JPS5912145Y2 - Forge welded pipe manufacturing equipment - Google Patents

Forge welded pipe manufacturing equipment

Info

Publication number
JPS5912145Y2
JPS5912145Y2 JP13590879U JP13590879U JPS5912145Y2 JP S5912145 Y2 JPS5912145 Y2 JP S5912145Y2 JP 13590879 U JP13590879 U JP 13590879U JP 13590879 U JP13590879 U JP 13590879U JP S5912145 Y2 JPS5912145 Y2 JP S5912145Y2
Authority
JP
Japan
Prior art keywords
skelp
forge
coil
temperature
sides
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13590879U
Other languages
Japanese (ja)
Other versions
JPS5655587U (en
Inventor
俊幸 沖
信夫 町田
賢次 樋口
廣二 西本
Original Assignee
住友金属工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金属工業株式会社 filed Critical 住友金属工業株式会社
Priority to JP13590879U priority Critical patent/JPS5912145Y2/en
Priority to DE3032222A priority patent/DE3032222C2/en
Priority to GB8030237A priority patent/GB2059320B/en
Priority to CA000360905A priority patent/CA1149884A/en
Priority to FR8020668A priority patent/FR2466306B1/en
Publication of JPS5655587U publication Critical patent/JPS5655587U/ja
Application granted granted Critical
Publication of JPS5912145Y2 publication Critical patent/JPS5912145Y2/en
Expired legal-status Critical Current

Links

Landscapes

  • General Induction Heating (AREA)

Description

【考案の詳細な説明】 本考案は鍛接管用の素材たるスケルプを加熱炉にて加熱
した後、更にスケルプの両側エッジ部温度を鍛接温度に
迄均一に加熱昇温するための誘導加熱用のヒータを備え
た鍛接管製造装置に関するものである。
[Detailed description of the invention] This invention is an induction heating heater that heats the skelp, which is the material for forge-welded pipes, in a heating furnace, and then uniformly heats the temperature of both edges of the skelp to the forge-welding temperature. The present invention relates to a forge-welded pipe manufacturing apparatus equipped with the following.

一般に鍛接管はその素材たるスケルプを加熱炉に通して
スケルプの両側エッジ部を鍛接温度である1300゜C
前後に加熱した後、或形ロールに通して断面略O形状に
曲或し、次いでこれを鍛接ロール間に通し相対向せしめ
た両側エッジ部同士を衝合鍛接して製管される。
In general, forge-welded pipes are made by passing the skelp, which is the raw material, through a heating furnace and heating both edges of the skelp to 1300°C, which is the forge-welding temperature.
After being heated back and forth, it is passed through a certain type of roll to be bent into a roughly O-shaped cross section, and then passed between forge welding rolls and the opposed edges on both sides are butt welded to form a pipe.

ところがこのような方法ではスケルプ全体が加熱炉にて
加熱され、スケルプの両側エッジ部が鍛接温度に迄加熱
される間に、鍛接温度に迄加熱する必要のないスケルプ
の中央部迄も鍛接温度に近い温度に加熱されるため、熱
経済及びスケールロスによる歩留の観点からみて極めて
無駄が多いという不都合があった。
However, in this method, the entire skelp is heated in a heating furnace, and while both edges of the skelp are heated to the forge welding temperature, the center of the skelp, which does not need to be heated to the forge welding temperature, is also heated to the forge welding temperature. Since it is heated to a similar temperature, there is a disadvantage that there is an extremely large amount of waste from the viewpoint of thermal economy and yield due to scale loss.

このため従来にあっては第6,7図に示す如くスケルプ
S用の加熱炉Fと或形ロールFRとの間の適所に誘導子
IHを配設し、スケルプSを先ず加熱炉Fに通し、全体
を鍛接温度よりも低い1000’C前後に加熱した後、
誘導子IHに通してスケルプSの両側エッジ部El,
Erのみを選択的に鍛接温度である1300゜C前後に
加熱し、このようなスケルプSを戒形ロールFR、鍛接
ロールWRに順次通して製管することとし、これによっ
て大幅な省エネルギを図れるようにした方法が提案され
ている(特公昭43−14092号)。
For this reason, conventionally, as shown in Figs. 6 and 7, an inductor IH is placed at a suitable location between the heating furnace F for the skelp S and a certain roll FR, and the skelp S is first passed through the heating furnace F. , After heating the whole to around 1000'C, which is lower than the forge welding temperature,
Through the inductor IH, both side edge parts El of the squelp S,
Only Er is selectively heated to around 1300°C, which is the forge welding temperature, and the Skelp S is sequentially passed through a forge roll FR and a forge weld roll WR to form a pipe, thereby achieving significant energy savings. A method has been proposed (Japanese Patent Publication No. 43-14092).

この方法において用いられる誘導子IHは第7図に示す
如く、長尺の銅棒71と、この銅棒71からスケルプS
の幅寸法よりも若干長い寸法を隔てて銅棒71と平行に
直線状に配置された短い一対の銅棒72, 73と、銅
棒71の前端と前側の銅棒72の前端との上、下面側、
並びに銅棒71の後端と後側の銅棒73の後端との上、
下面側に夫々渡された各一対の橋状の厚肉銅帯74,
74, 74’, 74’と、銅棒72と73との対向
端に付設された一対のターミナル片75. 76とを全
体として平面視で矩形状に枠組して構威されている。
As shown in FIG. 7, the inductor IH used in this method includes a long copper rod 71 and a skeleton S.
A pair of short copper rods 72, 73 arranged in a straight line parallel to the copper rod 71 with a distance slightly longer than the width of the copper rod 71, and above the front end of the copper rod 71 and the front end of the front copper rod 72, bottom side,
and above the rear end of the copper rod 71 and the rear end of the rear copper rod 73;
A pair of bridge-like thick-walled copper bands 74 each extending on the lower surface side,
74, 74', 74', and a pair of terminal pieces 75 attached to opposite ends of the copper rods 72 and 73. 76 as a whole in a rectangular frame in plan view.

このような誘導子IHはその長辺側である銅棒71,
72, 73がスケルプSの両側エッジ部El, Er
と平行であって、且つこれらの側端面と対向するよう位
置させ、スケルプSを一方の短片側である厚肉銅帯74
, 74間、銅棒71と72,73との間及び他方の短
辺側である厚肉銅帯74′,74′間を通して移動させ
つつターミナル片75. 76間に高周波電流を通電し
、誘導子IH周りに形或される磁束を切って通過するス
ケルプS表面に誘導電流を生ぜしめ、これによってスケ
ルプSの両側エッジ部El, Erを選択的に加熱する
ようにしたもめである。
Such an inductor IH has a copper rod 71 on its long side,
72 and 73 are both side edge parts El and Er of the scalp S
The thick copper strip 74, which is one short side, is positioned parallel to and opposite to these side end surfaces.
, 74, between the copper rods 71 and 72, 73, and between the thick copper strips 74', 74' on the other short side. A high frequency current is passed between 76 and the magnetic flux formed around the inductor IH is cut to generate an induced current on the surface of the squelp S passing through, thereby selectively heating the edge parts El and Er on both sides of the squelp S. This is the conflict that led to this.

ところがこのような誘導子IHを用いる方法にあっては
、通常加熱炉Fから抽出されてくるスケルプSの両側エ
ッジ部El, Erの温度は加熱炉Fの構造上、或いは
スケルプS自体の肉厚のばらつきのため必ずしも均一で
はなく、たとえば誘導子IHにて両エッジ部El, E
rが均一に昇温されるとしても、両側エッジ部El,
Erには通常5〜20゜C程度の温度差が形或されるの
を避けることが出来ず、しかも操業中におけるスケルプ
の揺動による銅棒71, 72, 73と両側エッジ部
El, Erとの離隔寸法の変動のため、誘導子IHに
おいて両側エッジ部の温度差が一層助長され、アップセ
ット量のばらつきが大きくて製品品質が低く、またスケ
ルプSの両側エッジ部に対する加熱効率を高めるべく銅
棒71, 72, 73とスケルプSの両側エッジ部E
l, Erとの離隔寸法を短縮化しようとしても両側エ
ッジ部El, Erが銅棒71, 72, 73と接触
すると変形すると変形するおそれがあるため、その短縮
化にも限界があって、加熱効率も概して低い値に留まら
ざるを得す、省エネルギにも限界があり、また一定仕様
の誘導子IHを用いて加熱できるスケルプSの幅寸法の
範囲が狭く、誘導子として仕様の異なるものを種々用意
しなければならず、更に加熱炉Fから抽出されてくるス
ケルプSの両側エッジ部El, Erには上述した如く
温度差が形成されるため補正を必要とすることが多いが
、上記した誘導子IHではこの補正が出米ない等実用化
するうえでの難点があった。
However, in a method using such an inductor IH, the temperature of the edge portions El and Er on both sides of the skelp S extracted from the heating furnace F depends on the structure of the heating furnace F or the wall thickness of the skelp S itself. For example, in an inductor IH, both edge portions El and E
Even if r is heated uniformly, both edge portions El,
It is unavoidable that a temperature difference of about 5 to 20°C is normally formed in Er, and furthermore, due to the swinging of the skelp during operation, the copper rods 71, 72, 73 and the edge parts El, Er Due to the variation in the separation dimension of the Skelp S, the temperature difference between the edges on both sides of the inductor IH is further exacerbated, and the amount of upset varies widely, resulting in poor product quality. Edges E on both sides of rods 71, 72, 73 and Skelp S
Even if an attempt is made to shorten the distance between the two edge parts El and Er, there is a risk that the edge parts El and Er will deform if they come into contact with the copper rods 71, 72, 73, so there is a limit to the shortening. Efficiency generally has to stay at a low value, there are limits to energy saving, and the range of width dimensions of Skelp S that can be heated using an inductor IH with a certain specification is narrow, so it is difficult to use an inductor with different specifications. In addition, as mentioned above, there is a temperature difference between the edges El and Er on both sides of the Skelp S extracted from the heating furnace F, so correction is often required. With the inductor IH, there were some difficulties in putting it into practical use, such as the fact that this correction was not available.

本考案はかかる事情に鑑みなされたものであって、その
目的とするところはスケルプの通過域の表裏夫々に配設
され、該スケルプの両側エッジ部夫々の通過域に適長に
亘ってその一部を臨ませるべく構或された一対の誘導加
熱用のコイルを備え、該コイルの少なくとも一方はコイ
ルとスケルプの両側エッジ部夫々との電磁的結合状態を
変更し得るよう構或することにより、スケルプの両側エ
ッジ部のみを適切な鍛接温度に迄均一に加熱昇温せしぬ
得て大幅な熱エネルギの節減が図れることは勿論、鍛接
管自体の製品品質を著しく向上せしめ得る鍛接管の製造
装置を提供するにある。
The present invention has been developed in view of the above circumstances, and its purpose is to provide a skelp on each of the front and back sides of the passage area of the skelp, and to extend one part of the skelp over an appropriate length into the passage area of each of the edge portions on both sides of the skelp. A pair of induction heating coils are provided so as to face each other, and at least one of the coils is configured to change the state of electromagnetic coupling between the coil and each of the edges on both sides of the squelp. By uniformly heating only the edges of both sides of the skelp to the appropriate forge welding temperature, not only can a large amount of thermal energy be saved, but also the product quality of the forge welded tube itself can be significantly improved. We are here to provide you with the equipment.

以下本考案をその実施例を示す図面に基いて具体的に説
明する。
Hereinafter, the present invention will be specifically explained based on drawings showing embodiments thereof.

第1図は本考案に係る鍛接管製造装置(以下本案装置と
いう)を示す模式図、第2図はヒータを構或する誘導加
熱用のコイルを一部切欠して示す拡大斜視図、第3図は
コイル及びその駆動手段とその制御系とを示す斜視図、
第4図はスケルプに対するコイルの動作説明図であり、
図中Sはスケルプ、Fは加熱炉、FRは戒形ロール、W
Rは鍛接ロールであって、加熱炉Fから戒形ロールFR
に至るスケルプSの移動域中にはヒータを構戒する誘導
加熱用のコイルCu, Cdが第3図に示す如き取付枠
30を用いて配設されており、スケルプSは先ず加熱炉
Fに通され、中央部は曲戒及び図示しない絞りロール群
での絞り加工に支障を生じない1180゜C前後に、両
側エッジ部El, Erは1200゜C前後に加熱され
て加熱炉Fから抽出された後、コイルCo, Cd間に
導入され、主として両側エッジ部El, Erが鍛接温
度である1300’ C前後に迄加熱昇温され、次いで
戒形ロールFRに通されて断面略O形状に曲或され、更
に鍛接ロールWRに通されて相対向する両側エッジ部E
l, Er同士が衝合鍛接されて製管され、そのまま図
示しない精整等の後工程に送出されてゆくようになって
いる。
Fig. 1 is a schematic diagram showing a forge-welded pipe manufacturing apparatus according to the present invention (hereinafter referred to as the invention apparatus), Fig. 2 is an enlarged perspective view partially cut away showing an induction heating coil constituting a heater, and Fig. 3 The figure is a perspective view showing a coil, its driving means, and its control system;
FIG. 4 is an explanatory diagram of the operation of the coil with respect to the squelp,
In the diagram, S is Skelp, F is Furnace, FR is Kaigata Roll, W
R is a forge-welded roll, which is a forged roll FR from the heating furnace F.
In the movement range of Skelp S, induction heating coils Cu and Cd for controlling the heater are installed using a mounting frame 30 as shown in FIG. The central part is heated to around 1180°C, which does not interfere with bending and drawing by a group of drawing rolls (not shown), and the edge parts El and Er on both sides are heated to around 1200°C and extracted from the heating furnace F. After that, it was introduced between the coils Co and Cd, and the temperature was raised mainly at the edge portions El and Er on both sides to about 1300'C, which is the forge welding temperature.Then, it was passed through a preform roll FR and bent into an approximately O-shaped cross section. and further passed through a forge welding roll WR to form opposing opposite side edge portions E.
L and Er are butt-forge welded together to form a pipe, and then sent as is to subsequent processes such as finishing (not shown).

誘導加熱用のコイルCu, Cdは第2図に示す如く夫
々コア1,2及びコア1の下面、並びにコア2の上面に
夫々備える溝1a,2a内に嵌入装着されたコイル本体
11. 21にて構或されている。
As shown in FIG. 2, the induction heating coils Cu and Cd have a coil main body 11. which is fitted into the grooves 1a and 2a provided in the cores 1 and 2, the lower surface of the core 1, and the upper surface of the core 2, respectively. It is constructed in 21.

各コア1,2はいずれも短柵状の硅素鋼板、及び同様な
短柵状であって溝1a,2aの形或位置に相当する部分
に打抜によって凹部を形或した硅素鋼板を平面視で矩形
状をなすよう密に重ね合せ、図示しないバンドにて結束
して形或されており、コア1の下面側及びコア2の上面
側には夫々硅素鋼板に形或した前記凹部によって構威さ
れる断面凹状であって四辺が各コア1,2の四辺と平行
な平面視で矩形をなす溝1a,2aを具備している。
Each of the cores 1 and 2 is a silicon steel plate in the shape of a short fence, and a similar silicon steel plate in the shape of a short fence with recesses formed by punching in the portions corresponding to the shapes and positions of the grooves 1a and 2a. The cores are closely stacked to form a rectangular shape and bound together with a band (not shown), and the lower surface side of the core 1 and the upper surface side of the core 2 are provided with the recesses formed in the silicon steel plate, respectively. The grooves 1a and 2a have a concave cross section and are rectangular in plan view with four sides parallel to the four sides of each core 1 and 2.

コイル本体11.21はいずれも断面矩形であって内部
が冷却水を通すべく中空に形威された長尺の帯状銅板を
溝1a,2aに沿い重ね巻きし、これをワニス固めして
構威されている。
The coil bodies 11 and 21 are constructed by winding long strip-shaped copper plates, each of which has a rectangular cross section and a hollow interior to allow cooling water to pass through, along the grooves 1a and 2a, and solidifying them with varnish. has been done.

コイル本体11, 21の両端部11a,21aは溝1
a,2aの周壁からコア1,2の外周部に貫通する孔1
3. 23を通して外部に導出されている。
Both ends 11a, 21a of the coil bodies 11, 21 are grooved 1.
Hole 1 penetrating from the peripheral wall of a, 2a to the outer periphery of core 1, 2
3. 23 to the outside.

そして変圧器Tを介して商用電源Eに連なる周波数変換
器■が出力する高周波電流は力率改善用のコンデンサC
Dに繋ぎ込まれた端部11 a, 21 aから夫々コ
イル本体11. 21へ通電されるようにしてある。
The high frequency current output from the frequency converter ■ connected to the commercial power supply E via the transformer T is connected to the power factor correction capacitor C.
From the ends 11 a, 21 a connected to the coil body 11.D, respectively. 21 is energized.

取付枠30は縦梁31及びその上、下端部に相互に平行
に配設した上部アーム32、下部アーム33にて正面視
でコ字形に形威されており、コイルCuは上部アーム3
2の下面にコイル本体11の固定側を下方にして、また
コイルCdは下部アーム33の上面にコイル本体21の
固定側を上方にして夫々コイル本体11,21ノ各直線
部11 1,11 r,21 1,21 rがスケルプ
Sの両側エッジ部El, Erに沿うべく固定されてい
る。
The mounting frame 30 has a U-shape in front view with a vertical beam 31 and an upper arm 32 and a lower arm 33 that are arranged parallel to each other on the upper and lower ends thereof, and the coil Cu is connected to the upper arm 3.
2 with the fixed side of the coil body 11 facing downward, and the coil Cd with the fixed side of the coil body 21 facing upward on the upper surface of the lower arm 33, respectively, and the straight portions 11 1, 11 r of the coil bodies 11 and 21, respectively. , 21 1, 21 r are fixed along both side edge portions El and Er of the scalp S.

上部アーム32は縦梁31の上端に水平に固定されてお
り、その上面には上端に夫々車輪34. 34を枢支し
た懸垂杆35, 35が立設されており、取付枠30全
体はスケルプSの上方においてスケルプSの移動方向と
直交する向きに水平架設したレールRに懸架され、縦梁
31をスケルプSのエッジ部Er側方に位置させ、且つ
上下のコイルCu, CdをスケルプSの上面及び下面
側に対向させた状態でスケルプSの移動方向と直交する
方向に移動可能となっている。
The upper arm 32 is horizontally fixed to the upper end of the longitudinal beam 31, and wheels 34. Suspension rods 35, 35 are erected, and the entire mounting frame 30 is suspended on a rail R installed horizontally above the Skelp S in a direction perpendicular to the moving direction of the Skelp S. It is positioned on the side of the edge portion Er of the Skelp S, and is movable in a direction perpendicular to the moving direction of the Skelp S with the upper and lower coils Cu and Cd facing the upper and lower surfaces of the Skelp S.

また上部アーム32の上面にはモータM1が配設されて
おり、その出力軸はチェーンを介して一方の車輪34と
同軸に設けたスプロケット34′に連繋されており、モ
ータM1の正逆回動によって取付枠30がスケルプSの
移動方向と直交する方向に移動され、第4図に示す如く
スケルプSの両側エッジ部El, Erと、コイル本体
11, 21の直線部11 1, 11 r, 21
1, 21rの内側縁との水平離隔寸法h1,h2,h
3,h4を変更し得るようにしてある。
Further, a motor M1 is disposed on the upper surface of the upper arm 32, and its output shaft is linked via a chain to a sprocket 34' provided coaxially with one of the wheels 34, so that the motor M1 rotates in the forward and reverse directions. The mounting frame 30 is moved in a direction perpendicular to the moving direction of the squelp S, and as shown in FIG.
1, horizontal separation dimensions h1, h2, h from the inner edge of 21r
3, h4 can be changed.

一方、下部アーム33はその基端部に固定した水平軸3
3 aを介して縦梁31の下端に水平軸33 8回りに
上下方向に回動可能に枢支されている。
On the other hand, the lower arm 33 has a horizontal shaft 3 fixed to its base end.
3a to the lower end of the vertical beam 31 so as to be pivotable up and down about a horizontal axis 338.

水平軸33 aの軸端にはギャ33 bが固定されてお
り、該ギャ33 bは縦梁31の下端に固定したモータ
M2の出力軸のギヤと噛合するギャ33 Cと噛合され
、モータM2の正逆駆動によって下部アーム33が水平
軸33 a回りに上下方向に回動され、第4図に想像線
で示す如くスケルプSの両側エッジ部El, Erと、
コイル本体21の直線部21 1, 21 r表面との
垂直離隔寸法v1,v2を変更し得るようにしてある。
A gear 33b is fixed to the shaft end of the horizontal shaft 33a, and the gear 33b meshes with a gear 33C that meshes with the gear of the output shaft of the motor M2 fixed to the lower end of the vertical beam 31. The lower arm 33 is rotated in the vertical direction around the horizontal axis 33a by the forward and reverse drive of Skelp S, as shown by imaginary lines in FIG.
The vertical separation dimensions v1 and v2 from the straight portions 21 1 and 21 r surfaces of the coil body 21 can be changed.

40はモータM1,M2の駆動制御を司どる制御部であ
り、制御部40には温度センサSl, Srが温度差発
信器41を介して、また温度センサSl’, Sr’が
フィードバック回路42を介して連結されている。
Reference numeral 40 denotes a control unit that controls the drive of the motors M1 and M2.The control unit 40 has temperature sensors Sl and Sr connected to it via a temperature difference transmitter 41, and temperature sensors Sl' and Sr' connected to a feedback circuit 42. connected via.

温度センサSl, SrはスケルプSの移動方向におい
てコイルCu, Cdよりも上流側でスケルプSの両側
エッジ部El, Erに対向すべく配設されており、検
出した両側エッジ部El, Erの温度は温度差発信器
41に入力されて両者の温度差が検出され、この温度差
が制御部40に入力されると、制御部40は両者の温度
差を解消する如く、取付枠30をレールRに沿ってスケ
ルプSの幅方向に移動し、また下部アーム33を基端部
周りに上下方向に回動して、各コイルCu, Cdにお
けるコイル本体11. 21の直線部11 1, 11
r, 21 1, 21 rとスケルプSの両側エッ
ジ部El, Erとの水平及び垂直離隔寸法h1,h2
,h3,h4及び■1,v2を調節すべくモータM1
,M2に駆動信号を発する。
The temperature sensors Sl and Sr are arranged to face the edge parts El and Er on both sides of the squelp S on the upstream side of the coils Cu and Cd in the moving direction of the squelp S, and detect the temperature of the edge parts El and Er on both sides. is input to the temperature difference transmitter 41 to detect the temperature difference between the two, and when this temperature difference is input to the control unit 40, the control unit 40 moves the mounting frame 30 to the rail R so as to eliminate the temperature difference between the two. along the width direction of the squelp S, and also rotates the lower arm 33 in the up and down direction around the base end, so that the coil main body 11. in each coil Cu, Cd. 21 straight part 11 1, 11
r, 21 1, 21 Horizontal and vertical separation dimensions h1, h2 between r and both side edge parts El, Er of the scalp S
, h3, h4 and ■1, v2.
, M2.

温度センサSl’, Sr’はスケルプSの移動方向に
おいてコイルCu, Cdよりも下流側でスケルプSの
両側エッジ部El, Erに対向して配設されており、
コイルCu, Cdで加熱された後におけるスケルプS
の両側エッジ部El, Er夫々の温度を検出し、フィ
ードバック回路42を経て制御部40に出力すると、制
御部40からは両者の温度差が零の場合には信号が発せ
られず、温度差が存する場合はモータM,,M2に対し
前記した場合と同様に温度差を解消する如く各コイルC
u, Cdにおけるコイル本体11,’ 21 (7)
直線部11 1, 11 r,211,21rとスケル
プSの両側エッジ部El, Erとの水平及び/又は垂
直離隔寸法h1〜h4,V1,v2を調節すべくモータ
M1,M2に駆動信号を発するようにしてある。
The temperature sensors Sl' and Sr' are disposed on the downstream side of the coils Cu and Cd in the moving direction of the squelp S, facing the edge parts El and Er on both sides of the squelp S,
Skelp S after being heated by coils Cu and Cd
When the temperatures of both edge portions El and Er are detected and output to the control unit 40 via the feedback circuit 42, the control unit 40 will not issue a signal if the temperature difference between the two is zero; If there is a temperature difference between motors M, M2, each coil C is
Coil body 11,' 21 (7) at u, Cd
A drive signal is issued to the motors M1 and M2 to adjust the horizontal and/or vertical separation dimensions h1 to h4, V1, and v2 between the straight portions 111, 11r, 211, and 21r and the edge portions El and Er on both sides of the squelp S. It's like this.

温度センサSl’, Sr’による検出温度は上記した
如くコイルCu, Cdの位置補正のために用いる場合
を示したが何らこれに限るものではなく、両側エッジ部
El, Erが鍛接温度に達しているか否かの判断等に
用いてもよい。
As mentioned above, the temperature detected by the temperature sensors Sl' and Sr' is used for correcting the position of the coils Cu and Cd, but it is not limited to this. It may also be used to judge whether or not there is a person.

?付枠30の移動調整量及び下部アーム33の回動調整
量相互の調整割合は特に限定するものではなく、例えば
取付枠30の左右方向への移動によって粗調整を、下部
アーム33の上下方向への回動によって微調整をし、或
いは温度センサSl, Srの検出温度に基づく調整を
取付枠30の移動によって、温度センサSl’, Sr
’の検出温度に基づく補正調整を下部アーム33の回動
によって行うこととしてもよい。
? The adjustment ratio between the movement adjustment amount of the attachment frame 30 and the rotation adjustment amount of the lower arm 33 is not particularly limited. For example, coarse adjustment can be made by moving the attachment frame 30 in the left-right direction, and coarse adjustment can be made by moving the attachment frame 30 in the left-right direction. The temperature sensors Sl', Sr can be finely adjusted by rotating the temperature sensors Sl', Sr, or can be adjusted based on the detected temperatures of the temperature sensors Sl', Sr by moving the mounting frame 30.
The correction adjustment based on the detected temperature ' may be performed by rotating the lower arm 33.

而してコイル本体11.21に高周波電流の通電を行う
と、この通電によって発生した磁束がスケルプSを通り
、このためスケルプS2特に両側エッジ部El, Er
には誘導電流が流れ、両側エッジ部El,Erが加熱さ
れるのであるが、両側エッジ部El, Erとコイル本
体11.21との水平方向の離隔寸法又は垂直方向の離
隔寸法が変化すると、スケルプSを通る磁束量も変化す
ることとなり、これに従ってスケルプSに生起される誘
導電流が変化し、両側エッジ部El, Erに対する加
熱量もまた変化することとなる。
When a high-frequency current is applied to the coil body 11.21, the magnetic flux generated by this energization passes through the squelp S2, especially the edge portions El and Er on both sides.
An induced current flows through and heats the edge portions El and Er on both sides, but when the horizontal or vertical separation between the edge portions El and Er and the coil body 11.21 changes, The amount of magnetic flux passing through the squelp S will also change, and the induced current generated in the squelp S will change accordingly, and the amount of heating for both side edge portions El and Er will also change.

すなわち本案装置においては上述した水平離隔寸法h1
〜h4、垂直離隔寸法v1,v2を変化させることによ
ってコイルCu, CdとスケルプSとの電磁的結合状
態を変更させてエッジ部Elとエッジ部Erとの温度を
均一にするようにしている。
In other words, in the present device, the above-mentioned horizontal separation dimension h1
~h4, by changing the vertical separation dimensions v1 and v2, the electromagnetic coupling state between the coils Cu, Cd and the squelp S is changed to make the temperature of the edge portion El and the edge portion Er uniform.

なお、上記実施例の場合はコイルCu, Cdをともに
水平方向に、またコイルCdを上下方向に移動可能とし
た構或を示したが、コイルCu, Cdのいずれか一方
を固定、他方を水平又は上下方向に移動可能に構或して
もよいことは勿論である。
In the above embodiment, the coils Cu and Cd are both movable in the horizontal direction, and the coil Cd is movable in the vertical direction, but one of the coils Cu and Cd is fixed and the other is moved horizontally. Alternatively, it goes without saying that it may be configured to be movable in the vertical direction.

かく構或した本案装置にあってはコイルCu, Cdに
達する前、換言すれば加熱炉Fから抽出された直後にお
けるスケルプSのエッジ部El, Erに温度差が存す
る場合、例えばエッジ部Elの温度がエッジ部Erのそ
れよりも低い場合には両側エッジ部El, Erの温度
を検出した温度センサSl, Srからの温度に基いて
温度差発信器41から両側エッジ部El, Erの温度
差に相当する信号が制御部40に入力され、制御部40
からはこの入力信号に基いてモータM1,M2に対し適
正な割合で駆動信号が発せられ、取付枠30は第4図に
おいて右側に移動され、コイル本体11. 21の直線
部11 1, 21 1とエッジ部Elとの水平離隔寸
法h,h3が小さく、逆に直線部11 r, 21 r
とエッジ部Erとの水平離隔寸法h2,h4が大きく設
定され、一方下部アーム33は水平位置よりも上方に回
動され、コイル本体21の直線部211とエッジ部E1
との垂直離隔寸法■1が直線部21 rとエッジ部Er
との垂直離隔寸法V2よりも相対的に小さく設定され、
エッジ部E1がエッジ部Erよりもより強く加熱される
こととなる。
In the device of the present invention, if there is a temperature difference between the edge portions El and Er of the squelp S before reaching the coils Cu and Cd, in other words, immediately after being extracted from the heating furnace F, for example, When the temperature is lower than that of the edge portion Er, the temperature difference transmitter 41 detects the temperature difference between the edge portions El and Er based on the temperature from the temperature sensors Sl and Sr that have detected the temperature of the edge portions El and Er. A signal corresponding to
Based on this input signal, a drive signal is issued to the motors M1 and M2 at an appropriate ratio, and the mounting frame 30 is moved to the right in FIG. 4, and the coil body 11. The horizontal separation dimensions h and h3 between the straight parts 11 1 and 21 1 of 21 and the edge part El are small, and conversely, the straight parts 11 r and 21 r
The horizontal separation dimensions h2 and h4 between the coil body 21 and the edge portion Er are set large, while the lower arm 33 is rotated upward from the horizontal position, and the straight portion 211 of the coil body 21 and the edge portion E1 are rotated upward.
Vertical separation dimension ■1 is the straight part 21 r and the edge part Er
is set relatively smaller than the vertical separation dimension V2,
The edge portion E1 is heated more strongly than the edge portion Er.

一方、エッジ部E1の温度よりもエッジ部Erの温度が
低い場合には取付枠30が第4図において左側に移動さ
れ、コイル本体11. 21の直線部11 r, 21
rとエッジ部Erとの水平方向の離隔寸法h2,htが
小さく、直線部11 1,21 1とエッジ部Elとの
水平方向離隔寸法が大きく設定され、また下部アーム3
3は水平位置よりも下方に回動されてコイル本体21の
直線部21 rとエッジ部Erとの垂直離隔寸法■2が
直線部211とエッジ部E1との垂直離隔寸法■1より
も相対的に小さく設定され、エッジ部Erがエッジ部E
lよりもより強く加熱されることとなる。
On the other hand, if the temperature of the edge portion Er is lower than the temperature of the edge portion E1, the mounting frame 30 is moved to the left in FIG. 4, and the coil body 11. 21 straight part 11 r, 21
The horizontal distance h2, ht between r and the edge portion Er is small, the horizontal distance between the straight portion 11 1, 21 1 and the edge portion El is set large, and the lower arm 3
3 is rotated below the horizontal position so that the vertical separation dimension ■2 between the straight portion 21r and the edge portion Er of the coil body 21 is relative to the vertical separation dimension ■1 between the straight portion 211 and the edge portion E1. is set to be small, and the edge portion Er is set to be smaller than the edge portion E.
It will be heated more strongly than 1.

第5図は本案装置に用いるコイルの他の例を駆動手段及
びその制御系と共に示す模式図であり、図中CI, C
rは誘導加熱用のコイルであって、加熱炉Fと戒形ロー
ルFRとの間におけるスケルプSの移動域に臨ませて配
設されている。
FIG. 5 is a schematic diagram showing another example of the coil used in the present device together with the drive means and its control system, and in the figure CI, C
r is a coil for induction heating, and is disposed facing the movement area of the squelp S between the heating furnace F and the preform roll FR.

各コイルCI, Crは正面視でコ字形をなすコア51
1,51r及びこれに巻着された中空の帯状銅板製のコ
イル本体521,52rにて構威されており、各コイル
本体521,52rの端部には電源Eからの電流が途中
周波数変換器■によって周波数を設定され、コンデンサ
CDにて力率改善された後、個別的に通電されるように
してある。
Each coil CI, Cr is a core 51 that is U-shaped when viewed from the front.
1,51r and coil bodies 521, 52r made of hollow strip-shaped copper plates wound around the coil bodies 521, 52r. At the end of each coil body 521, 52r, the current from the power source E is passed through a frequency converter. The frequency is set by (2), the power factor is corrected by the capacitor CD, and then the power is applied individually.

各コイルCI, Crはいずれも支持杆531,53r
を介してスケルプSの通過域の上方において、スケルプ
Sの移動方向と直交する向きに水平架設された支持梁6
0に懸架されている。
Each coil CI and Cr are supported by support rods 531 and 53r.
A support beam 6 is installed horizontally in a direction perpendicular to the moving direction of the Skelp S above the passage area of the Skelp S.
It is suspended at 0.

各支持杆531,53rの上端には夫々摺動体541,
54rが設けられており、この摺動体541,54rは
支持梁60の支持溝60 a内に摺嵌されていて、支持
梁60に沿ってスケルプSの移動方向と直交する向きに
移動可能となっている。
At the upper end of each support rod 531, 53r, a sliding body 541,
54r is provided, and these sliding bodies 541, 54r are slidably fitted into the support groove 60a of the support beam 60, and are movable along the support beam 60 in a direction perpendicular to the moving direction of the squelp S. ing.

各摺動体541,54rにはいずれも支持梁60の下面
に固定したエアシリンダ551,55rの作動杆が連結
されており、エアシリンダ551.55rの作動によっ
て各コイルCI, Crのコイル本体521,52rと
スゲルプSの両側エッジ部El, Erとの水平離隔寸
法hl, hr (スケルプSの両側エッジ部El,
Erとコイル本体521,52rの対向周面との寸法)
を変更し得るようにしてある。
The operating rods of air cylinders 551, 55r fixed to the lower surface of the support beam 60 are connected to each sliding body 541, 54r, and the coil bodies 521, 521 of each coil CI, Cr are activated by the operation of the air cylinders 551, 55r. Horizontal separation dimensions hl, hr between 52r and both side edge parts El, Er of Sgelp S (both side edge parts El,
Dimensions between Er and the opposing circumferential surfaces of the coil bodies 521, 52r)
It is possible to change the .

61は前記コイル本体521,52rに対する通電電流
の制御及びエアシリンダ551,55rの駆動制御を行
う制御部であって、スケルプSの移動方向においてコイ
ルCI, Crよりも上流側に位置してスケルプSの幅
方向に配した幅方向温度センサSoに接続されており、
該幅方向温度センサS。
Reference numeral 61 denotes a control unit that controls the current flowing to the coil bodies 521, 52r and drives the air cylinders 551, 55r, and is located upstream of the coils CI, Cr in the moving direction of the squelp S. It is connected to the width direction temperature sensor So arranged in the width direction of the
The width direction temperature sensor S.

によって検出され、制御部61に人力されるスケルプS
の幅方向の温度分布、特に両側エッジ部El, Erの
温度に基いて両者の温度差を算出し、該温度差を解消す
る如くに周波数変換器■に制御信号を発して各コイル本
体521,52rに対する通電電流の周波数を変更せし
める。
Skelp S detected by
The temperature difference between the coil bodies 521 and 521 is calculated based on the temperature distribution in the width direction of the coil body 521, especially the temperature of the edge portions El and Er on both sides, and a control signal is issued to the frequency converter 2 to eliminate the temperature difference. The frequency of the current applied to 52r is changed.

両コイル本体52 1 , 52rに対して通電すべき
電流の周波数が周波数変換器の制御可能範囲を越える場
合には、先ず両エアシリンダ551,55rに駆動信号
を発してエアシリンダ55 1 , 55 rを作動し
、コイルCI, Crにおけるコイル本体521,52
rとスケルプSの両側エッジ部El, Erとの離隔寸
法hl, hrを両側エッジ部El, Erの温度差を
解消し得るよう設定し、その後両コイル本体521,5
2rに対する通電電流の周波数制御を行って微調整し、
両側エッジ部El, Erの温度をいずれも鍛接温度の
範囲内において予め設定した最適温度に均一に加熱昇温
せしめる。
If the frequency of the current to be applied to both coil bodies 52 1 , 52 r exceeds the controllable range of the frequency converter, first a drive signal is issued to both air cylinders 55 1 , 55 r. The coil bodies 521 and 52 in the coils CI and Cr are activated.
The separation dimensions hl and hr between r and the edge portions El and Er on both sides of the squelp S are set so as to eliminate the temperature difference between the edge portions El and Er on both sides, and then both coil bodies 521, 5
Finely adjust the frequency of the energizing current with respect to 2r,
Both edge portions El and Er are uniformly heated to a preset optimum temperature within the forge welding temperature range.

以上の如く本案装置にあってはスケルプの両側エッジ部
夫々の通過域に適長に亘ってその一部を臨ませるべく構
或された一対の誘導加熱用のコイルを備え、該コイルの
少なくとも一方はコイルとスケルプの両側エッジ部夫々
との電磁的結合状態を変更し得るよう構成したことによ
り、スヶルプの両側コツジ部の温度を均一にすることが
できる。
As described above, the device of the present invention is provided with a pair of induction heating coils that are constructed so that a portion thereof faces over an appropriate length into the passage area of each of the edge portions on both sides of the squelp, and at least one of the coils is Since the structure is configured such that the electromagnetic coupling state between the coil and the edge portions on both sides of the scalp can be changed, the temperature of the edge portions on both sides of the scalp can be made uniform.

また第1〜第4図に示す本案装置においてはスケルプの
通過域の上下にコイルを配することとしているので、コ
イルとスケルプとの間隔を狭小にできスケルプに対する
加熱効率も高く、要するに本案装置を用いる場合には従
来は前述した如き種々の問題点のために実用化できなか
った特公昭43−14092号の方法が実現できること
となり、本考案が鍛接管製造の省エネルギ、品質向上に
寄与する処は多大である。
In addition, in the device of the present invention shown in Figures 1 to 4, the coils are arranged above and below the passage area of the squelp, so the distance between the coil and the squelp can be narrowed and the heating efficiency for the squelp is high. When used, the method of Japanese Patent Publication No. 43-14092, which could not be put to practical use due to the various problems mentioned above, can be realized, and the present invention contributes to energy saving and quality improvement in forge welded pipe manufacturing. is huge.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本案装置の模式図、第2図はコイルを一部切欠
して示す拡大斜視図、第3図はコイル及びその駆動手段
とその制御系を示す斜視図、第4図はスケルプに対する
各コイルの動作説明図、第5図は本案装置において用い
るコイルの他の例をその駆動手段とその制御系と共に示
す斜視図、第6図は従来の鍛接管製造装置を示す模式図
、第7図は同じく従来の鍛接管製造装置において用いら
れている誘導子の拡大斜視図である。 S・・・・・・スケルプ、F・・・・・・加熱炉、FR
・・・・・・或形ロール、WR・・・・・・鍛接ロール
、Cu, Cd, CI, Cr・・・・・・コイル、
1,2・・・・・・コア、11・・・・・・コイル本体
、111,llr・・・・・・直線部、21・・・・・
・コイル本体、21l,21 r・・・・・・直線部、
521,52r・・・・・・コイル本体。
Fig. 1 is a schematic diagram of the proposed device, Fig. 2 is an enlarged perspective view showing the coil with a part cut away, Fig. 3 is a perspective view showing the coil, its driving means, and its control system, and Fig. 4 is a diagram showing the structure of the squelp. 5 is a perspective view showing another example of the coil used in the present device together with its driving means and its control system; FIG. 6 is a schematic diagram showing a conventional forge-welded pipe manufacturing device; FIG. The figure is also an enlarged perspective view of an inductor used in a conventional forge-welded tube manufacturing apparatus. S...Skelp, F...Heating furnace, FR
..... Certain shape roll, WR ..... forge welding roll, Cu, Cd, CI, Cr ..... coil,
1, 2... Core, 11... Coil body, 111, llr... Straight part, 21...
・Coil body, 21l, 21r... straight part,
521, 52r... Coil body.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 加熱炉に通して力.日熱したスケルプの両側エッジ部を
更に誘導加熱した後、筒状に曲或し、相対向するエッジ
部同士を鍛接して製管する鍛接管製造装置において、前
記スケルプの通過域の表裏夫々に配設され、該スケルプ
の両側エッジ部夫々の通過域に適長に亘ってその一部を
臨ませるべく構或された一対の誘導加熱用のコイルを備
え、該コイルの少なくとも一方はコイルとスケルプの両
側エッジ部夫々との電磁的結合状態を変更し得るように
構威したことを特徴とする鍛接管製造装置。
Power through a heating furnace. In a forge-welded pipe manufacturing apparatus that further induction-heats both side edges of a sun-heated skelp and then bends it into a cylindrical shape and forge-welds the opposite edge parts to each other, A pair of induction heating coils are arranged and configured so that a portion thereof faces over an appropriate length into the passage area of each edge portion on both sides of the skelp, and at least one of the coils is connected to the coil and the skelp. 1. A forge-welded pipe manufacturing apparatus, characterized in that the forge-welded pipe manufacturing apparatus is configured to be able to change the state of electromagnetic coupling between the respective edge portions on both sides.
JP13590879U 1979-09-28 1979-09-29 Forge welded pipe manufacturing equipment Expired JPS5912145Y2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP13590879U JPS5912145Y2 (en) 1979-09-29 1979-09-29 Forge welded pipe manufacturing equipment
DE3032222A DE3032222C2 (en) 1979-09-28 1980-08-27 Device for the continuous production of butt-welded pipes
GB8030237A GB2059320B (en) 1979-09-28 1980-09-18 Continuous manufacture of butt-welded pipes
CA000360905A CA1149884A (en) 1979-09-28 1980-09-24 Apparatus for continuous manufacture of butt-welded pipe
FR8020668A FR2466306B1 (en) 1979-09-28 1980-09-26 DEVICE FOR THE CONTINUOUS MANUFACTURE OF TUBES BY BUTTON WELDING

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13590879U JPS5912145Y2 (en) 1979-09-29 1979-09-29 Forge welded pipe manufacturing equipment

Publications (2)

Publication Number Publication Date
JPS5655587U JPS5655587U (en) 1981-05-14
JPS5912145Y2 true JPS5912145Y2 (en) 1984-04-12

Family

ID=29367433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13590879U Expired JPS5912145Y2 (en) 1979-09-28 1979-09-29 Forge welded pipe manufacturing equipment

Country Status (1)

Country Link
JP (1) JPS5912145Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58122189A (en) * 1982-01-12 1983-07-20 Nippon Steel Corp Automatic controlling method of forge welding temperature of forge-welded steel pipe

Also Published As

Publication number Publication date
JPS5655587U (en) 1981-05-14

Similar Documents

Publication Publication Date Title
US4357512A (en) Apparatus for continuous manufacture of butt-welded pipe
JP6099745B2 (en) Heating device and continuous metal plate heating mechanism including the same
KR101404386B1 (en) Induction heating coil, device for manufacturing of workpiece, and manufacturing method
JP4800391B2 (en) Induction heating device
JPH0690948B2 (en) Induction heating device for reheating end of metal product and inductor used for the device
JP4814558B2 (en) Induction heating device for side trimmer
US10265744B2 (en) Rolling apparatus, continuous casting and rolling apparatus and method
JPS5912145Y2 (en) Forge welded pipe manufacturing equipment
JPH0110100Y2 (en)
EP1758694B1 (en) Improvements in welding hollow flange members
JP3912185B2 (en) Steel strip end forming method and forming apparatus
CN109482832A (en) A kind of conticaster suitable for unsymmetric structure Hot Metal in Beam Blank
EP0158979A1 (en) Continuous weld tube mill
CA1149884A (en) Apparatus for continuous manufacture of butt-welded pipe
JP3611279B2 (en) Sheet material rolling device
JPS6312690B2 (en)
JPH0213479Y2 (en)
JP2588606Y2 (en) Control device for induction heating edge heater
JP3602631B2 (en) Continuous induction heating device
JP3310437B2 (en) Method and apparatus for heating mandrel for winding / unwinding long material
JP2004027276A (en) Heating device in strain removing apparatus
JPH06122928A (en) Method for induction heating of steel sheet and device therefor
JP2005169455A (en) Manufacturing apparatus for electric resistance welded tube
JPS6113187Y2 (en)
JPH0130268B2 (en)