ERW weld.For example, if the welding heat input is low, the joint surface will not melt sufficiently, so cold welding will not be possible. Defects occur and the strength of the joint becomes insufficient. Conversely, if it is high, minute oxide defects called penetrators remain on the weld surface.
そのため旧来にあっては、溶接作業者が溶接後のビード
外観、赤熱状態及びフラッシュの発生状態等を経験的に
判断し、溶接入熱を設定していた。Therefore, in the past, a welding operator would empirically judge the appearance of the bead after welding, the state of red heat, the state of occurrence of flash, etc., and set the welding heat input.
しかしながらこの様な作業者の経験的判断に基づいた方
法では個人差が大きく、正確な入熱設定を行うのは難し
く、その上作業者に高い熟練度を要求される等の問題が
あった。However, such a method based on the empirical judgment of the operator has the problem that there are large individual differences, it is difficult to set the heat input accurately, and the operator is required to have a high degree of skill.
このため最近にあっては、溶接入熱の自動制御システム
が種々試みられている。この方法の一つとして、製管速
度、帯鋼の板厚、溶接点若しくはその近傍の温度を検知
して、溶接入熱を制御する方法がある(特開昭57−1
65188号、特開昭58−9781号、特開昭54−
137468号、特開昭53−140265号)。For this reason, various automatic control systems for welding heat input have recently been attempted. One of these methods is to control the welding heat input by detecting the pipe manufacturing speed, the thickness of the steel strip, and the temperature at or near the welding point (Japanese Patent Laid-Open No. 57-1
No. 65188, JP-A-58-9781, JP-A-54-
No. 137468, JP-A-53-140265).
〔発明が解決しようとする課題〕
ところでこのような従来方法は、製管速度、板厚及び溶
接温度の変化に対し、溶接品質が最良となる様にその変
化に対応させて溶接入熱を制御するが、この溶接入熱の
加減値は、制御区分毎に設定された制御定数、又は一定
の法則に基づく計算式に従って決定されている。しかし
このような方法では制御精度の向上に限界があり、接合
端縁の形状、インピーダーの劣化、冷却水温度の変化等
に起因する溶接効率、即ち投入電力に対して実際に溶接
部に供給される電力の比を考慮することが必要とされて
いる。[Problem to be solved by the invention] However, in this conventional method, welding heat input is controlled in response to changes in pipe manufacturing speed, plate thickness, and welding temperature so as to optimize welding quality. However, the adjustment value of this welding heat input is determined according to a control constant set for each control section or a calculation formula based on a certain law. However, with this method, there is a limit to the improvement of control accuracy, and welding efficiency due to the shape of the joint edge, impeder deterioration, changes in cooling water temperature, etc. It is necessary to consider the ratio of the power
ところが、接合端縁の形状、インピーダーの劣化及び冷
却水温度変化等は時々刻々に変化するため、このような
溶接効率に関与する要因の全てを計測し、制御に反映さ
せることは極めて困難である等の問題があった。However, because the shape of the welding edge, impeder deterioration, cooling water temperature changes, etc. change from moment to moment, it is extremely difficult to measure all of the factors that affect welding efficiency and reflect them in control. There were other problems.
このため、例えば製管速度等の溶接条件の変化に対応し
て溶接入熱の加減値を決定するための制御定数設定時又
は計算式設定時(以下基準時という)の溶接効率よりも
現在の溶接効率が低下しているような場合は、投入電力
、即ち溶接入熱加減指令値よりも実際に溶接部に供給さ
れる電力、即ち入熱の加減値が低くなり、逆に溶接効率
が高くなっている場合はその逆となって制御精度を維持
し得ないこととなる。For this reason, the current welding efficiency is higher than that at the time of setting control constants or calculation formulas (hereinafter referred to as reference time) to determine the adjustment value of welding heat input in response to changes in welding conditions such as pipe manufacturing speed. If the welding efficiency is decreasing, the power actually supplied to the welding part, that is, the heat input adjustment value, will be lower than the input power, that is, the welding heat input adjustment command value, and the welding efficiency will be high. If this is the case, the opposite is true and control accuracy cannot be maintained.
本発明はかかる事情に鑑みなされたものであって、その
目的とするところは溶接効率に係わる因子の変動によっ
て発振周波数が変化することに着目し、この変化量に基
づいて溶接入熱量を補正することにより、溶接効率を考
慮した正確な溶接入熱の設定を行い得るようにした電縫
管の溶接人熱制御方法を提供することにある。The present invention has been made in view of the above circumstances, and its purpose is to focus on the fact that the oscillation frequency changes due to changes in factors related to welding efficiency, and to correct the welding heat input based on this amount of change. Therefore, it is an object of the present invention to provide a welding human heat control method for electric resistance welded pipes, which enables accurate setting of welding heat input in consideration of welding efficiency.
本発明に係る電縫管の溶接入熱制御方法は、オープンパ
イプの相対向する端縁部に高周波電流を通流して加熱溶
接して電縫管を製造する過程で前記端縁部に対する溶接
入熱を制御する方法において、製管速度、板厚及び溶接
温度を含む溶接条件の変化に対応して求めた溶接入熱設
定のための制御出力変更指令値に、下記補正係数を乗じ
た値を直前の制御出力値に加えて出力することを特徴と
する。The welding heat input control method for an ERW pipe according to the present invention includes a method for controlling welding heat input to the opposite end edges of an open pipe in the process of passing a high frequency current through the opposite end edges of an open pipe and heat welding to manufacture an ERW pipe. In the heat control method, the value obtained by multiplying the control output change command value for welding heat input setting, which is determined in response to changes in welding conditions including pipe manufacturing speed, plate thickness, and welding temperature, by the following correction coefficient. It is characterized in that it is output in addition to the immediately previous control output value.
ィ、E、、ツーえ 現在の発振周波数基準時の発振周
波数
但し、k:溶接機の回路定数及び製管サイズにより決定
される定数
〔作用〕
本発明にあってはこれによって、溶接効率の変化を考慮
した溶接入熱の設定が可能となる。Oscillation frequency when the current oscillation frequency is referenced. However, k: A constant determined by the circuit constant of the welding machine and the pipe manufacturing size [effect] In the present invention, this changes the welding efficiency. It becomes possible to set the welding heat input taking into account the
以下本発明をその実施例を示す図面に基づき具体的に説
明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below based on drawings showing embodiments thereof.
第1図は本発明に係る制御系を示すブロック図であり、
図中1は帯鋼、2はオープンパイプ、3は電縫管を示し
ている。アンコイラ11によっ7jiきもどされた帯a
41はルーバ12をii!過した後、成形機15によっ
て管状のオープンパイプ2に成形すれ、次いでワークコ
イル18によって、そのエツジ部1a、laが順次加熱
された後、スクイズロール19によって圧接されて電縫
管3となる。FIG. 1 is a block diagram showing a control system according to the present invention,
In the figure, 1 indicates a steel band, 2 an open pipe, and 3 an electric resistance welded pipe. Obi a restored by uncoiler 11
41 is louver 12! After passing through the tube, it is formed into a tubular open pipe 2 by a forming machine 15, and then its edge portions 1a and 1a are successively heated by a work coil 18, and then pressed together by a squeeze roll 19 to form an electric resistance welded pipe 3.
成形機15の上流側には、帯鋼1の板厚を測定する板厚
計13が配設されている。板厚計13は、帯鋼1に上下
に接触するロールの間隔に基づいて板厚を測定する構成
になっており、検出された板厚値は板厚信号変換装置1
4にてアナログの板厚信号t。A plate thickness gauge 13 for measuring the plate thickness of the steel strip 1 is disposed upstream of the forming machine 15. The plate thickness gauge 13 is configured to measure the plate thickness based on the interval between the rolls that contact the steel strip 1 vertically, and the detected plate thickness value is transmitted to the plate thickness signal converter 1.
4, the analog plate thickness signal t.
に変換され計算機26に出力される。なお、板厚計13
としては放射線、超音波などを利用した非接触方式の板
厚計を用いてもよい。and output to the computer 26. In addition, the plate thickness total 13
Alternatively, a non-contact thickness gauge using radiation, ultrasound, etc. may be used.
ワークコイル18は加熱電源21から電圧供給を受けて
いる。加熱電源21からワークコイル18に供給される
電圧は、計算機26から出力される制御電圧信号■、に
より制御される。The work coil 18 receives voltage supply from the heating power source 21 . The voltage supplied from the heating power source 21 to the work coil 18 is controlled by a control voltage signal (2) output from the computer 26.
加熱電源21ではその発振回路内に配置したプローブに
より電圧値又は電流値を検出しており、検出された電圧
値又は電流値は周波数信号変換装置29にて周波数信号
fに変換され、計算機26に出力される。周波数信号変
換装置29では、周波数解析又は高速のデータサンプリ
ング(少なくとも107データ/秒以上)を行って波形
1周期の時間を求める方法等により周波数を計算する。In the heating power source 21, a voltage value or current value is detected by a probe placed in its oscillation circuit, and the detected voltage value or current value is converted into a frequency signal f by a frequency signal converter 29, and then sent to a computer 26. Output. The frequency signal converter 29 calculates the frequency by performing frequency analysis or high-speed data sampling (at least 107 data/second or more) to determine the time of one cycle of the waveform.
溶接点またはその近傍には温度計22が配置されている
。この温度計22には2色温度計、または放射温度計等
の光学温度計が使用される。この光学温度計を使用する
際には高周波ノイズ等を防止するために、イメージファ
イバを使用するのが一般的である。温度計22にて検出
された温度値は温度信号変換装置23にてアナログの温
度信号T、に変換され、計算機26に出力される。A thermometer 22 is placed at or near the welding point. As the thermometer 22, a two-color thermometer or an optical thermometer such as a radiation thermometer is used. When using this optical thermometer, it is common to use an image fiber to prevent high frequency noise and the like. The temperature value detected by the thermometer 22 is converted into an analog temperature signal T by a temperature signal conversion device 23 and output to a computer 26 .
スクイズロール19の下流側には、電縫管3の製管速度
を測定する速度計24が設けられている。速度計24は
接触するロールの回転数をパルスジェネレータを用いて
測定することにより速度を検出する構成をなし、検出さ
れた速度値は速度信号変換装置25にてアナログの速度
信号V、に変換され、計算機26に出力される。なお、
成形ロールの回転数を測定して製管速度を検出しても良
い。A speed meter 24 for measuring the tube manufacturing speed of the electric resistance welded tube 3 is provided downstream of the squeeze roll 19. The speed meter 24 is configured to detect the speed by measuring the rotational speed of the roll in contact with it using a pulse generator, and the detected speed value is converted into an analog speed signal V by the speed signal converter 25. , is output to the computer 26. In addition,
The tube manufacturing speed may be detected by measuring the number of rotations of the forming rolls.
計算機26には製管情報(製造される電縫管3の外径、
肉厚、材質等)が、製管情報入力装置27を介して、ま
た目標温度T0が、目標温度入力装置28を介して夫々
入力される。計算機26はこれらの製管情報、目標温度
、板厚信号変換装置14からの板厚信号、温度信号変換
装置23からの温度信号。The calculator 26 includes pipe manufacturing information (the outer diameter of the electric resistance welded pipe 3 to be manufactured,
(wall thickness, material, etc.) are inputted via the pipe manufacturing information input device 27, and the target temperature T0 is inputted via the target temperature input device 28, respectively. The calculator 26 receives the pipe manufacturing information, the target temperature, the plate thickness signal from the plate thickness signal converter 14, and the temperature signal from the temperature signal converter 23.
速度信号変換装置25からの速度信号、及び周波数信号
変換装置29からの周波数信号に基づいて、後述する手
順にて、加熱電源21に対する制御出力(制御電圧)を
演算し、これを加熱電源21に出力する。Based on the speed signal from the speed signal converter 25 and the frequency signal from the frequency signal converter 29, a control output (control voltage) for the heating power source 21 is calculated in the procedure described below, and this is applied to the heating power source 21. Output.
本発明方法にあっては制御出力(制御電圧)■。In the method of the present invention, control output (control voltage) ■.
は下記(11式に示す如く、前回の制御出力(制御電圧
)V;−+ と溶接温度、板厚、製管速度大々の変化に
対応する制御電圧変化指令値ΔV7.ΔV、。is the following (as shown in Equation 11), the previous control output (control voltage) V;-+ and the control voltage change command value ΔV7.ΔV corresponding to large changes in welding temperature, plate thickness, and pipe manufacturing speed.
Δ■9の和に補正係数αを乗じた値とを加算して下記(
1)式に従って求める。これによって溶接効率の変化を
考慮した制御出力(制御電圧)を設定することが可能と
なる。The sum of Δ■9 multiplied by the correction coefficient α is added and the following (
1) Obtain according to the formula. This makes it possible to set the control output (control voltage) in consideration of changes in welding efficiency.
V、 −V、、十α(ΔV、+Δ■、+Δ■v)・・・
(11但し、
■、:加熱電源21への制御電圧
Vi−1’加熱電源21への前回の制御電圧i
・・・(2)
に:溶接機の回路定数及び製管サイズにより決定される
定数
f、:現在の発振周波数
α=k
fo :基準時の発振周波数
ΔV t = K t ・ΔT=Kt (T; T
=−+)・・・(3)ΔV1=Kt ・Δt =Kt
(tHt=−+)・・・(4)ΔVv=Kv ・ΔV
−Ky (vi ” i−+)・・・(5)KT
:温度変動補償定数
Kt :板厚変動補償定数
Kv :速度変動補償定数
T、 :温度計の温度信号
T=−+ :前回の温度計の温度信号t、 :板厚
信号
ji−1’前回の板厚信号
■、 :溶接速度信号
Vi−1’前回の溶接速度信号
ちなみに従来方法においては制御出力■、を下記(6)
式で示す如く前回の制御出力V、、に溶接温度、板厚、
製管速度の変化に夫々相当する制御出力変更指令値を加
えた値として決定していた。V, −V, 10 α (ΔV, +Δ■, +Δ■v)...
(11 However, (1): Control voltage Vi-1' to the heating power source 21 Previous control voltage i to the heating power source 21... (2) To: Constant determined by the circuit constant of the welding machine and the pipe manufacturing size f, : Current oscillation frequency α=k fo : Oscillation frequency at reference time ΔV t = K t ・ΔT=Kt (T; T
=-+)...(3) ΔV1=Kt ・Δt=Kt
(tHt=-+)...(4) ΔVv=Kv ・ΔV
-Ky (vi ” i-+)...(5) KT
:Temperature fluctuation compensation constant Kt :Plate thickness fluctuation compensation constant Kv :Speed fluctuation compensation constant T, :Thermometer temperature signal T=-+ :Previous thermometer temperature signal t, :Plate thickness signal ji-1'previous Plate thickness signal ■: Welding speed signal Vi-1' Previous welding speed signal By the way, in the conventional method, the control output ■ is shown below (6)
As shown in the formula, the previous control output V, , welding temperature, plate thickness,
The value was determined by adding the control output change command value corresponding to each change in pipe manufacturing speed.
V、=■、−、+ΔVT+Δ■、+Δ■9 ・・・(6
)次に制御出力と発振周波数との関係について説明する
。V, =■, -, +ΔVT+Δ■, +Δ■9 ... (6
) Next, the relationship between the control output and the oscillation frequency will be explained.
第2図は制御出力と発振周波数との関係を示すグラフで
ある。FIG. 2 is a graph showing the relationship between control output and oscillation frequency.
溶接効率が悪い場合、良好な品質の溶接品を得るために
は制御出力は基準時の制御出力■。より大きい■1にし
なければならない。When welding efficiency is poor, in order to obtain a welded product of good quality, the control output should be the control output at the standard ■. Must be greater than ■1.
このとき発振周波数は溶接効率の変化に対応して回路の
インピーダンスが変わるため、基準時のf6からflに
増加する。At this time, the oscillation frequency increases from f6 at the reference time to fl because the impedance of the circuit changes in response to the change in welding efficiency.
また溶接効率が良い場合は、制御出力を基準時の制御出
力■。より小さい■2にすることによって、良好な品質
の溶接品を得ることができる。このとき発振周波数は、
基準時のfoからf2に減少する。Also, if welding efficiency is good, use the control output as the reference control output■. A welded product of good quality can be obtained by making the value smaller than (2). At this time, the oscillation frequency is
It decreases from fo at the reference time to f2.
第3図は良好な溶接品が得られる場合における、現在と
基準時の発振周波数の比f、/foと現在と基準時の制
御出力の比V、/V0との関係を示すグラフである。FIG. 3 is a graph showing the relationship between the current and reference oscillation frequency ratio f, /fo and the current and reference control output ratio V, /V0 when a good welded product is obtained.
第3図よりvi /Voはf、/f0に比例しているこ
とが解る。It can be seen from FIG. 3 that vi /Vo is proportional to f and /f0.
直線の傾きkは制御出力の変化に対する発振周波数の変
化の影響度を示す定数であり、溶接機の回路定数及び製
管サイズにより決定されるものである。またここで示す
V、/V0は、溶接効率変化に対応して増減されるべき
制御出力の倍率を示すものであり、(,11式のαに等
しい。The slope k of the straight line is a constant indicating the influence of a change in the oscillation frequency on a change in the control output, and is determined by the circuit constants of the welding machine and the pipe size. Further, V and /V0 shown here indicate the magnification of the control output that should be increased or decreased in response to changes in welding efficiency, and are equal to α in equation (, 11).
従って、基準時の発振周波数f0及び実験により求めた
kを予め製管サイズ別に計算機26に記憶させ、式(1
)の演算を行わせることにより、溶接効率も考慮した高
精度の溶接入熱制御を実施することができる。Therefore, the oscillation frequency f0 at the reference time and k determined by experiment are stored in advance in the calculator 26 for each tube manufacturing size, and the formula (1
), it is possible to implement highly accurate welding heat input control that also takes welding efficiency into consideration.
次に本発明方法と従来方法との比較試験について説明す
る。Next, a comparative test between the method of the present invention and the conventional method will be explained.
炭素量0.07重量%の帯鋼を用いて目標寸法が直径3
4m、肉厚3.9 mの電縫管を製造する過程で、製管
速度を偏向して夫々本発明方法、従来方法により製管を
行った。結果は表1に示すとおりである。Using a steel strip with a carbon content of 0.07% by weight, the target dimension is diameter 3.
In the process of manufacturing an electric resistance welded pipe with a length of 4 m and a wall thickness of 3.9 m, pipe manufacturing was performed by the method of the present invention and the conventional method, respectively, while changing the pipe manufacturing speed. The results are shown in Table 1.
(以下余白)
表
表1から明らかな如く本発明方法に依った場合には従来
方法に依った場合と比較して温度のばらつきが大幅に低
減され、また欠陥個数も著しく減少していることが解る
。(Left below) As is clear from Table 1, when the method of the present invention is used, the temperature variation is significantly reduced compared to when the conventional method is used, and the number of defects is also significantly reduced. I understand.
以上の如く本発明方法にあっては、基準値に対する溶接
効率に差が生じたとき、溶接効率差に起因する制御精度
の悪化を確実に防止出来て、管品質の大幅な向上を図れ
る等本発明は優れた効果を奏するものである。As described above, in the method of the present invention, when there is a difference in welding efficiency with respect to the reference value, it is possible to reliably prevent deterioration of control accuracy due to the difference in welding efficiency, and to significantly improve pipe quality. The invention has excellent effects.
第1図は本発明方法の実施状態を示すブロック図、第2
図は制御出力と発振周波数との関係を示すグラフ、第3
図は良好な溶接品が得られる場合における、現在と基準
時の発振周波数の比と現在と基準時の制御出力の比との
関係を示すグラフである。
1・・・帯鋼 2・・・オープンパイプ 3・・・電縫
管13・・・板厚計 14・・・板厚信号変換装置 1
5・・・成形機18・・・ワークコイル 21・・・加
熱電源 22・・・温度計24・・・速度計 26・・
・計算機 25・・・速度信号変換装置27・・・製管
情報入力装置 28・・・目標温度入力装置29・・・
周波数信号変換装置
特 許 出願人 住友金属工業株式会社代理人 弁理
士 河 野 登 夫第
図
第
図FIG. 1 is a block diagram showing the implementation state of the method of the present invention, and FIG.
The figure is a graph showing the relationship between control output and oscillation frequency.
The figure is a graph showing the relationship between the ratio of oscillation frequencies at the current and reference times and the ratio of control outputs at the current and reference times when a good welded product is obtained. 1... Steel band 2... Open pipe 3... ERW pipe 13... Plate thickness meter 14... Plate thickness signal converter 1
5... Molding machine 18... Work coil 21... Heating power source 22... Thermometer 24... Speed meter 26...
-Calculator 25...Speed signal conversion device 27...Pipe manufacturing information input device 28...Target temperature input device 29...
Frequency signal conversion device patent Applicant Sumitomo Metal Industries Co., Ltd. Agent Patent attorney Noboru Kono Figure
Claims (1)
振された高周波電流を通流し、加熱溶接して電縫管を製
造する過程で前記端縁部に対する溶接入熱を制御する方
法において、製管速度、板厚及び溶接温度を含む溶接条
件の変化に対応して求めた溶接入熱設定のための制御出
力変更指令値に、下記補正係数を乗じた値を直前の制御
出力値に加えて出力することを特徴とする電縫管の溶接
入熱制御方法。 現在の発振周波数 補正係数=k 基準時の発振周波数 但し、k:溶接機の回路定数及び製管サイズにより決定
される定数[Claims] 1. In the process of manufacturing an ERW pipe by passing a high frequency current oscillated by an oscillator through opposite end edges of an open pipe and heat welding, the welding heat input to the end edges is reduced. In the control method, the value obtained by multiplying the control output change command value for welding heat input setting, which is determined in response to changes in welding conditions including pipe manufacturing speed, plate thickness, and welding temperature, by the following correction coefficient is calculated as the value of the previous value. A method for controlling welding heat input of an electric resistance welded pipe, characterized by outputting an output in addition to a control output value. Current oscillation frequency correction coefficient = k Oscillation frequency at reference time, where k: Constant determined by welding machine circuit constant and pipe manufacturing size
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27072790A JPH04147780A (en) | 1990-10-08 | 1990-10-08 | Method for controlling weld heat input of electro-resistance welded pipe |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27072790A JPH04147780A (en) | 1990-10-08 | 1990-10-08 | Method for controlling weld heat input of electro-resistance welded pipe |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04147780A true JPH04147780A (en) | 1992-05-21 |
Family
ID=17490118
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP27072790A Pending JPH04147780A (en) | 1990-10-08 | 1990-10-08 | Method for controlling weld heat input of electro-resistance welded pipe |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04147780A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008105061A (en) * | 2006-10-26 | 2008-05-08 | Jfe Steel Kk | Method for manufacturing electric resistance welded tube having excellent characteristic of weld zone |
JP2009504413A (en) * | 2005-08-12 | 2009-02-05 | サーマツール コーポレイション | Apparatus and method for calculating operating parameters of forge welding apparatus |
-
1990
- 1990-10-08 JP JP27072790A patent/JPH04147780A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009504413A (en) * | 2005-08-12 | 2009-02-05 | サーマツール コーポレイション | Apparatus and method for calculating operating parameters of forge welding apparatus |
JP2008105061A (en) * | 2006-10-26 | 2008-05-08 | Jfe Steel Kk | Method for manufacturing electric resistance welded tube having excellent characteristic of weld zone |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2685725B2 (en) | Method for process control and / or quality control during laser butt welding of plates, and laser welding apparatus for implementing the method | |
JP2009255132A (en) | Electric welding system | |
JPH04147780A (en) | Method for controlling weld heat input of electro-resistance welded pipe | |
KR900006692B1 (en) | Method of controlling of hot rolled steel sheet and system therefor | |
JP4935703B2 (en) | Method for producing ERW steel pipe with good weld toughness | |
JPH0417984A (en) | Welding heat input control method for electro-resistance-welded tube | |
JPS5825882A (en) | Controlling method for weld heat input of high frequency welded steel pipe | |
JPS5825883A (en) | Controlling method for rate of upsetting for high frequency welded steel pipe | |
KYOGOKU et al. | Automatic welding control system for electric-resistance weld tube mill | |
JP2871404B2 (en) | Composite heat source welding pipe making method | |
JPS59104281A (en) | Production of welded h-beam | |
KR100241029B1 (en) | A welding quality certification system and method thereof | |
JPH0246311B2 (en) | ||
JPS608144B2 (en) | Welding input control method for ERW pipe | |
JPS58154466A (en) | Automatic control of high frequency welding of electric welded steel tube | |
JPH02160184A (en) | Production of electric welded pipe | |
JP2006088220A (en) | Electric welded steel tube manufacturing method | |
JPH0825036B2 (en) | Warm electric resistance welding method | |
JPS5819032Y2 (en) | V-seam welding equipment for ERW pipes | |
SU680836A1 (en) | Method for automatically controlling the process of high-frequency welding | |
JPH0234714B2 (en) | ||
JPS60106679A (en) | Method for controlling heat input to electric welded pipe | |
JPH0341269B2 (en) | ||
JPS62156082A (en) | V seam control device for resistance welded tube | |
JPS62289383A (en) | Welding electric power measuring method for high-frequency welding equipment |