JPS58122189A - Automatic controlling method of forge welding temperature of forge-welded steel pipe - Google Patents

Automatic controlling method of forge welding temperature of forge-welded steel pipe

Info

Publication number
JPS58122189A
JPS58122189A JP224982A JP224982A JPS58122189A JP S58122189 A JPS58122189 A JP S58122189A JP 224982 A JP224982 A JP 224982A JP 224982 A JP224982 A JP 224982A JP S58122189 A JPS58122189 A JP S58122189A
Authority
JP
Japan
Prior art keywords
temperature
forge
skelp
edge
forge welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP224982A
Other languages
Japanese (ja)
Other versions
JPH0216193B2 (en
Inventor
Toyotoshi Fukuda
福田 豊稔
Yoshio Iwanaga
岩永 善夫
Toshio Yamamoto
利夫 山本
Tomohide Kono
河野 友英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP224982A priority Critical patent/JPS58122189A/en
Publication of JPS58122189A publication Critical patent/JPS58122189A/en
Publication of JPH0216193B2 publication Critical patent/JPH0216193B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K13/00Welding by high-frequency current heating
    • B23K13/01Welding by high-frequency current heating by induction heating
    • B23K13/02Seam welding

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Induction Heating (AREA)

Abstract

PURPOSE:To manufacture a product which is satisfactory in a quality of a butt welding part, by measuring a temperature of a pipe-like skelp edge part before forge welding, and adjusting an output of a heating coil so that a temperature of both edge parts becomes within a target range. CONSTITUTION:A control device 11 inputs and operates a signal from a forge welding thermometer 7 and a signal from a skelp thermometer 9, and sends a control signal to a thyristor voltage regulator 14. A voltage level is controlled by the thyristor voltage regulator 14, a high frequency current is generated by a high frequency oscillator 13, thereby a current flowing to a high frequency induction heating coil 6 is controlled. Also, a control signal is sent to a left and right adjusting device 15 for adjusting the left and right position of the high frequency induction heating coil 6, and the left and right position of the high frequency induction heating coil 6 forming one body structure with a transformer 12 is controlled.

Description

【発明の詳細な説明】 本発明は鍛接鋼管の製造工程において、鍛接前の管状ス
ケルプの温度を鍛接に適した温度に加熱制御するための
鍛接温度自動制御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an automatic forge welding temperature control method for controlling the temperature of a tubular skelp before forge welding to a temperature suitable for forge welding in a manufacturing process of forge welded steel pipes.

従来鍛接鋼管は、加熱炉で加熱された帯状スケルプを成
形ロールで管状に成形し、該管状に成形された管状スケ
ルプのエツジ部を、ウェルディングホーンから酸素を吹
きつけて加熱したり、又は環状の高周波誘導加熱コイル
を用いて加熱したりした後、該エツジ部を鍛接ロールに
より鍛接して製造していた。しかし上記帯状スケルプは
、板厚変動が5%程度あり、又加熱炉を出た帯状スケル
プは加熱炉の温度変動もあるため、その温度が±40℃
程度ばらつくと共に、左右のエツジ部の温度差が20℃
程度生じている。
Conventionally, forge welded steel pipes are produced by forming a band-shaped skelp heated in a heating furnace into a tubular shape using forming rolls, and heating the edges of the tubular skelp by blowing oxygen from a welding horn. After heating using a high-frequency induction heating coil, the edge portions were forge-welded using a forge-welding roll. However, the band-shaped skelp described above has a plate thickness variation of about 5%, and the band-shaped skelp leaving the heating furnace also has temperature fluctuations in the heating furnace, so its temperature is ±40°C.
The temperature difference between the left and right edges is 20℃.
It has occurred to some extent.

更に誘導加熱により管状スケ化プのエツジ部を加熱する
場合は、該エツジ部の温度を200℃〜400℃上昇さ
せるが、この場合エツジ部の板厚変動及びスケルプ走行
速度変動等によって、鍛接時の温度は更にばらつく。
Furthermore, when heating the edge part of the tubular skelp by induction heating, the temperature of the edge part is increased by 200 to 400 degrees Celsius, but in this case, due to changes in the plate thickness of the edge part and fluctuations in the skelp running speed, etc. The temperature will further vary.

この様な欠点を除くために、加熱炉抽出温度を一定にす
る方法としては、加熱炉抽出時の温度を測定して、スケ
ルプの走行速度を調整したり、加熱炉の燃料により加熱
温度を調整するなどの方法が行われていた。
In order to eliminate these drawbacks, methods for keeping the heating furnace extraction temperature constant include measuring the temperature at the time of heating furnace extraction and adjusting the running speed of the skelp, or adjusting the heating temperature using the fuel in the heating furnace. Methods such as doing this were used.

しかし、上記の方法では帯状スケルプのボトムとトップ
を継いだ中継前後での急隙な肉厚変動による温度急変に
対して、加熱炉の応答速度が遅いので充分追従できず、
温度のばらつきが解消されないという問題がある。又、
誘導、加熱での昇温量を一定にする方法としては、スケ
ルプ速度変化や肉厚変化に対して高周波誘導加熱コイル
の出力を調整したり、鍛接後の鍛接衝合部の温度を測定
して高周波誘導加熱コイルの出力を調整する′などの例
がある。しかしこの方法においても、鍛接後の温度を測
定するのでは、管状スケルプエツジ部の昇温完了時点か
ら時間経過しているため、急激な熱伝導により、エツジ
部の温度降下量が大きく変化する等の問題や、左右のエ
ツジ部温度か不明であり、左右のエツジ部温度を制御す
る手段もないので、左右のエツジ部の肉厚変動や加熱炉
内でのスケルプ蛇行が、そのまま左右エツジ部の温度変
動となり、左右のエツジ部温度を一定にすることは不可
能であるという問題がある。
However, with the above method, the response speed of the heating furnace is slow, so it is not possible to sufficiently follow the sudden temperature change caused by the sudden change in wall thickness before and after the connection between the bottom and top of the strip-shaped skelp.
There is a problem that temperature variations cannot be resolved. or,
Methods for keeping the temperature increase due to induction and heating constant include adjusting the output of the high-frequency induction heating coil in response to changes in squelp speed and wall thickness, and measuring the temperature of the forge weld abutment after forge welding. Examples include adjusting the output of a high-frequency induction heating coil. However, even with this method, when measuring the temperature after forge welding, it is difficult to measure the temperature after forge welding because some time has elapsed since the temperature of the tubular skelp edge was completed. It is unclear whether the temperature is the problem or the temperature of the left and right edges, and there is no way to control the temperature of the left and right edges, so changes in the wall thickness of the left and right edges or squirting in the heating furnace will directly affect the temperature of the left and right edges. There is a problem in that it is impossible to keep the temperature of the left and right edges constant.

鍛接衝合部の品質が良好な鍛接鋼管を製造するには、鍛
接されるエツジ部の温度を、鍛接に適した温度(1,3
50℃程度)に一定して鍛接することが最も重要である
が、前記これらの方法では、鍛接されるエツジ部温度を
鍛接温度に一定して保つことが不可能であった。
In order to manufacture forge-welded steel pipes with good quality forge-welded joints, the temperature of the edge portion to be forged-welded must be set to a temperature suitable for forge-welding (1, 3
It is most important to forge weld at a constant temperature (approximately 50° C.), but with these methods, it has been impossible to maintain the temperature of the edge portion to be forged welded constant at the forge welding temperature.

本発明は前記方法の欠点を解消し、鍛接される管状スケ
ルプのエツジ部温度を常に鍛接温度に維持可能で、しか
も左右エツジ部の温度を均等な温度に維持可能な鍛接管
の製造工程における鍛接温度自動制御方法、の提供を目
的とする。
The present invention eliminates the drawbacks of the above-mentioned methods, and is capable of forge welding in the manufacturing process of forge-welded pipes, in which the temperature of the edge portion of the tubular skelp to be forged welded can always be maintained at the forge welding temperature, and the temperature of the left and right edge portions can be maintained at an even temperature. The purpose of this invention is to provide an automatic temperature control method.

すなわち本発明は、加熱炉で加熱された帯状スケルプを
成形ロールで管状に成形し、該管状に成形した管状スケ
ルプのエツジ部を加熱装置により加熱した後、該エツジ
部を鍛接ロールにより鍛接して管とする鍛接鋼管の製造
工程イニおいて、前記管状スケルプのエツジ部を加熱す
る加熱装置として、管状スケルプの両エツジ部上に高周
波誘導加熱コイルを配置して該エツジ部を加熱し、鍛接
ロールの上流側に設けた温度計により鍛接前のエツジ部
温度を測定し、管状スケルプの両エツジ部の温度差が、
目標範囲内となるように前記高周波誘導加熱コイルを管
軸と直角方向に位置調整を行なうと共に、鍛接前の両エ
ツジの温度が、目標範囲内となる様に上記高周波加熱コ
イルの出力調整を行なうことを特徴とする鍛接鋼管の製
造工程における鍛接温度自動制御方法である。
That is, the present invention forms a band-shaped skelp heated in a heating furnace into a tubular shape with a forming roll, heats the edge portion of the tubular skelp formed into the tubular shape with a heating device, and then forge-welds the edge portion with a forge-welding roll. In the initial manufacturing process of a forge-welded steel pipe to be made into a pipe, high-frequency induction heating coils are placed on both edge parts of the tubular skelp as a heating device to heat the edge parts of the tubular skelp, and the edge parts are heated. The edge temperature before forge welding is measured using a thermometer installed upstream of the tubular skelp, and the temperature difference between both edges of the tubular skelp is
Adjust the position of the high frequency induction heating coil in a direction perpendicular to the tube axis so that the temperature is within the target range, and adjust the output of the high frequency heating coil so that the temperature of both edges before forge welding is within the target range. This is an automatic forge welding temperature control method in the manufacturing process of forge welded steel pipes.

次に本発明の方法を図に示す実施例により詳細に説明す
る。
Next, the method of the present invention will be explained in detail with reference to examples shown in the figures.

第1図及び第2図において、加熱炉1で熱間加工温度に
加熱された帯状スケルプ2を、成形ロール3および4に
よって管状に成形し、成形ロール4と鍛接ロール5との
間で、第2図に示す管状スケルプ2′の両エツジ部2a
、2a上に高周波誘導加熱コイル6を配置して、帯状ス
ケルプ2′のエツジ部2aの端面を均一に加熱する。
In FIGS. 1 and 2, a strip-shaped skelp 2 heated to a hot working temperature in a heating furnace 1 is formed into a tubular shape by forming rolls 3 and 4. Both edge portions 2a of the tubular skeleton 2' shown in Figure 2
, 2a are arranged to uniformly heat the end face of the edge portion 2a of the band-shaped squelp 2'.

加熱炉1の出口と、鍛接ロール5の上流側には、走査型
の放射温度計からなるスケルプ温度計9と、鍛接温度計
7とを設けて、加熱炉1出口の帯状スケルプ2の温度と
、鍛接前の管状スケルプ2′のエツジ部急の温度とを測
定し、この測定した温度の値から、鍛接前の管状スケル
プ2′の両エツジ部2a。
A squelp thermometer 9 consisting of a scanning radiation thermometer and a forge welding thermometer 7 are provided at the outlet of the heating furnace 1 and on the upstream side of the forge welding roll 5. , and the temperature of the edge portion of the tubular skelp 2' before forge welding.From the measured temperature value, both edge portions 2a of the tubular skelp 2' before forge welding are measured.

2a  の温度差が、10℃以内の範囲となる様に、高
周波誘導加熱コイル6を第2図に示すごとく、左右に位
置調整する。
As shown in FIG. 2, the high-frequency induction heating coil 6 is adjusted in position from side to side so that the temperature difference between 2a and 2a is within a range of 10°C.

左右調整装置15により、管軸と直角な方向:二位置調
整を行うとともに、鍛接前の両エツジ部2a。
The left-right adjustment device 15 performs two-position adjustment in the direction perpendicular to the tube axis, and both edge portions 2a before forge welding.

2a  の温度が1350±lO℃となる様に、高周波
誘導加熱コイル6の出力を調整して、鍛接の際の管状ス
ケルプ2′のエツジ部2aを、常に鍛接(二連した温度
に自動的°に制御する。
The output of the high-frequency induction heating coil 6 is adjusted so that the temperature of the skelp 2a becomes 1350±10°C, and the edge part 2a of the tubular skelp 2' during forge welding is always forged (automatically kept at two consecutive temperatures). to control.

次に本発明の・方法の制御系について、図に示す実施例
により、詳細に説明する。加熱炉1から抽出し、帯状ス
ケルプ2を瞬時視野が5間巾程度で。
Next, the control system of the method of the present invention will be explained in detail with reference to the embodiment shown in the drawings. Extract the belt-shaped skelp 2 from the heating furnace 1 with an instantaneous field of view about 5 meters wide.

光学的に走査して放射エネルギーを測定するスケルプ温
度計9で、巾方向に連続的に側温し、左右分離回路22
で、帯状スケルプ2の中央から左方(造管方向に向って
)の温度パターンと、帯状スケルプ2の中央から右方の
温度パターンに分離して、ピークキープ回路23で、帯
状スケルプ2の中央から左方の温度パターンのうち、最
も高い温度TLIと、帯状スケルプ2の中央から右方の
温度パターンのうち最も高い温度TRユの信号を出力す
る。
A Skelp thermometer 9 that measures radiant energy by optical scanning measures the side temperature continuously in the width direction, and separates the left and right circuits 22.
The peak keep circuit 23 separates the temperature pattern from the center of the band-shaped Skelp 2 to the left (in the direction of pipe making) and the temperature pattern to the right from the center of the band-shaped Skelp 2. Outputs signals of the highest temperature TLI among the temperature patterns to the left of , and the highest temperature TR of the temperature patterns to the right from the center of the band-shaped Skelp 2 .

通常、加熱炉1で加熱される帯状スケルプ2は、帯状ス
ケルプ2の平面とほぼ同一平面上から、バーナーで加熱
されるが、帯状スケルプ2のエツジ部は、帯状スケルプ
2の中央部より、単位体積当りの熱放射を受ける面積が
大きいために、エツジ部の温度が中央部の温度よりも高
くなり、従って、帯状スケルプ2の中央から左方の温度
パターンのうち、最も高い温度TL工は、左方のエツジ
部温度であり、又帯状スケルプ2の中央から右方の温度
パターンのうち最も高い温度TRよは、右方のエツジ部
温度となる。
Usually, the band-shaped skelp 2 heated in the heating furnace 1 is heated with a burner from almost the same plane as the plane of the band-shaped skelp 2, but the edge part of the band-shaped skelp 2 is Since the area receiving heat radiation per volume is large, the temperature of the edge part is higher than the temperature of the center part. Therefore, among the temperature patterns to the left from the center of the band-shaped Skelp 2, the highest temperature TL is as follows. This is the temperature of the left edge, and the highest temperature TR in the temperature pattern from the center to the right of the band-shaped squelp 2 is the temperature of the right edge.

次に冒周波誘導加熱コ、イル6で加熱した管状スケルプ
2′を、瞬時視野が1M巾×5龍長さ程度の回転ミラー
により光学的に走査して、放射エネルギーを測定する鍛
接温度計7により1両エツジ部2a、  2aを含んだ
巾で、巾方向に連続的に測温して信号を出力すると共に
、温度計位置パルス発生器20により1回転ミラーの一
定位置でパルス信号を出力する。
Next, the tubular skelp 2' heated by the high-frequency induction heating coil 6 is optically scanned by a rotating mirror with an instantaneous field of view of about 1M width x 5 dragon lengths, and the radiant energy is measured by a forge welding thermometer 7. The thermometer position pulse generator 20 outputs a pulse signal at a fixed position of the one-rotation mirror by continuously measuring the temperature in the width direction in the width including the two edge parts 2a and 2a and outputting a signal. .

鍛接温度計7で検出した温度信号は、スケルプ温度計9
の温度信号処理と同じように、左右分離回路16および
ピークキープ回路17によって。
The temperature signal detected by the forge welding thermometer 7 is sent to the Skelp thermometer 9.
By the left/right separation circuit 16 and the peak keep circuit 17 in the same way as the temperature signal processing.

管状ス、ケルプ2′の左方エツジ部温度TL2 と管状
スケルプ2′の右方エツジ部温度TR2を出力する。又
、エツジ部の温度は、中央部の温度より高く、又エツジ
部の温度変化は最も撤しいので、鍛接温度計7で検出し
た温度信号を、微分回路18で微分信号に出力し、ピー
ク位置パル2発生器19で、左方と右方のエツジ部位置
信号を出力する。このエツジ部位置信号と、温度計位置
パルス発生器20からの出力信号とを、ピーク位置演算
回路21に入力して、温度計一定位置からエツジ部位置
までの時間を演算し、更にあらかじめ定まっている鍛接
温度計7から、管状スケルプ2′までの距離を乗算する
ことによって、温度計定位置から管状スケルプ2′の左
方エツジ部までの水平方向の距離LLと、温度計定位置
から管状スケルプ2′の右方エツジ部までの水平方向の
距離LRを演算し、制御装置11に入力する。
The left edge temperature TL2 of the tubular kelp 2' and the right edge temperature TR2 of the tubular kelp 2' are output. Also, the temperature at the edge is higher than the temperature at the center, and the temperature change at the edge is the least likely, so the temperature signal detected by the forge welding thermometer 7 is output as a differential signal by the differential circuit 18, and the peak position is A pulse 2 generator 19 outputs left and right edge position signals. This edge position signal and the output signal from the thermometer position pulse generator 20 are input to the peak position calculation circuit 21 to calculate the time from the thermometer constant position to the edge position. By multiplying the distance from the forge welding thermometer 7 to the tubular skelp 2', the horizontal distance LL from the thermometer position to the left edge of the tubular skelp 2' and from the thermometer position to the tubular skelp 2' are calculated. The horizontal distance LR to the right edge portion of 2' is calculated and input to the control device 11.

制御装置−11は、鍛接温度計7からの信号とスケルプ
温度計9からの信号とを入力して演算し、サイリスク電
圧調整器14に制御信号を送って、サイリスタ電圧調整
器14で電圧レベルを制御し、高周波発振器13により
、高周波電流を発生させて、変成器12を通して高周波
誘導加熱コイル6に流れる電流を制御するとともに、高
周波誘導加熱コイル6の左右位置を調整する左右調整装
置15に制御信号を送って、変成器12と一体構造の高
周波誘導加熱コイル6の左右位置を制御する。
The control device 11 inputs and calculates the signal from the forge welding thermometer 7 and the signal from the Skelp thermometer 9, sends a control signal to the thyristor voltage regulator 14, and adjusts the voltage level at the thyristor voltage regulator 14. The high-frequency oscillator 13 generates a high-frequency current to control the current flowing to the high-frequency induction heating coil 6 through the transformer 12, and sends a control signal to the left-right adjustment device 15 that adjusts the left-right position of the high-frequency induction heating coil 6. is sent to control the left and right positions of the high frequency induction heating coil 6, which is integrated with the transformer 12.

鍛接衝合部の品質を安定させるには、鍛接時の温度を一
定にすることが望ましいが、鍛接時の温度は、鍛接ロー
ルその他の設備があって測温できない。
In order to stabilize the quality of the forge welded joint, it is desirable to keep the temperature constant during forge welding, but the temperature during forge welding cannot be measured because of the presence of forge welding rolls and other equipment.

そこで、本発明の方法ではスケルプ温度計9と、鍛接温
度計7とからの信号により鍛接時の温度を推定演算して
、鍛接時の目標温度との差を少なくなる機制御する。鍛
接温度計7の測定位置から。
Therefore, in the method of the present invention, the temperature during forge welding is estimated and calculated based on the signals from the Skelp thermometer 9 and the forge welding thermometer 7, and machine control is performed to reduce the difference from the target temperature during forge welding. From the measurement position of forge welding thermometer 7.

鍛接位置迄に管状スケルプ−2′のエツジ部ムの温度は
、熱放射、対流及び管状スケルプ2′の中央部への熱伝
導のために低下する。
Up to the forge welding position, the temperature of the edge of the tubular skelp 2' decreases due to heat radiation, convection and heat conduction to the central part of the tubular skelp 2'.

特に高周波誘導加熱により、管状スケルプのエツジ部を
急速に加熱した場合、熱浸透深さが浅く、熱伝導による
温度変化が急激であるので、高周波誘導加熱による昇温
蓋の程度によって、鍛接温度計の測定位置から鍛接位置
迄の温度低下量は変化する。鍛接温度計7の測定位置か
ら鍛接位置迄の温度低下量ΔTは近似的に下式で表わさ
れる。
In particular, when the edge of a tubular skelp is rapidly heated by high-frequency induction heating, the depth of heat penetration is shallow and the temperature change due to heat conduction is rapid. The amount of temperature drop from the measurement position to the forge welding position changes. The amount of temperature decrease ΔT from the measurement position of the forge welding thermometer 7 to the forge welding position is approximately expressed by the following formula.

T2L’、 T2R:鍛接温度計7の測定位置での管状
スケルプ2′のエツジ部2a温度(’C)T工し+T−
、u:スケルプ温度計9の測定位置での帯状スケルプ2
のエツジ部2a 温度(℃)C:定数(’C)o〜30
℃ α:係数 αはスケルプの肉厚、スケルプの速度、鍛接温度計7の
測定位置から鍛接位置迄の距離および熱浸透深さ等によ
って決まる係数で、0〜1の範囲で用いられる。
T2L', T2R: Temperature of the edge part 2a of the tubular skelp 2' at the measurement position of the forge welding thermometer 7 ('C) T machining + T-
, u: Band-shaped Skelp 2 at the measurement position of Skelp thermometer 9
Edge part 2a Temperature (℃) C: Constant ('C) o ~ 30
C. α: Coefficient α is a coefficient determined by the thickness of the skelp, the speed of the skelp, the distance from the measurement position of the forge welding thermometer 7 to the forge welding position, the depth of heat penetration, etc., and is used in the range of 0 to 1.

鍛接位置でのスケルプエツジ部温度(T3)はで表わさ
れるのでT3LとT3Hのうち低い方の温度をT3とし
て、目標温度’I”30  と比較し、その偏差出力を
サイリスタ電圧調整器14に入力する。又。
The squelp edge temperature (T3) at the forge welding position is expressed as T3, which is the lower temperature between T3L and T3H, and is compared with the target temperature 'I''30, and the deviation output is input to the thyristor voltage regulator 14. .or.

鍛接位置での管状スケルプ2′の両エツジ部温度、T3
L +  T3Rの偏差ΔT3は ΔT3−T3L  T3R・・・・・・・・・・・・・
(3)で表わされるが、このΔT3がOとなる様に、Δ
T3の出力を高周波誘導加熱コ□イル6の左右調整装置
15に入力する。高周波誘導加熱コイル6による入熱量
Qと、鍛接位置での管状スケルプ2′のエツジ部温度の
上昇量TUPは、はぼ比例関係にある。
Temperature of both edges of tubular skelp 2' at forge welding position, T3
The deviation ΔT3 of L + T3R is ΔT3-T3L T3R・・・・・・・・・・・・
(3), so that ΔT3 becomes O, Δ
The output of T3 is input to the left and right adjusting device 15 of the high frequency induction heating coil 6. The amount of heat input Q by the high frequency induction heating coil 6 and the amount of rise TUP in the temperature of the edge portion of the tubular skelp 2' at the forge welding position are approximately proportional to each other.

従って、前記T3とT3oの偏差出力に比例して、高周
波誘導加熱コイル6の入熱量を調整する様サイリスタ電
圧調整器14を制御する。
Therefore, the thyristor voltage regulator 14 is controlled so as to adjust the amount of heat input to the high frequency induction heating coil 6 in proportion to the output difference between T3 and T3o.

次に、高周波誘導加熱コイル6を左方にずらした場合、
右方のコイル6〜2により左方のエツジ部が加熱され始
めるので、左方のエツジ部の昇温量が右方のエツジ部よ
り大きくなる。・又高周波誘導加熱コイル6を右方にず
らした場合、左方のコイル6〜1により右方のエツジ部
が加熱され始めるので、右方のエツジ部の昇温量が左方
のエツジ部より大きくなる□。
Next, when the high frequency induction heating coil 6 is shifted to the left,
Since the left edge begins to be heated by the right coils 6 to 2, the amount of temperature increase at the left edge becomes larger than that at the right edge. - Also, when the high-frequency induction heating coil 6 is shifted to the right, the right edge begins to be heated by the left coils 6 to 1, so the amount of temperature increase at the right edge is greater than that at the left edge. Get bigger □.

従って、ΔT3〉Oの場合は高周波誘導加熱コイル6を
右側に移動させ、ΔT3<○の場合は高周波誘導加熱コ
イル6を左側に移動する様に、高周波誘導加熱コイル6
の左右調整装置15にΔT3の信号を入力して位置調整
を行う。
Therefore, when ΔT3>O, the high-frequency induction heating coil 6 is moved to the right, and when ΔT3<○, the high-frequency induction heating coil 6 is moved to the left.
The position adjustment is performed by inputting the signal ΔT3 to the left and right adjusting device 15.

次に制御装置11について詳細に説明する。Next, the control device 11 will be explained in detail.

第3図は、第1図に示した制御装置11の構成を示すブ
ロック図である。鍛接温度計7から管状スケルプ2′の
左方エツジ部温度TL2の入力端子部、管状スケルプ2
′の右方エツジ部温度TR2の入力端子43′、鍛接温
度計定位置から、管状スケルプ2′の右方エツジ部まで
の水平路能LRの入力端子24に、鍛接温度計7からの
信号が入力され、帯状スケルプ2の左方エツジ部温度’
[’Lxの入力端子44゜帯状スケルプ2の右方エツジ
部温度TRIの入力端子44′に、スケルプ温度計9か
らの信号が入力される。25は比較器で、入力端子43
からの入力電流信号と入力端子44からの入力電流信号
を比較するもので、その差信号を比較器27に出力する
。比較器27で比較器25の出力信号と定数器26、出
力信号を比較して、その差信号を係数器28に出力′し
、係数器28で係数を乗算して出力し、前記(1)式の
ΔTLを求める。
FIG. 3 is a block diagram showing the configuration of the control device 11 shown in FIG. 1. From the forge welding thermometer 7 to the input terminal of the left edge temperature TL2 of the tubular squelp 2', the tubular squelp 2
The signal from the forge welding thermometer 7 is input to the input terminal 43' of the right edge temperature TR2 of ', and the input terminal 24 of the horizontal path force LR from the fixed position of the forge welding thermometer to the right edge of the tubular squelp 2'. The left edge temperature of the band-shaped Skelp 2 is input.
The signal from the Skelp thermometer 9 is input to the input terminal 44' of the right edge temperature TRI of the right edge portion of the Skelp 2 in the Lx input terminal 44'. 25 is a comparator, and input terminal 43
The input current signal from the input terminal 44 is compared with the input current signal from the input terminal 44, and the difference signal is outputted to the comparator 27. The comparator 27 compares the output signal of the comparator 25 with the output signal of the constant generator 26, and outputs the difference signal to the coefficient unit 28, which multiplies the multiplication by a coefficient and outputs it. Find ΔTL in the equation.

29は比較器で入力端子43からの出力信号と係数器2
日からの出力信号を比較して、その差信号を出力し、前
記(2)式の計算を行なう。この出力信号が左方エツジ
部の鍛接温度の推定値であり、比較器31に入力される
。比較器31で比較器29からの出力信号と鍛接温度目
標設定器30からの信号を比較し、その差信号を演算器
32に出力する。右方エツジ部の鍛接温度の推定値と、
鍛接温度目標値の差信号を出力する場合も、前記と同様
の制御を行なう。
29 is a comparator that connects the output signal from the input terminal 43 and the coefficient unit 2.
The output signals from the sun are compared, the difference signal is outputted, and the above equation (2) is calculated. This output signal is an estimated value of the forge welding temperature of the left edge portion, and is input to the comparator 31. A comparator 31 compares the output signal from the comparator 29 and the signal from the forge welding temperature target setting device 30, and outputs the difference signal to the calculator 32. The estimated value of the forge welding temperature of the right edge part,
The same control as described above is performed also when outputting a difference signal of the forge welding temperature target value.

32は演算器で、比較器31の出力信号と比較器31′
の出力信号を比較して、小さい方の信号を変換器33に
出力すると共に、その差信号を変換器37に出力する。
32 is an arithmetic unit which outputs the output signal of the comparator 31 and the comparator 31'.
The output signals of the two are compared, and the smaller signal is output to the converter 33, and the difference signal is output to the converter 37.

変換器33は電流信号を電圧信号に変換する変換器でゲ
ート45に出力する。
The converter 33 is a converter that converts a current signal into a voltage signal and outputs it to the gate 45.

ゲート45は高周波誘導加熱コイル6の出力調整を手動
調整する場合は閉となり、自動調整する場合は開となる
。35は加熱器で、ゲート45からの出力信号とサイリ
スタ電圧調整器14からの出力信号34を加算して、サ
イリスタ電圧調整器14に入力する。変換器37はΔT
3の電流信号を電圧信号に変換する変換器でゲート40
に入力する。
The gate 45 is closed when the output of the high-frequency induction heating coil 6 is manually adjusted, and is opened when the output is automatically adjusted. A heater 35 adds the output signal from the gate 45 and the output signal 34 from the thyristor voltage regulator 14 and inputs the result to the thyristor voltage regulator 14 . The converter 37 is ΔT
Gate 40 is a converter that converts the current signal of 3 into a voltage signal.
Enter.

38は高周波誘導加熱コイル6の位置移動範囲設定器で
、鍛接温度計定位置から管状スケルプ2′の左方エツジ
部までの水平圧′離LIOと温度計定位置から、管状ス
ケルプ2′の右方エツジ部までの水平距離LROを設定
するものである。管状スケルプ2′の左方エツジ部が鍛
接温度計の定位置より必らず右方にくる様に鍛接温度計
の定位置を選べば、Lt、 > LLO+  LH< 
LROとなる様にし、この範囲から外された場合は、高
周波誘導加熱コイル6が、管状スケルプ2′のエツジ部
に接触して損傷する恐れが生じるので、高周波誘導加熱
コイル6の左右調整の自動制御を停止する様にする。
38 is a position movement range setting device for the high-frequency induction heating coil 6, which ranges from the horizontal pressure distance LIO from the forge welding thermometer fixed position to the left edge of the tubular skelp 2', and from the thermometer fixed position to the right side of the tubular skelp 2'. This is to set the horizontal distance LRO to the edge. If the fixed position of the forge welding thermometer is chosen so that the left edge of the tubular skelp 2' is always to the right of the fixed position of the forge welding thermometer, then Lt, > LLO+ LH<
If the high-frequency induction heating coil 6 is out of this range, there is a risk that the high-frequency induction heating coil 6 will come into contact with the edge of the tubular skelp 2' and be damaged. Make the control stop.

39は比較器で、入力端子24からの入力信号と位置移
動範囲設定器38からの入力信号を比較し・LL  L
LOと” LOL Rをゲート40に出力する。ゲート
4oは、LL  LLO> O及びLROLR〉0のみ
ゲートが開となり、上記条件から外れた場合は閉となり
、変換器37の信号をゲート46に込る。ゲート46は
、高周波誘導加熱コイル6の左右調整を手動調整にする
場合は閉となり、自□動調整する場合は開となる。42
は加算器で、ゲート46からの出力信号と高周波誘導加
熱コイル6の左右調整装置15からの出力信号41を加
算して、高周波誘導加熱コイル6の左右調整装置15に
入力して位置調整を行う。
39 is a comparator, which compares the input signal from the input terminal 24 and the input signal from the position movement range setting device 38.
LO and "LOL R" are output to the gate 40. The gate 4o is open only when LL LLO > O and LROLR > 0, and is closed when the above conditions are not met, and the signal from the converter 37 is input to the gate 46. The gate 46 is closed when the left-right adjustment of the high-frequency induction heating coil 6 is manually adjusted, and is opened when automatic adjustment is performed. 42
is an adder that adds the output signal from the gate 46 and the output signal 41 from the left-right adjustment device 15 of the high-frequency induction heating coil 6, and inputs the result to the left-right adjustment device 15 of the high-frequency induction heating coil 6 for position adjustment. .

本発明は以上述べた様な鍛接鋼管の製造工程における鍛
接温度自動制御方法であるから、鍛接直前の左方エツジ
部のピーク温度と、右方エツジ部のピーク温度とを測定
して、エツジ部の偏差温度を減少させ、かつエツジ部の
温度を一定値に制御可能であるので、鍛接直前のエツジ
部温度を一定にし、鍛接温度を適正な値に制御できるの
で、鍛接衝合部品質の良好な製品を製造でき、品質管理
上その効果は極めて大である。
Since the present invention is an automatic forge welding temperature control method in the manufacturing process of forge welded steel pipes as described above, the peak temperature at the left edge portion and the peak temperature at the right edge portion immediately before forge welding are measured, and the peak temperature at the right edge portion is measured. It is possible to reduce the deviation temperature and control the edge temperature to a constant value, so the edge temperature immediately before forge welding can be kept constant, and the forge welding temperature can be controlled to an appropriate value, resulting in good quality forge welded joints. It is possible to manufacture products with high quality, and the effect in terms of quality control is extremely large.

なお、本発明法ではスケルプ温度計で測定した帯状スケ
ルプのエツジ部温度と、鍛接温度計で測温した管状スケ
ルプのエツジ部温度とから、鍛接温度を推定演算する方
式としたが、鍛接温度計で測温した管状スケルプのエツ
ジ部温度にある定数を加えた温度を鍛接温度としても、
真の鍛接温度との差は多少大きくなるが、・この方式を
簡易的に代用することも容易に実施可能である。
In addition, in the method of the present invention, the forge welding temperature is estimated and calculated from the edge temperature of the strip-like skelp measured with a skelp thermometer and the edge temperature of the tubular skelp measured with a forge welding thermometer. Assuming that the temperature obtained by adding a certain constant to the edge temperature of the tubular skelp measured at is the forge welding temperature,
Although the difference from the true forge welding temperature is somewhat large, it is also possible to easily substitute this method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明法の一実施例を示す概略図、第2図は第
1図のA−A断面図、第3図は本発明法ニカかる制御装
置のブロック図である。 l・・・加熱炉      2・・・帯状スケルフ。 2a・・・エツジ部    3,4・・・成型ロール5
・・・鍛接ロール    6・・・高周波誘導加熱コア
・・・鍛接温度計      イル
FIG. 1 is a schematic diagram showing an embodiment of the method of the present invention, FIG. 2 is a sectional view taken along the line AA in FIG. 1, and FIG. 3 is a block diagram of a control device according to the method of the present invention. l...Heating furnace 2...Band-shaped skelf. 2a... Edge portion 3, 4... Forming roll 5
...Forge welding roll 6...High frequency induction heating core...Forge welding thermometer Ile

Claims (1)

【特許請求の範囲】 加熱炉で加熱された帯状スケルプを成形ロールで管状に
成形し、該管状に成形した管状スケルプのエツジ部を加
熱装置により加熱したー、該エツジ部を鍛接ロールによ
り鍛接して管とする鍛接鋼管の製造工程において、前記
管状スケルプのエツジ部を加熱する加熱装置として、管
状スケルプの両エツジ部上に高周波誘導加熱コイルを配
置して。 該エツジ部を加熱し、鍛接ロールの上流側に設けた温度
計により、鍛接前の管状スケルプエツジ部の温度を測定
し、管状スケルプの両エツジ部の温度差が目標範囲内と
なるように、前記高周波誘導加熱コイルを管軸と直角方
向に位置調整を行なうとともに、鍛接前の両エツジ部の
温度が目標範囲内となる様に、上記高周波加熱コイルの
出力調整を行なうこと−を特徴とする鍛接鋼管の鍛接温
度自動制御方法。
[Claims] A band-shaped skelp heated in a heating furnace is formed into a tubular shape with a forming roll, an edge portion of the tubular skelp formed into the tubular shape is heated with a heating device, and the edge portion is forge-welded with a forge-welding roll. In the process of manufacturing a forge-welded steel pipe to be used as a pipe, high-frequency induction heating coils are arranged on both edge parts of the tubular skelp as a heating device for heating the edge parts of the tubular skelp. The edge portion is heated, and the temperature of the tubular skelp edge portion before forge welding is measured with a thermometer provided upstream of the forge welding roll, and the temperature difference between the two edge portions of the tubular skelp is within the target range. Forge welding, characterized in that the position of the high frequency induction heating coil is adjusted in a direction perpendicular to the tube axis, and the output of the high frequency heating coil is adjusted so that the temperature of both edge portions before forge welding is within a target range. Automatic forge welding temperature control method for steel pipes.
JP224982A 1982-01-12 1982-01-12 Automatic controlling method of forge welding temperature of forge-welded steel pipe Granted JPS58122189A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP224982A JPS58122189A (en) 1982-01-12 1982-01-12 Automatic controlling method of forge welding temperature of forge-welded steel pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP224982A JPS58122189A (en) 1982-01-12 1982-01-12 Automatic controlling method of forge welding temperature of forge-welded steel pipe

Publications (2)

Publication Number Publication Date
JPS58122189A true JPS58122189A (en) 1983-07-20
JPH0216193B2 JPH0216193B2 (en) 1990-04-16

Family

ID=11524076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP224982A Granted JPS58122189A (en) 1982-01-12 1982-01-12 Automatic controlling method of forge welding temperature of forge-welded steel pipe

Country Status (1)

Country Link
JP (1) JPS58122189A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014027564A1 (en) * 2012-08-17 2014-02-20 新日鐵住金株式会社 Welding device for electric resistance welded pipe

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5319156A (en) * 1976-08-06 1978-02-22 Ishikawajima Harima Heavy Ind Automatic controlling method of high frequency welding
JPS5655587U (en) * 1979-09-29 1981-05-14

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5319156A (en) * 1976-08-06 1978-02-22 Ishikawajima Harima Heavy Ind Automatic controlling method of high frequency welding
JPS5655587U (en) * 1979-09-29 1981-05-14

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014027564A1 (en) * 2012-08-17 2014-02-20 新日鐵住金株式会社 Welding device for electric resistance welded pipe

Also Published As

Publication number Publication date
JPH0216193B2 (en) 1990-04-16

Similar Documents

Publication Publication Date Title
KR900002482B1 (en) High-frequency electric resistance welding method using irradiation with a laser beam
EP0901846A2 (en) Pipe forming roll apparatus and method
JPS58122189A (en) Automatic controlling method of forge welding temperature of forge-welded steel pipe
JP2003340525A (en) Method and device for forming end part of steel strip
EP0158979A1 (en) Continuous weld tube mill
CN108235479A (en) Improve transverse magnetic flux sensing heating strip transverse temperature uniformity device and method
US4359210A (en) Temperature control apparatus
JPH03155479A (en) Welding control method for resistance welded tube
SU680836A1 (en) Method for automatically controlling the process of high-frequency welding
SU797856A1 (en) Method of automatic control of high-frequency welding
JPS63268507A (en) Control method for outer diameter of metal pipe
JPS5825883A (en) Controlling method for rate of upsetting for high frequency welded steel pipe
JPS60106679A (en) Method for controlling heat input to electric welded pipe
JPH071170A (en) Manufacture of welded tube by composite heat source
JPS59104281A (en) Production of welded h-beam
JPH04147780A (en) Method for controlling weld heat input of electro-resistance welded pipe
JP4010880B2 (en) Temperature control device for heating device
JPS60213373A (en) Method for controlling weld heat input for electric welded steel pipe
JPH07108463B2 (en) Welding heat input control method for ERW pipe
JPS5842435Y2 (en) Local instantaneous continuous heating device for steel billets
SU893463A1 (en) Automatic control method of the high-frequency welding process
JPH0825036B2 (en) Warm electric resistance welding method
JP2722970B2 (en) Heat input control method for wrought steel pipe
JP4371346B2 (en) Method and apparatus for controlling edge heating of metal plate material
JPS62296974A (en) Welding heat input control method at manufacturing time of seam welded pipe