JP2722970B2 - Heat input control method for wrought steel pipe - Google Patents

Heat input control method for wrought steel pipe

Info

Publication number
JP2722970B2
JP2722970B2 JP4300675A JP30067592A JP2722970B2 JP 2722970 B2 JP2722970 B2 JP 2722970B2 JP 4300675 A JP4300675 A JP 4300675A JP 30067592 A JP30067592 A JP 30067592A JP 2722970 B2 JP2722970 B2 JP 2722970B2
Authority
JP
Japan
Prior art keywords
temperature
width
edge
heating
steel pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4300675A
Other languages
Japanese (ja)
Other versions
JPH06122016A (en
Inventor
敦 大田
勉 渋田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP4300675A priority Critical patent/JP2722970B2/en
Publication of JPH06122016A publication Critical patent/JPH06122016A/en
Application granted granted Critical
Publication of JP2722970B2 publication Critical patent/JP2722970B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、鍛接鋼管の製造ライ
ンにおいて、鍛接直前の管状スケルプを鍛接に最適な温
度に加熱するための入熱制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat input control method for heating a tubular skeleton just before forging to a temperature optimum for forging in a production line of forged steel pipes.

【0002】[0002]

【従来の技術】鍛接鋼管は、加熱炉で加熱された帯状ス
ケルプを成形ロールで管状に成形し、その管状スケルプ
のエッジ部をウエルディングホーンから酸素を吹き付け
て加熱したり、高周波誘導加熱コイルを用いて加熱した
りした後、そのエッジ部を鍛接ロールにより鍛接して製
造される。
2. Description of the Related Art A forged steel pipe is formed by forming a band-shaped skeleton heated in a heating furnace into a tube with a forming roll, and heating the edge of the tubular skeleton by blowing oxygen from a welding horn. After heating using a forging roll, the edge is forged by a forging roll.

【0003】このような鍛接工程において、従来、鍛接
部の温度制御は加熱炉出側に設置されたエッジヒータ直
後の温度分布を測定し、温度分布が最適になるように前
記エッジヒータの出力を制御する方法が採られていた
が、エッジヒータから鍛接ロールまでの距離が離れて
いること、鍛接ロール直前でウエルディングホーンや
高周波加熱コイルで再度加熱することなどから、鍛着直
前の真の温度制御ができず、鍛接部の品質面で不良が発
生するという問題点があった。
Conventionally, in such a forging process, the temperature of the forged portion is measured by measuring the temperature distribution immediately after the edge heater installed on the exit side of the heating furnace, and controlling the output of the edge heater so that the temperature distribution is optimized. Although the method of controlling was adopted, since the distance from the edge heater to the forge welding roll was large, and the heating was performed again with a welding horn or high frequency heating coil immediately before the forge welding roll, the true temperature just before forging was determined. There was a problem that control could not be performed and a defect occurred in the quality of the forged portion.

【0004】そこでこのような問題に対し、特公平2−
16193号に次のような温度制御方法が提案されてい
る。それは、図7に示すように、鍛接ロール5直前の管
状スケルプ両エッジ部の温度を別々に測定し、両エッジ
部のピーク温度差が目標範囲内になるように鍛接ロール
5直前の加熱装置8'の加熱出力を制御するというもの
で、それにより鍛接直前のエッジ温度を略一定に保てる
ため、上記問題は解消できるものとなる。
[0004] To solve such a problem,
No. 16193 proposes the following temperature control method. As shown in FIG. 7, the temperature of both edges of the tubular skeleton is measured separately immediately before the forging roll 5, and the heating device 8 just before the forging roll 5 is adjusted so that the peak temperature difference between the two edges is within the target range. The above-mentioned problem can be solved because the edge temperature immediately before forging is kept substantially constant by controlling the heating output of the '.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、特公平
2−16193号の方法では確かに品質が良好の鍛接鋼
管が得られることになるが、常に良好のものが得られる
とは限らず、歩留まりが悪いという問題があった。すな
わち、図1は鍛着部およびその周辺の断面組織図である
が、鍛着部は加熱変成により得られる組織Xが安定しな
いとその強度および靱性の向上化が図れない。そして、
加熱変成組織Xは鋼材の種類、厚さ、ラインスピード等
の製造条件によってもそれぞれ異なってくる。したがっ
て、鍛着部の熱変成組織を考慮をせず、単に左右両エッ
ジ部のピーク温度の差を同一に近づける制御だけでは、
鍛着部の加熱による組織が必ずしも鍛接に最適な熱変成
が行われているとは限らず、上記方法でも常に安定した
品質のものが得られないものとなっていたのである。
However, although the method disclosed in Japanese Patent Publication No. 2-16193 can provide a forged steel pipe of good quality, it is not always possible to obtain a good quality forged steel pipe, and the yield is not always high. There was a problem of bad. That is, FIG. 1 is a cross-sectional structure diagram of the forged portion and the periphery thereof, but the strength and toughness of the forged portion cannot be improved unless the structure X obtained by heat denaturation is stabilized. And
The heat metamorphic structure X also differs depending on the manufacturing conditions such as the type, thickness, and line speed of the steel material. Therefore, without considering the thermal metamorphic structure of the forged part, simply controlling the difference between the peak temperatures of the left and right edges to the same,
The structure by the heating of the forged portion is not always subjected to the thermal denaturation that is optimal for forging, and the above-mentioned method cannot always provide a stable quality.

【0006】この発明は、以上のような問題に鑑み創案
されたもので、鍛着部の熱変成組織を考慮しつつ鍛接直
前の管状スケルプの温度を制御することにより、安定し
た品質のものがより多く得られ得る鍛接鋼管の入熱制御
方法を提供しようとするものである。
The present invention has been made in view of the above-mentioned problems, and has a stable quality by controlling the temperature of a tubular skeleton just before forging while taking into account the thermal metamorphic structure of a forged portion. An object of the present invention is to provide a method for controlling the heat input of a forged steel pipe that can be obtained more.

【0007】[0007]

【課題を解決するための手段】このため本発明者らは、
安定した鍛着部の熱変成組織と所定関係のある要因を探
すべく、両エッジ部のピーク温度差が目標範囲内になる
ように設定した条件の下において鋭意検討・研究した結
果、安定した熱変成組織の幅は所定温度以上に加熱され
たエッジ幅と一致することから、まずこの所定のエッジ
幅に着目した。ここで、熱変成組織の幅とは、図1に示
すXの範囲である。このような結果を踏まえ、本発明者
らは、この所定温度以上に加熱したエッジ幅に着目し、
ライン速度および鋼材の種類・厚さを種々変えて試験を
繰り返した結果、所定温度以上に加熱した幅とライン速
度および鋼材の種類・厚さに依存性があることを知見す
るに到った。
Means for Solving the Problems For this reason, the present inventors have:
In order to find a factor that has a predetermined relationship with the thermal metamorphic structure of the stable forged part, as a result of extensive investigation and research under the conditions set so that the peak temperature difference between both edges is within the target range, a stable heat Since the width of the metamorphic structure coincides with the edge width heated to a predetermined temperature or higher, attention was first paid to the predetermined edge width. Here, the width of the thermal metamorphic structure is the range of X shown in FIG. Based on such a result, the present inventors focused on the edge width heated above the predetermined temperature,
As a result of repeating the test while varying the line speed and the type and thickness of the steel material, it was found that the width heated at a predetermined temperature or more, the line speed, and the type and thickness of the steel material depended.

【0008】すなわち、図2は、ライン速度を種々変
え、任意の加熱量で高張力鋼と一般材につき扁平試験を
行い、その合格材と不合格材との違いを、所定温度以上
に加熱した幅とライン速度との関係でプロットしたグラ
フである。ここで、基準となる温度は、安定した熱変成
組織の幅と所定温度以上に加熱したエッジ幅とが一致し
た試験結果より得られた数値を用いる。このグラフから
も明らかなように、エッジ部のうち所定温度以上の幅が
所定範囲であれば安定した熱変成組織が得られること、
およびその適正なエッジ幅はライン速度および鋼材の種
類・厚さによって変動することがわかる。
That is, FIG. 2 shows that a flat test was performed on a high-strength steel and a general material at an arbitrary heating amount while varying the line speed, and the difference between the accepted material and the rejected material was heated to a predetermined temperature or higher. It is the graph plotted by the relationship between width and line speed. Here, as the reference temperature, a numerical value obtained from a test result in which the width of the stable thermally metamorphic structure coincides with the edge width heated to a predetermined temperature or more is used. As is clear from this graph, a stable thermal metamorphic structure can be obtained if the width of the edge portion at or above the predetermined temperature is within the predetermined range,
It can be seen that the appropriate edge width varies depending on the line speed and the type and thickness of the steel material.

【0009】したがって、鋼材の種類・厚さ、ライン速
度毎に、安定した組織となり得る最適の、所定温度以上
のエッジ幅を予め出しておき、次にライン上における鍛
接直前の管状スケルプエッジ部の温度および所定温度以
上の実際のエッジ幅を測定し、前記最適幅をパラメータ
として、実際の測定値を前記最適加熱範囲の値に近づけ
るようにフィードバック制御をすれば、安定した熱変成
組織が可能となるものである。
Therefore, an optimum edge width that is equal to or more than a predetermined temperature that can form a stable structure is previously determined for each type, thickness, and line speed of the steel material, and then the temperature of the tubular skeleton edge portion immediately before forging on the line is determined. And measuring the actual edge width equal to or higher than a predetermined temperature, and performing feedback control so that the actual measured value approaches the value of the optimal heating range, using the optimum width as a parameter. Things.

【0010】この発明に係る鍛接鋼管の入熱制御方法
は、以上のような知見に基づき創案されたもので、鍛接
直前に管状スケルプの両エッジ部を加熱装置で加熱する
際、両エッジ部のピーク温度を目標温度以上に制御しつ
つ、両エッジ部のうち所定温度以上となる幅が目標範囲
内となるように加熱温度を制御することを特徴とするも
のである。
The heat input control method for a forged steel pipe according to the present invention has been devised based on the above findings. When both edges of a tubular skeleton are heated by a heating device immediately before forging, the two edges are heated. It is characterized in that the heating temperature is controlled such that the width of the both edges becomes equal to or higher than a predetermined temperature within the target range while controlling the peak temperature to be equal to or higher than the target temperature.

【0011】次に、本発明の具体的制御方法を図3に示
す装置構成を例に説明する。
Next, a specific control method according to the present invention will be described with reference to an apparatus configuration shown in FIG.

【0012】この装置構成例は、図示のように加熱炉
1、誘導加熱装置2、エッジブロア3、サポートロール
4、ウエルディングホーン5、鍛接ロール6の順でライ
ンが形成され、サポートロール4直前のほか鍛接ロール
6直前にリニアレイ温度計7,8を配置している。前記
誘導加熱装置2の加熱出力および前記ウエルディングホ
ーン5のエアー流量は、それぞれの前記リニアレイ温度
計7,8の計測値に基づく制御装置9,10により制御され
る。
In this example of the apparatus configuration, a line is formed in the order of a heating furnace 1, an induction heating apparatus 2, an edge blower 3, a support roll 4, a welding horn 5, and a forging roll 6, as shown in FIG. In addition, linear ray thermometers 7, 8 are arranged immediately before the forging roll 6. The heating output of the induction heating device 2 and the air flow rate of the welding horn 5 are controlled by control devices 9 and 10 based on the measured values of the linear ray thermometers 7 and 8, respectively.

【0013】この制御例では、熱変成組織の安定した鍛
着部を得るために、鍛接ロール6直前のウエルディング
ホーン5のエアー流量fを調整し、その調整のパラメー
タとして所定温度以上となるエッジ幅Wを用いる。この
ためまず、エアー流量fと所定温度以上となるエッジ幅
Wの関係を鋼材の種類・厚さ、ライン速度毎に試験によ
り予め求める。この結果は、図4に示すグラフのように
なるが(ただし、ここでは右エッジ幅WR≒左エッジ幅
Lを前提とし、左右いずれか側のエッジ幅WL,WRとの
関係を示す。)、これを前記制御装置10に設定する。こ
こで、基準となる温度は、安定した熱変成組織の幅と所
定温度以上に加熱したエッジ幅とが一致した試験結果よ
り得られた数値を用い、ここでは約1350℃とする。ま
た、最適のエッジ幅WL,WRについても、前掲図2に示
す扁平試験をもとに、鋼材の種類・厚さ、ライン速度毎
に試験により求める。この際、同図に示すように扁平試
験に合格する鍛接管のエッジ幅WL,WRには許容範囲が
あるため、最終的にはこの許容範囲を求め、前記制御装
置10に設定する。したがって、図4に示すグラフにおい
て、目標とするエッジ幅がW1の場合にはW2〜W3まで
のエアー流量fU〜fLが許容バンドとして設定される。
In this control example, the air flow rate f of the welding horn 5 immediately before the forging roll 6 is adjusted in order to obtain a stable forged portion having a thermally metamorphosed structure. The width W is used. Therefore, first, the relationship between the air flow rate f and the edge width W at which the temperature is equal to or higher than the predetermined temperature is determined in advance by a test for each type, thickness, and line speed of the steel material. This result becomes as in the graph shown in FIG. 4 (However, in this case assumes the right edge width W R ≒ left edge width W L, the edge width W L of the left or right side, the relationship between the W R This is set in the control device 10. Here, the reference temperature is a numerical value obtained from a test result in which the width of the stable thermally metamorphic structure matches the width of the edge heated to a predetermined temperature or higher, and is set to about 1350 ° C. here. The optimum of the edge width W L, for also W R, determined on the basis of the flat test shown in supra Figure 2, steel type and thickness, the test for each line speed. At this time, the edge width W L of the forge welding pipes to pass the flat test As shown in the figure, the W R because of the tolerance range, and eventually obtains the allowable range is set to the controller 10. Therefore, in the graph shown in FIG. 4, when the edge width having a target of W 1 is an air flow f U ~f L to W 2 to W-3 it is set as the allowable band.

【0014】また、エアー流量f調整のパラメータとし
て、左右エッジのピーク温度Tも用いる。これは、良好
な鍛着性を図るためには所定温度以上の加熱が必要だか
らである。このため、上記と同様エアー流量fとエッジ
ピーク温度Tの関係を鋼材の種類・厚さ、ライン速度毎
に試験により求める。この結果は、図5に示すグラフの
ようになるが(ただし、これは左右いずれか側のピーク
温度TL,TRとの関係を示し、TL≒TRを前提とす
る)、これも前記制御装置10に設定する。また、基準と
なるべき下限温度は、一律固定して設定する(例えば13
90℃)。
Further, the peak temperature T of the left and right edges is used as a parameter for adjusting the air flow rate f. This is because heating at a predetermined temperature or higher is required to achieve good forgeability. For this reason, the relationship between the air flow rate f and the edge peak temperature T is determined by a test for each type, thickness, and line speed of a steel material as described above. This result becomes as in the graph shown in FIG. 5 (although this is the peak temperature T L of the left or right side, shows the relationship between T R, assumes T L ≒ T R), which is also This is set in the control device 10. In addition, the lower limit temperature to be a reference is set uniformly and fixed (for example, 13
90 ° C).

【0015】なお、板中央温度TCもパラメータとし
て、所定温度以下となるように設定すれば、ウエルディ
ングホーン5のノズル位置の異常調整も発見でき、この
ためこの制御例でもその上限温度を設定し、それ以下の
時はアラーム出力を行うようにしている。
If the plate center temperature T C is also set as a parameter so as to be equal to or lower than a predetermined temperature, abnormal adjustment of the nozzle position of the welding horn 5 can be found. Therefore, in this control example, the upper limit temperature is set. And, when it is less than that, an alarm is output.

【0016】以上のような制御装置10の設定において、
鍛接ロール6直前の管状スケルプの温度分布をリニアレ
イ温度計8により求める。この値は信号処理装置を介し
て前記制御装置10に出力される。この出力値は、図6の
グラフのように示される。図中、Aは左エッジ部、Bは
右エッジ部、Cは板中央部、Dは左エッジ部のうちピー
ク温度TL'となる部分、Eは右エッジ部のうちピーク温
度TR'となる部分、WR'は所定温度すなわち1350℃以上
の右エッジの幅、WL'は1350℃以上の左エッジの幅を各
示す。この実測値が、前記制御装置10において設定した
エッジ幅WL,WR、ピーク温度TL,TR、板中央部温度T
Cの目標値と比較され、その偏差に応じて前記ウエルデ
ィングホーンのエアー流量fが設定値の範囲内になるよ
うに変更制御されることになる。
In the setting of the control device 10 as described above,
The temperature distribution of the tubular skeleton in front of the forging roll 6 is determined by a linear ray thermometer 8. This value is output to the control device 10 via the signal processing device. This output value is shown as a graph in FIG. In the figure, A is a left edge portion, B is a right edge portion, C is a plate center portion, D is a portion of the left edge portion having a peak temperature T L ′, E is a right edge portion having a peak temperature T R ′. W R ′ indicates the width of the right edge at a predetermined temperature, that is, 1350 ° C. or more, and W L ′ indicates the width of the left edge at 1350 ° C. or more. The measured value is, the edge width W L which is set in the control device 10, W R, the peak temperature T L, T R, the plate central portion temperature T
It is compared with a target value and C, air flow f of the Welding horn is to be changed control be within the range of the set value according to the deviation.

【0017】この実測値と目標値の偏差からエアー流量
fを変更制御する算定方法は、例えば次のような式を用
いて行う。
A calculation method for changing and controlling the air flow rate f based on the deviation between the actually measured value and the target value is performed using, for example, the following equation.

【0018】[0018]

【数1】 (Equation 1)

【0019】ここで、まず、エッジ幅の実測値WR',
L'が、設定された許容バンドに入っているか否かを判
定し、許容バンドに入っていないとき、例えば図4中W
2からW3の範囲外のときは、目標エッジ幅W1との偏差
ΔW1(=W1−WR'(ORL'))に応じて、上記数1式の
関数テーブルよりg1=Δf1=Δf1(ΔWR'
(ORL'))を求める。許容バンドに入っていれば、制御
変更は行わない。
Here, first, the actually measured edge width value W R ',
It is determined whether or not WL ′ falls within the set allowable band, and if not, for example, W L in FIG.
When the 2 outside the range of W 3, the deviation [Delta] W 1 between the target edge width W 1 (= W 1 -W R '(OR W L')) in response to, g 1 from the function table of the equation (1) = Δf 1 = Δf 1 (ΔW R '
Seek (OR W L ')). If it is in the allowable band, the control is not changed.

【0020】次に、左右エッジのピーク温度の実測値T
L,TRが、設定された温度以上に達しているか否かにつ
いて判定し、満足していれば上記g1を使う。満足して
いなければ、目標下限値(例えば図5ではT1)に到達
するように、上記数1式の関数テーブルよりg2=Δf2
=Δf2(ΔTR'(ORL'))を求め、g2を使う。ただ
し、この制御による流量設定がWR'(ORL')−fの関係
で許容上限エッジ幅(図4ではW3)を超えないように
リミッタをかける。具体的には、下式の関係の場合はf
i +1=fUとする。
Next, the measured value T of the peak temperature of the left and right edges
L, T R is, determines whether has reached above a set temperature, using the g 1 if satisfied. If not, g 2 = Δf 2 from the function table of the above equation ( 1 ) so as to reach the target lower limit (for example, T 1 in FIG. 5).
= Δf 2 (ΔT R '( OR T L ')) and use g 2 . However, a limiter is applied so that the flow rate setting by this control does not exceed the allowable upper limit edge width (W 3 in FIG. 4) in the relation of W R ′ ( OR W L ′) −f. Specifically, in the case of the following equation, f
and i +1 = f U.

【0021】[0021]

【数2】 (Equation 2)

【0022】次に、以上の制御方法を適用して鍛接鋼管
を造管した試験例を示す。比較のため、左右エッジ部の
温度差だけを考慮した従来法によっても造管した。図3
に示す構成において3カ月ラインを稼働した結果、本発
明法が従来法より、鍛接部の鍛着不良によるロスが低下
するものとなり、製品の歩留まりも向上することがわか
った。
Next, a test example in which a forged steel pipe is formed by applying the above control method will be described. For comparison, a tube was formed by a conventional method in which only the temperature difference between the left and right edges was considered. FIG.
As a result of operating the three-month line in the configuration shown in FIG. 1, it was found that the method of the present invention reduced the loss due to poor forging of the forged portion and improved the product yield compared to the conventional method.

【0023】[0023]

【発明の効果】以上説明したように、本発明に係る鍛接
鋼管の入熱制御方法では、鍛着部の熱変成組織を考慮し
つつ鍛接直前の管状スケルプの温度を制御することによ
り、従来法と比較して安定した品質のものがより多く得
られ、製品の歩留まりも向上するという顕著な作用効果
が得られるものとなる。
As described above, in the method for controlling heat input of a forged steel pipe according to the present invention, the temperature of the tubular skeleton is controlled immediately before forging while considering the thermal metamorphic structure of the forged portion. As a result, more stable products can be obtained, and a remarkable effect of improving the product yield can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】鍛接鋼管の鍛着部およびその周辺の断面組織図
である。
FIG. 1 is a cross-sectional structure diagram of a forged portion of a forged steel pipe and its periphery.

【図2】ライン速度を種々変え、任意の加熱量で高張力
鋼と一般材につき扁平試験を行い、その合格材と不合格
材との違いを、所定温度以上に加熱した幅とライン速度
との関係でプロットしたグラフである。
[FIG. 2] A flat test is performed on a high-strength steel and a general material at various heating speeds with an arbitrary heating amount, and a difference between a pass material and a reject material is determined by a width and a line speed heated to a predetermined temperature or more. It is the graph plotted by the relationship of.

【図3】本発明の具体的制御方法を適用した鍛接鋼管製
造ラインの装置構成を示した説明図である。
FIG. 3 is an explanatory diagram showing an apparatus configuration of a forged steel pipe production line to which a specific control method of the present invention is applied.

【図4】ウエルディングホーンのエアー流量fと所定温
度以上となるエッジ幅Wの関係を示すグラフである。
FIG. 4 is a graph showing a relationship between an air flow rate f of a welding horn and an edge width W at or above a predetermined temperature.

【図5】ウエルディングホーンのエアー流量fとエッジ
ピーク温度Tの関係を示すグラフである。
FIG. 5 is a graph showing a relationship between an air flow rate f of a welding horn and an edge peak temperature T.

【図6】鍛接直前の管状スケルプのエッジ部の温度分布
を示すグラフである。
FIG. 6 is a graph showing a temperature distribution at an edge of a tubular skeleton just before forging.

【図7】特公平2−16193号の温度制御方法が適用
される装置構成を示す説明図である。
FIG. 7 is an explanatory diagram showing an apparatus configuration to which the temperature control method of Japanese Patent Publication No. 2-16193 is applied.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 鍛接直前に管状スケルプの両エッジ部を
加熱装置で加熱する際、両エッジ部のピーク温度を目標
温度以上に制御しつつ、両エッジ部のうち所定温度以上
となる幅が目標範囲内となるように加熱温度を制御する
ことを特徴とする鍛接鋼管の入熱制御方法。
When heating both edges of a tubular skeleton with a heating device immediately before forging, while controlling the peak temperature of both edges to be equal to or higher than a target temperature, the width of both edges that becomes equal to or higher than a predetermined temperature is set to a target temperature. A heat input control method for a forged steel pipe, wherein a heating temperature is controlled to fall within a range.
JP4300675A 1992-10-14 1992-10-14 Heat input control method for wrought steel pipe Expired - Fee Related JP2722970B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4300675A JP2722970B2 (en) 1992-10-14 1992-10-14 Heat input control method for wrought steel pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4300675A JP2722970B2 (en) 1992-10-14 1992-10-14 Heat input control method for wrought steel pipe

Publications (2)

Publication Number Publication Date
JPH06122016A JPH06122016A (en) 1994-05-06
JP2722970B2 true JP2722970B2 (en) 1998-03-09

Family

ID=17887724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4300675A Expired - Fee Related JP2722970B2 (en) 1992-10-14 1992-10-14 Heat input control method for wrought steel pipe

Country Status (1)

Country Link
JP (1) JP2722970B2 (en)

Also Published As

Publication number Publication date
JPH06122016A (en) 1994-05-06

Similar Documents

Publication Publication Date Title
KR101185597B1 (en) Method of continuous annealing for steel strip with curie point and continuous annealing apparatus therefor
JP2722970B2 (en) Heat input control method for wrought steel pipe
CN110656234B (en) Automatic distinguishing control method for maximum heating temperature of steel rolling heating furnace
JP3596460B2 (en) Heat treatment method for thick steel plate and heat treatment equipment
JP3891067B2 (en) Steel pipe rolling temperature control method
CN111420999B (en) Method for controlling temperature difference between upper surface and lower surface of finish rolling intermediate billet
US4139139A (en) Process for manufacturing butt-welded steel pipe
CN111420998B (en) Method for uniformly heating width of precision rolling intermediate billet in length direction at temperature
JP6631824B1 (en) Heating method of steel sheet and continuous annealing equipment in continuous annealing
JP2004197144A (en) Method for controlling temperature of continuous normalized sheet
JP7410230B2 (en) Method of manufacturing metal strip material
US11858020B2 (en) Process for the production of a metallic strip or sheet
JPS6345454B2 (en)
JPH02112813A (en) Temperature control method for rolling and cooling of wire rod, bar or the like
JP4126463B2 (en) Furnace temperature setting method in continuous annealing furnace heating furnace
JPS61159213A (en) Method for controlling hardness of steel strip
JPH0754055A (en) Method for controlling temperature of steel strip in continuous annealing furnace
CN114130980A (en) Continuous casting dynamic secondary cooling control method
JPH0622949Y2 (en) Induction heating device
JPH0216193B2 (en)
JPS63224883A (en) Warm resistance welding method
JPS6129904A (en) Material temperature controller of thermal processing furnace
JPH04337039A (en) Strip temperature control method for continuous annealing furnace
JPH03268811A (en) Method for controlling width direction temperature
JPS61243130A (en) Method for controlling cooling of metallic strip

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19971028

LAPS Cancellation because of no payment of annual fees