JPH0213479Y2 - - Google Patents

Info

Publication number
JPH0213479Y2
JPH0213479Y2 JP1985143596U JP14359685U JPH0213479Y2 JP H0213479 Y2 JPH0213479 Y2 JP H0213479Y2 JP 1985143596 U JP1985143596 U JP 1985143596U JP 14359685 U JP14359685 U JP 14359685U JP H0213479 Y2 JPH0213479 Y2 JP H0213479Y2
Authority
JP
Japan
Prior art keywords
furnace
pipe
heat retention
heating coil
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1985143596U
Other languages
Japanese (ja)
Other versions
JPS6251164U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1985143596U priority Critical patent/JPH0213479Y2/ja
Publication of JPS6251164U publication Critical patent/JPS6251164U/ja
Application granted granted Critical
Publication of JPH0213479Y2 publication Critical patent/JPH0213479Y2/ja
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • General Induction Heating (AREA)
  • Heat Treatment Of Articles (AREA)

Description

【考案の詳細な説明】 A 産業上の利用分野 本考案はパイプ製造装置に係り、特に溶態化処
理装置を備えたパイプ製造装置に関する。
[Detailed Description of the Invention] A. Field of Industrial Application The present invention relates to a pipe manufacturing device, and particularly to a pipe manufacturing device equipped with a solution treatment device.

B 考案の概要 本考案は昇温用加熱コイル部、保温炉、冷却部
とからなる溶態化処理装置を備えたパイプ製造装
置において、前記保温炉を複数に分割するととも
に、各保温炉を分離、接続自在に構成し、且つ少
くとも1つの保温炉は高周波または中周波電源と
接続された誘導加熱コイル及び温度制御装置を有
している構成としたことにより、速度の違う操業
(これは被加熱材の肉厚の相異等による)に対し
ては保温長を変えて対応させ被加熱材の成分の拡
散固溶を十分に行なわせるとともに、保温炉の温
度制御も適確に行うことができ、高品質の製品を
得ることができるものである。
B. Summary of the invention This invention is a pipe manufacturing equipment equipped with a solution treatment device consisting of a heating coil section for heating, a heat retention furnace, and a cooling section, in which the heat retention furnace is divided into multiple parts, and each heat retention furnace is separated. , can be connected freely, and at least one insulating furnace has an induction heating coil connected to a high-frequency or medium-frequency power source and a temperature control device, so that operations at different speeds (this is (Due to differences in the wall thickness of the heated material, etc.), the heat retention length can be changed to ensure sufficient diffusion and solid solution of the components of the heated material, and the temperature of the heat retention furnace can also be controlled accurately. It is possible to obtain high quality products.

C 従来の技術 連続的に帯板からパイプを造管するパイプ製造
装置にあつては、長尺の帯板を所定スピードで移
送しながら複数のガイドロールを通して徐々にパ
イプ状に曲げ成形し、両端縁をスクイズロールに
よつて突き合せると共に、突き合せ部を溶接して
パイプに造管するものである。
C. Prior Art In a pipe manufacturing device that continuously makes pipes from strips, a long strip is conveyed at a predetermined speed, passed through a plurality of guide rolls, and gradually bent into a pipe shape. The edges are butted together using a squeeze roll, and the abutted portions are welded to form a pipe.

上記のパイプ製造装置において、造管されるパ
イプの材質が例えばオーステナイト系ステンレス
鋼(オーステナイト.ステンレス.パイプ)であ
る場合には、溶接部の耐蝕性を回復することを主
目的とした熱処理、即ち溶態化処理を施すことが
行なわれている。溶態化処理とは、被加熱材であ
るパイプを1100〜1200℃程度の温度に加熱し、そ
の温度(約1100℃以上)にて一定時間(例えば50
〜100秒)保持して結晶粒界等に析出している炭
素等を結晶粒内に充分拡散固溶した後、急速冷却
(水冷等)を行なうものである。
In the above-mentioned pipe manufacturing apparatus, when the material of the pipe to be manufactured is, for example, austenitic stainless steel (austenitic stainless steel pipe), heat treatment is performed with the main purpose of restoring the corrosion resistance of the welded part. Solution treatment is performed. Solution treatment is heating the pipe, which is the material to be heated, to a temperature of about 1100 to 1200℃, and keeping it at that temperature (approximately 1100℃ or higher) for a certain period of time (for example, 50℃).
100 seconds) to sufficiently diffuse and solidify carbon, etc. precipitated at grain boundaries, etc. within the crystal grains, and then rapidly cooled (water cooling, etc.).

上記溶態化処理装置には電気炉やバーナ炉が用
いられる場合と高周波、中周波の誘導加熱コイル
が用いられる場合がある。電気炉やバーナ炉を用
いるときは、被加熱材を炉内に滞留せしめたまま
加熱→保温→急冷が行なわれるので、電気炉やバ
ーナ炉と別に保温炉は必要がない。しかるに、素
板を移動させながら連続的にパイプを製造する装
置にあつては、パイプを移動させながら溶態化処
理を行なうことが要求され、それには上記の高周
波、中周波の誘導加熱コイルを用いるのが最も適
している。そして、この場合は加熱コイルと別に
保温炉を設けることが必要となる。
The solution treatment apparatus may be an electric furnace or a burner furnace, or may be a high-frequency or medium-frequency induction heating coil. When an electric furnace or a burner furnace is used, heating → heat insulation → rapid cooling is performed while the material to be heated remains in the furnace, so there is no need for a heat retention furnace separate from the electric furnace or burner furnace. However, in the case of equipment that continuously manufactures pipes while moving the raw plate, it is required to carry out solution treatment while moving the pipe, and this requires the use of the above-mentioned high-frequency and medium-frequency induction heating coils. most suitable to use. In this case, it is necessary to provide a heat retention furnace separately from the heating coil.

上記誘導加熱コイルを用いた溶態化処理装置を
備えてなる従来のパイプ製造装置を第8図を参照
して説明すると、1はパイプ状にロール成形され
てなるパイプ材、2はTIG溶接を行なう位置であ
る。パイプ材1は図において左から右方向に移送
されるもので、溶接位置2よりも先方(移動方向
にのみ)にはガイドロール3と4が所定の間隔を
おいて配置してあり、ガイドロール3と4との間
に誘導加熱コイル51を有する加熱コイル部5と
保温炉6と冷却部7とからなる溶態化処理装置8
が設けてある。そして、TIG溶接位置2でステン
レス帯板の両端縁突き合せ部1aが溶接されたパ
イプ材1は、加熱コイル部5と保温炉6において
加熱と保温処理がなされ、その後冷却部7で急速
冷却が行なわれ、これらの過程においてステンレ
ス鋼の溶態化処理が行なわれる。そして、前記の
保温炉6は従来第9図に示すように断熱材を用い
て所定長さのトンネル状に形成したものであり、
シールド10を介して加熱コイル部5の出口部に
接続して設けてある。なお、冷却部7は環状パイ
プの内周から冷却水が噴出するようにした水冷ジ
ヤケツトが用いられる。
A conventional pipe manufacturing apparatus equipped with a solution treatment apparatus using the above-mentioned induction heating coil will be explained with reference to FIG. This is the position where it will be carried out. The pipe material 1 is transported from left to right in the figure, and guide rolls 3 and 4 are arranged at a predetermined interval ahead of the welding position 2 (only in the moving direction). A solution treatment device 8 includes a heating coil section 5 having an induction heating coil 51 between parts 3 and 4, a heat retention furnace 6, and a cooling part 7.
is provided. Then, the pipe material 1 to which both end edge abutting parts 1a of the stainless steel strip are welded at the TIG welding position 2 is heated and kept warm in the heating coil part 5 and the heat retention furnace 6, and then rapidly cooled in the cooling part 7. During these processes, the stainless steel is subjected to solution treatment. The heat-retaining furnace 6 is conventionally formed into a tunnel shape of a predetermined length using a heat insulating material, as shown in FIG.
It is connected to the outlet of the heating coil section 5 via a shield 10. Note that the cooling section 7 uses a water-cooled jacket in which cooling water is spouted from the inner periphery of an annular pipe.

D 考案が解決しようとする問題点 ところで、この保温炉6については従来大別し
て2つの解決すべき問題があつた。第1はパイプ
1を保温炉6内で移動させながら、しかも保温炉
6に入つた時から出る時まで所定の温度範囲に保
つことであるがこれができなかつた。すなわち、
機械的性質及び組織的にも、又耐蝕性としても高
品質性の製品を得るには結晶粒界に析出している
炭素等を結晶粒内に拡散固溶するに十分な保温時
間を確保することであり、それには保温炉6を長
くすればよいということが一応考えられるが、し
かし、一方では余り保温炉6が長くなると保温炉
6中でパイプ材1の温度が低下して適正な温度範
囲以下となつてしまう。特に冷却直前の温度が
850℃以下になるとクロム炭化物の析出が問題と
なり、従来の保温炉6であると、第10図から分
るとおり、その内部をパイプ1を移動させるうち
に徐々に温度が降下するため、単に保温炉6を長
くすることはできなかつた。また一方で、加熱温
度を1200℃以上にすると被加熱材が脆化してしま
うので、むやみに高温にして保温炉6に入れるこ
ともできなかつた。このように所望の保温時間と
保温温度の確保の問題を保温炉6の長さの変更に
よつては対処し得なかつた。
D. Problems to be solved by the invention By the way, there have conventionally been two main problems to be solved regarding this heat-retaining furnace 6. The first is to keep the pipe 1 within a predetermined temperature range from the time it enters the furnace 6 to the time it leaves the furnace 6 while moving it, but this has not been possible. That is,
In order to obtain a product with high quality in terms of mechanical properties, structure, and corrosion resistance, it is necessary to ensure sufficient heat retention time to diffuse and dissolve carbon precipitated at grain boundaries into crystal grains. This can be done by making the heat retention furnace 6 longer, but on the other hand, if the heat retention furnace 6 is too long, the temperature of the pipe material 1 in the heat retention furnace 6 will drop and the temperature will not reach the appropriate temperature. It will be below the range. Especially the temperature just before cooling
When the temperature drops below 850°C, precipitation of chromium carbide becomes a problem, and in the case of a conventional heat-retaining furnace 6, as shown in Fig. 10, the temperature gradually drops as the pipe 1 moves inside the furnace, so it is simply a heat-retaining furnace. It was not possible to lengthen the furnace 6. On the other hand, if the heating temperature is set to 1200° C. or higher, the material to be heated becomes brittle, so it was impossible to unnecessarily raise the temperature to a high temperature and place the material in the insulating furnace 6. As described above, the problem of ensuring the desired heat retention time and heat retention temperature cannot be solved by changing the length of the heat retention furnace 6.

第2の問題は操業速度の違う被加熱材に対して
成分の拡散固溶を十分に行なわせるためにはその
都度保温長を変えなければならない。例えばパイ
プが薄肉の場合は移送速度が早いので保温炉の必
要長さが長くなるが(第11図参照)、逆にパイ
プが肉厚になると移送速度が遅くなり、且つ自身
の熱容量も大なので保温炉が長いままだと保熱時
間が過大になり結晶粒の粗大化等が起こる(第1
2図参照)。
The second problem is that the heat retention length must be changed each time to ensure sufficient diffusion and solid solution of components for heated materials having different operating speeds. For example, if the pipe is thin, the transfer speed will be fast, so the required length of the insulating furnace will be longer (see Figure 11), but on the other hand, if the pipe is thick, the transfer speed will be slow, and its heat capacity will also be large. If the heat retention furnace is left for a long time, the heat retention time will become excessive and coarsening of crystal grains will occur.
(See Figure 2).

本考案は上記第1、第2の問題を解決したパイ
プ製造装置を提供することを目的とする。
An object of the present invention is to provide a pipe manufacturing apparatus that solves the first and second problems described above.

E 問題点を解決するための手段 本考案は鋼帯板をパイプ状に曲げ成形し、両縁
突き合せ部を溶接して、溶接後のパイプを溶態化
処理すべく昇温用加熱コイル部、保温炉、冷却部
とからなる溶態化処理装置を備えたパイプ製造装
置において、 前記保温炉をパイプの進行方向に複数に分割す
ると共に、分割された少なくとも1つの保温炉は
高周波または中周波電源と接続された誘導加熱コ
イル及び温度制御装置を有し、且つ複数の保温炉
及び冷却部が分離、接続自在に構成されているこ
とを特徴とする。
E. Means for Solving Problems This invention bends and forms a steel strip plate into a pipe shape, welds the abutting parts of both edges, and uses a heating coil for heating to heat the welded pipe to solution treatment. , a pipe manufacturing apparatus equipped with a solution treatment device consisting of a heat retention furnace and a cooling section, wherein the heat retention furnace is divided into a plurality of parts in the direction in which the pipe travels, and at least one of the divided heat retention furnaces is equipped with a high frequency or medium frequency It is characterized in that it has an induction heating coil and a temperature control device connected to a power source, and that a plurality of heat retention furnaces and cooling parts are configured to be able to be separated and connected.

第1図は本考案に係る溶態化処理装置8の基本
原理図で、加熱コイル部5は高、中周波誘導加熱
コイル51を有する従来と同一構成であるのに対
し保温炉6a,6a…はパイプの進行方向にみて
複数個に分割してあると共に、各保温炉6a,6
a…の間はシールド10を介して接続、分離自在
に構成している。しかも、各保温炉6a,6a…
はれぞれ高、中周波誘導加熱コイルからなる保温
コイル6a1を有し、且つ図示を省略する温度制御
装置を有している。6a2は高周波又は中周波電源
である。さらに、パイプの進行方向に見て最先端
の保温炉6aの先方には水冷ジヤケツトを用いた
冷却部7aが配設される。
FIG. 1 is a basic principle diagram of the solution treatment apparatus 8 according to the present invention, in which the heating coil section 5 has the same structure as the conventional one having high and medium frequency induction heating coils 51, ... is divided into a plurality of parts as seen in the direction of movement of the pipe, and each heat retention furnace 6a, 6
A... are constructed so that they can be connected and separated via a shield 10. Moreover, each heat retention furnace 6a, 6a...
Each of them has a heat insulating coil 6 a1 consisting of a high-frequency induction heating coil and a medium-frequency induction heating coil, and also has a temperature control device (not shown). 6 a2 is a high frequency or medium frequency power source. Furthermore, a cooling section 7a using a water-cooled jacket is disposed at the front of the most advanced heat-retaining furnace 6a when viewed in the direction of travel of the pipe.

上記構成によると、各保温炉6a,6a…は保
温コイル6a1と温度制御装置を有していることお
よびシールド10で接続されることにより、保温
炉6a内を所望の温度に保ち、かつ保温炉6aの
入口から出口までの温度を均一に保持することが
できる。よつて、保温炉6a,6a…の数を増減
することにより第2図に示すように保温の長さを
自由に設定することができるので、パイプ1の肉
厚により操業速度が変る場合は最適の保温時間
(50〜100秒)になるように保温コイルの個数を選
ぶとよい。また、このように保温炉6a,6a…
を増減する関係で冷却部7aも移動可能な構造と
し、長短いずれの保温炉6aにおいてもその出口
に冷却部7aが配設できるようにする。
According to the above configuration, each of the heat retention furnaces 6a, 6a... has a heat retention coil 6a1 and a temperature control device, and is connected by the shield 10, so that the inside of the heat retention furnace 6a can be maintained at a desired temperature and kept warm. The temperature from the inlet to the outlet of the furnace 6a can be maintained uniformly. Therefore, by increasing or decreasing the number of heat-retaining furnaces 6a, 6a, etc., the heat-retaining length can be freely set as shown in Fig. 2, which is optimal when the operating speed changes depending on the wall thickness of the pipe 1. It is best to choose the number of heating coils so that the heating time is 50 to 100 seconds. Moreover, in this way, the heat retention furnaces 6a, 6a...
The cooling section 7a is also structured to be movable in order to increase or decrease the temperature, so that the cooling section 7a can be disposed at the outlet of either the long or short heat insulating furnace 6a.

さらに、本案に係る誘導加熱式保温炉6aと冷
却部7aとの間に従来の保温炉6を組込んで使用
することもでき、その場合の温度分布は第3図に
示すようになる。
Further, a conventional heat-retaining furnace 6 may be incorporated between the induction heating type heat-retaining furnace 6a according to the present invention and the cooling section 7a, and the temperature distribution in that case will be as shown in FIG. 3.

F 実施例 本考案を第4図〜第7図に示す実施例にもとづ
いて説明すると次のとおりである。すなわち、第
4図は被加熱材であるパイプ1が薄肉で移動速度
が速い場合で、加熱コイル部5に2台の保温炉6
a,6aを接続した例を示し、第5図はパイプ1
が厚肉で移動速度が遅い場合で、加熱コイル部5
に1台の保温炉6aを接続した例を示す。
F. Embodiment The present invention will be described below based on the embodiment shown in FIGS. 4 to 7. That is, FIG. 4 shows a case where the pipe 1, which is the material to be heated, is thin and moves at a high speed, and two heat retention furnaces 6 are installed in the heating coil section 5.
Fig. 5 shows an example in which pipes a and 6a are connected.
is thick and the moving speed is slow, and the heating coil part 5
An example is shown in which one insulating furnace 6a is connected to.

各図において、加熱コイル部5は車輪(但し図
では表れない)を有する移動架台11上に設置し
てある。この移動架台11上の一端にはガイドリ
ング12が支持部12aを介して取付けてある。
このガイドリング12は、板通し時つまり最初に
両縁突合せ部が未溶接のパイプ材1を保温炉6a
内を通過させる際にガイドするためのガイドリン
グであつて、溶接後のパイプ外径よりやゝ大きな
内径を有している。また、保温炉6aも前記と同
様の移動架台11上に設置してあり、且つ移動架
台11上の一端には支持部12aを介してガイド
リング12が設けてある。各ガイドリング12,
12はそれぞれの移動架台11,11上に設けた
所定長さのシールド10に埋設してあり、且つシ
ールド10の先端は接続線13で示す位置におい
て他方の移動架台11から伸びるシールド10の
先端と接続される。このようにして加熱コイル部
5に1台又は複数台の保温炉6aを着脱自在に接
続することができる。
In each figure, the heating coil section 5 is installed on a movable frame 11 having wheels (not shown in the figures). A guide ring 12 is attached to one end of the movable frame 11 via a support portion 12a.
This guide ring 12 is used when passing through the plate, that is, when first inserting the pipe material 1 whose abutting portions of both edges are unwelded into the heat insulating furnace 6a.
This is a guide ring for guiding the pipe when passing through it, and has an inner diameter slightly larger than the outer diameter of the pipe after welding. Further, the heat-retaining furnace 6a is also installed on a movable pedestal 11 similar to that described above, and a guide ring 12 is provided at one end of the movable pedestal 11 via a support portion 12a. Each guide ring 12,
12 is embedded in a shield 10 of a predetermined length provided on each movable frame 11, 11, and the tip of the shield 10 is connected to the tip of the shield 10 extending from the other movable frame 11 at the position indicated by the connection line 13. Connected. In this way, one or more heat retention furnaces 6a can be detachably connected to the heating coil section 5.

つぎに、冷却部7aは左右2分割式の水冷ジヤ
ケツトを移動台14に取付けて構成される。すな
わち、冷却部7aは第6図、第7図に示すように
接続部16において連結分離できるようにした半
円状の左右部材15はそれぞれ保温炉側に設けた
エアパイプ15aと、これに隣接して設けた通水
パイプ15bとから構成されており、通水パイプ
15bに設けた小孔からパイプ1の外周に向けて
冷却水を噴出すると共に、エアパイプ15aに設
けた小孔からはパイプ1の外周に向けてエアを噴
出させることによつてエアカーテンを作り、前記
通水パイプ15bから噴出した冷却水が保温炉6
a(第6図の左方向に位置する)内に流入しない
ようになつている。なお、17は通水パイプ15
bに設けたホース継手、18はエアパイプ15a
に設けたホース継手である。
Next, the cooling section 7a is constructed by attaching a water cooling jacket divided into left and right halves to the movable table 14. That is, as shown in FIGS. 6 and 7, in the cooling section 7a, the semicircular left and right members 15, which can be connected and separated at the connection section 16, are connected to an air pipe 15a provided on the insulating furnace side, respectively, and adjacent to the air pipe 15a. A water pipe 15b provided in the water pipe 15b jets cooling water toward the outer periphery of the pipe 1 from a small hole provided in the water pipe 15b, and a water pipe 15b is provided in the air pipe 15a. An air curtain is created by ejecting air toward the outer periphery, and the cooling water ejected from the water pipe 15b flows into the heat retention furnace 6.
a (located to the left in FIG. 6). In addition, 17 is a water pipe 15
Hose joint provided at b, 18 is air pipe 15a
This is a hose joint installed in the

さらに、冷却部7aにおいて、19は通水パイ
プ15bから噴出される冷却水を集める集水筒で
ある。この集水筒19はテーパ状の多数の筒部材
を伸縮自在に連結してなると共に、そのほぼ中間
部を移動台車20によつて支持している。この集
水筒19の後端には図示を省略した排水孔上に集
水タンク21を設けてあり、一方集水筒19の先
端は通水パイプ15bに水密的にかつ着脱自在に
接続できる構成としてある。しかして、このよう
に集水筒19は移動台車14に支持されているか
ら適宜の場所に移動自在であると共に、伸縮自在
でもあるから、第4図、第5図のように保温炉6
aの配設数が増減し、したがつて保温炉6aの後
端に連設する冷却部7aの設置位置が変つても、
集水タンク21は所定の場所に設置しておいて、
集水筒19の長さを伸縮することによつてこれに
対処することができ、排水口(位置固定)につな
がる集中タンク21をいちいち移動させなくてよ
い。そして、冷却部7aにおいて通水パイプ15
bからパイプ1の外周に向けて噴出された冷却水
は集水筒19内を流れて集水タンク21に集めら
れ、周囲への飛散が防止される。
Furthermore, in the cooling section 7a, 19 is a water collection tube that collects the cooling water spouted from the water pipe 15b. The water collecting tube 19 is formed by connecting a large number of tapered cylindrical members so as to be expandable and retractable, and its approximately middle portion is supported by a movable cart 20. At the rear end of this water collection tube 19, a water collection tank 21 is provided above a drainage hole (not shown), and the tip of the water collection tube 19 is configured to be able to be connected to a water pipe 15b in a watertight manner and detachable. . Since the water collecting cylinder 19 is supported by the movable cart 14 in this way, it is movable to an appropriate location, and is also expandable and contractible, so that the water collecting cylinder 19 can be moved to a suitable location, and can be expanded and contracted as shown in FIGS. 4 and 5.
Even if the number of units a increases or decreases, and therefore the installation position of the cooling unit 7a connected to the rear end of the heat retention furnace 6a changes,
The water collection tank 21 is installed at a predetermined location,
This can be dealt with by expanding and contracting the length of the water collection tube 19, and there is no need to move the concentration tank 21 connected to the drain port (fixed position) every time. In the cooling section 7a, the water pipe 15
The cooling water spouted from b toward the outer periphery of the pipe 1 flows through the water collection tube 19 and is collected in the water collection tank 21, thereby preventing it from scattering to the surroundings.

なお、エアパイプ15aと通水パイプ15bは
2分割されていて板通し時においてこれらが左右
に開いてその内側をラツパ状に拡がつたパイプ材
を通すようになつているのに対し、集水筒19は
伸縮自在ではあるが左右分割構造ではない。しか
し、集水筒19は一般に通水パイプ15bよりも
大径であるので必ずしも分割構造としなくとも、
通水パイプ15bにパイプ材を通し再び閉じた後
前記集水筒19内に容易に通すことができる。本
実施例によると、溶態化処理装置の各部材、とく
に保温炉6a,6aと冷却部7a、集水筒19は
移動台車によつて移動自在であり、よつて被加熱
材であるパイプ1の厚肉、薄肉の相異による移送
速度の変化に対応して保温炉6a,6a…を接
続、分離する操作を容易に行なうことができる。
Note that the air pipe 15a and the water pipe 15b are divided into two parts, and when the plate is passed through, these parts are opened to the left and right, and the inside of the pipe material is expanded in a shape of a rubber band. Although it is stretchable, it is not a left-right split structure. However, since the water collection pipe 19 generally has a larger diameter than the water pipe 15b, it does not necessarily have to have a split structure.
After passing the pipe material through the water pipe 15b and closing it again, it can be easily passed into the water collection tube 19. According to this embodiment, each member of the solution treatment apparatus, especially the heat insulating furnaces 6a, 6a, the cooling section 7a, and the water collection tube 19, are movable by the moving cart, and therefore the pipe 1, which is the material to be heated, is movable. The operation of connecting and separating the heat retention furnaces 6a, 6a, . . . can be easily performed in response to changes in transfer speed due to differences in thick and thin walls.

G 考案の効果 本考案によると少くとも1つ以上の保温炉を誘
導加熱式保温炉としたことにより投入電力の操作
により成分の拡散固溶のために必要な全保温時間
中、パイプ材を最適の温度範囲内に保つて保温
し、最適範囲の温度から急冷処理を行なうことが
容易に行なえる様になると共に、操業速度に応じ
て保温炉を分離又は接続して炉の長さを変えるこ
とにより被加熱材にとつて最適の保温時間を容易
に設定することができる。特に、固溶化処理は保
熱の温度と時間が被加熱材の機械的性質と耐蝕性
に大きく関係しているが、本考案に係る保温炉に
よると保熱の温度と時間のコントロールが適確に
できるのですぐれた品質製品を得ることができる
と共に、生産量の増加も可能である。
G. Effects of the invention According to the invention, at least one insulation furnace is an induction heating insulation furnace, and by controlling the input power, the pipe material can be optimized during the entire insulation time required for the diffusion and solid solution of the components. It is now possible to maintain heat within the temperature range of This makes it possible to easily set the optimum heat retention time for the material to be heated. In particular, in solution treatment, the temperature and time of heat retention are greatly related to the mechanical properties and corrosion resistance of the heated material, but with the heat retention furnace of the present invention, the temperature and time of heat retention can be accurately controlled. This makes it possible to obtain products of excellent quality and also to increase production volume.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本考案に係る溶態処理装置の原理を示
す説明図、第2図は第1図によるパイプの温度変
化を示すグラフ、第3図は加熱コイルを有する保
温炉と従来の保温炉を組合せた場合におけるパイ
プの温度変化を示すグラフ、第4図、第5図は本
考案に係る溶態化処理装置の2つの実施例を示す
側面図、第6図は第7図A−A断面図、第7図は
冷却部の正面図、第8図は従来のパイプ製造装置
の平面説明図、第9図は従来の溶態化処理装置
を、その保温炉を断面で示す説明図、第10図は
第9図によるパイプの温度変化の例を示すグラ
フ、第11図、第12図はそれぞれ薄肉と厚肉の
パイプを第8図、第9図に図示した従来の溶態化
処理装置を通す場合におけるパイプの温度変化の
例を示すグラフである。 1……パイプ、5……加熱コイル部、6a……
保温炉、7a……冷却部。
Fig. 1 is an explanatory diagram showing the principle of the solution treatment apparatus according to the present invention, Fig. 2 is a graph showing the temperature change of the pipe according to Fig. 1, and Fig. 3 is a diagram showing a heat retention furnace with a heating coil and a conventional heat retention furnace. FIG. 4 and FIG. 5 are side views showing two embodiments of the solution treatment apparatus according to the present invention, and FIG. 6 is a graph showing the temperature change of the pipe when combined. 7 is a front view of the cooling section, FIG. 8 is a plan view of a conventional pipe manufacturing device, and FIG. 9 is a cross-sectional view of a conventional solution treatment device and its heat retention furnace. Fig. 10 is a graph showing an example of the temperature change of the pipe according to Fig. 9, and Figs. 11 and 12 are graphs showing the conventional solution treatment of thin-walled and thick-walled pipes shown in Fig. 8 and Fig. 9, respectively. It is a graph showing an example of temperature change of a pipe when passing through a device. 1... Pipe, 5... Heating coil section, 6a...
Heat retention furnace, 7a...cooling section.

Claims (1)

【実用新案登録請求の範囲】 (1) 連続的に鋼帯板をパイプ状に曲げて成形し、
両縁突き合わせ部を溶接し、溶接後のパイプを
溶態化処理すべく昇温用加熱コイル部、保温
炉、冷却部とからなる溶態化処理装置を備えた
パイプ製造装置において、 前記保温炉をパイプの進行方向に複数に分割
するとともに、各保温炉の間はシールドを介し
て接続、分離自在に構成し、且つ分割された保
温炉は高周波または中周波電源と接続された誘
導加熱コイル及び温度制御装置を有し、且つ複
数の保温炉及び冷却部が分離、接続自在に構成
されていることを特徴とするパイプ製造装置。 (2) 前記冷却部を、2分割構造で保温炉側にエア
カーテンを有し、且つ移動自在な水冷ジヤケツ
トにより構成したことを特徴とする実用新案登
録請求の範囲第1項に記載のパイプ製造装置。
[Scope of claims for utility model registration] (1) Continuously bending and forming a steel strip into a pipe shape,
In a pipe manufacturing apparatus equipped with a solution treatment device consisting of a heating coil section for heating, a heat retention furnace, and a cooling section for welding the butt portions of both edges and subjecting the welded pipe to solution treatment, the heat retention furnace The furnace is divided into multiple parts in the direction of pipe travel, and each furnace is configured to be connected and separated via a shield, and each divided furnace is connected to an induction heating coil connected to a high-frequency or medium-frequency power source. A pipe manufacturing device comprising a temperature control device and a plurality of heat retention furnaces and cooling sections configured to be separable and connectable. (2) The pipe manufacturing according to claim 1 of the utility model registration claim, characterized in that the cooling section has a two-part structure, has an air curtain on the insulating furnace side, and is constituted by a movable water cooling jacket. Device.
JP1985143596U 1985-09-20 1985-09-20 Expired JPH0213479Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1985143596U JPH0213479Y2 (en) 1985-09-20 1985-09-20

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1985143596U JPH0213479Y2 (en) 1985-09-20 1985-09-20

Publications (2)

Publication Number Publication Date
JPS6251164U JPS6251164U (en) 1987-03-30
JPH0213479Y2 true JPH0213479Y2 (en) 1990-04-13

Family

ID=31053427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1985143596U Expired JPH0213479Y2 (en) 1985-09-20 1985-09-20

Country Status (1)

Country Link
JP (1) JPH0213479Y2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5573325B2 (en) * 2009-04-23 2014-08-20 新日鐵住金株式会社 Continuous heat treatment method for steel pipes
JP5423122B2 (en) * 2009-04-23 2014-02-19 新日鐵住金株式会社 Heat treatment method and heat treatment equipment for ERW steel pipe made of dual phase steel for pipe expansion used as oil well pipe
JP5472802B2 (en) * 2010-01-05 2014-04-16 新日鐵住金株式会社 Design method of continuous heat treatment furnace and continuous heat treatment furnace
JP2012021181A (en) * 2010-07-12 2012-02-02 Nippon Steel Corp Heat treatment method and heat treating facility for steel pipe

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6115923A (en) * 1984-06-29 1986-01-24 Kawasaki Steel Corp Heat-treating equipment of steel pipe

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6115923A (en) * 1984-06-29 1986-01-24 Kawasaki Steel Corp Heat-treating equipment of steel pipe

Also Published As

Publication number Publication date
JPS6251164U (en) 1987-03-30

Similar Documents

Publication Publication Date Title
CN110369851B (en) Novel welding device and method based on high-frequency current proximity effect
JPH0213479Y2 (en)
US2977914A (en) Tube mill and method of manufacture of thin walled tubing
US2146430A (en) Welding apparatus
KR20010032851A (en) Device and process for producing a steel strip
JP2003340525A (en) Method and device for forming end part of steel strip
JPS58125332A (en) Manufacture of flat cylindrical body
US2181445A (en) Method and apparatus for welding
US4845326A (en) Apparatus and method for electrically butt welding of skelp edge faces which have been preheated
SE440233B (en) DEVICE FOR HEALTH TREATMENT OF THE HOUSE WORK
EP0158979A1 (en) Continuous weld tube mill
JP2722926B2 (en) Method and apparatus for manufacturing welded pipe
US2108752A (en) Method of and apparatus for shaping metal delivered in a molten condition
JP3812998B2 (en) Stand for roll forming
US2083034A (en) Apparatus for welding
JPS5912145Y2 (en) Forge welded pipe manufacturing equipment
JPS58173005A (en) Endless rolling method
JPH05285673A (en) Manufacture of small diameter electro-resistance-welded tube
JPH01178380A (en) Impeder case for electric welded steel pipe manufacturing device
JP3270719B2 (en) Cooling method of pressure welded steel pipe
JPS58119438A (en) Method and device for continuous casting of metal clad material
US1721350A (en) Continuous annealing apparatus
US1510932A (en) Tube machine
JPH0114343Y2 (en)
JPS644828Y2 (en)