JP3015805B2 - Metal pipe bending method and apparatus - Google Patents

Metal pipe bending method and apparatus

Info

Publication number
JP3015805B2
JP3015805B2 JP7338199A JP33819995A JP3015805B2 JP 3015805 B2 JP3015805 B2 JP 3015805B2 JP 7338199 A JP7338199 A JP 7338199A JP 33819995 A JP33819995 A JP 33819995A JP 3015805 B2 JP3015805 B2 JP 3015805B2
Authority
JP
Japan
Prior art keywords
temperature
metal tube
heating coil
bending
frequency induction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP7338199A
Other languages
Japanese (ja)
Other versions
JPH09155455A (en
Inventor
和男 曽我
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Benkan Corp
Original Assignee
Benkan Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Benkan Corp filed Critical Benkan Corp
Priority to JP7338199A priority Critical patent/JP3015805B2/en
Publication of JPH09155455A publication Critical patent/JPH09155455A/en
Application granted granted Critical
Publication of JP3015805B2 publication Critical patent/JP3015805B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • General Induction Heating (AREA)
  • Bending Of Plates, Rods, And Pipes (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、金属管を高周波誘
導加熱コイルにより均一に加熱しながら曲げ加工する方
法及びその装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for bending a metal tube while uniformly heating the metal tube with a high-frequency induction heating coil.

【0002】[0002]

【従来の技術】一般に金属管を曲げ加工するには、高周
波誘導加熱法を利用した熱間曲げが行われる。即ち、図
3に示すように金属管1を、冷却液3を噴射するノズル
を備えた高周波誘導加熱コイル2に挿通し、その先端部
を支点0を中心として旋回する曲げアーム4にクランプ
5で把持させておき、加熱コイル2によって金属管1を
環状狭幅に加熱しながら、金属管1を前進させ、曲げア
ーム4の旋回により加熱軟化部に曲げモーメントを作用
させて曲げ変形し、その直後を冷却液3で冷却すること
により曲げ変形部を固化することが行われる。
2. Description of the Related Art Generally, a metal tube is bent by hot bending using a high-frequency induction heating method. That is, as shown in FIG. 3, the metal tube 1 is inserted into a high-frequency induction heating coil 2 provided with a nozzle for spraying the cooling liquid 3, and a distal end portion thereof is clamped to a bending arm 4 pivoting about a fulcrum 0 with a clamp 5. The metal tube 1 is advanced while heating the metal tube 1 to an annular narrow width by the heating coil 2, and the bending arm 4 turns to apply a bending moment to the heating softened portion to bend and deform. Is cooled by the cooling liquid 3 to solidify the bending deformation portion.

【0003】然し乍ら、このような高周波誘導加熱曲げ
では、曲げ変形の外周側(背側)では引張り応力が作用
して減肉が生じ、曲げ変形の内周側(腹側)では圧縮応
力が作用して増肉が生じることとなり、肉厚差が発生す
る。この肉厚差によって周方向で温度差が生じる。ま
た、金属管は加工によって外観形状が縦に長く横に短い
扁平形状になること、及び曲げ方向によって金属管自体
が移動すること等の現象により、加熱コイル2と金属管
1の位置関係が変化することによっても温度差が生じ
る。これらの温度差によって曲げ加工後の金属の組織は
不均一になり、局部的な強度低下が懸念される。
However, in such high-frequency induction heating bending, a tensile stress acts on the outer peripheral side (back side) of the bending deformation to reduce the wall thickness, and a compressive stress acts on the inner peripheral side (bent side) of the bending deformation. As a result, the thickness increases, and a thickness difference occurs. This thickness difference causes a temperature difference in the circumferential direction. In addition, the positional relationship between the heating coil 2 and the metal tube 1 changes due to phenomena such as the appearance of the metal tube being formed into a flat shape that is long vertically and horizontally short by processing, and the metal tube itself moving depending on the bending direction. This also causes a temperature difference. Due to these temperature differences, the structure of the metal after bending becomes non-uniform, and there is a concern that the strength may be locally reduced.

【0004】これらの対策として、特開昭61−229
425号公報が先行技術文献として開示されている。こ
れは曲げ変形の背側と腹側の温度を検出し、その温度差
が所定の温度差になるように金属管と加熱コイルとを偏
芯させる加工温度制御方法であり、これを実施する装置
として、曲げ変形の背側と曲げ変形の腹側の加熱部の温
度を検出する検出器と、検出器の出力差から温度差を演
算する演算器と、所望の温度差を入力する温度差設定器
と、演算された温度差と設定温度差との偏差に応じて高
周波誘導加熱コイルと金属管とを曲げの内外方向で相対
的に偏芯させるコイル移動制御部とからなる加工温度制
御装置がある。この装置の温度差をゼロとするような制
御を行えば、腹側の温度と背側の温度は一致する筈であ
るが、温度自体は金属管の肉厚のばらつき及び加工時の
金属管の移動等によって加工軸方向で振れる可能性があ
り、従って、加工後の金属の組織は不均一となり、局部
的な強度低下の可能性が依然として残ることとなる。
As a countermeasure against these problems, Japanese Patent Application Laid-Open No.
No. 425 is disclosed as a prior art document. This is a processing temperature control method that detects the temperature of the back side and the ventral side of bending deformation and decenters the metal tube and the heating coil so that the temperature difference becomes a predetermined temperature difference. A detector for detecting the temperature of the heating part on the back side of the bending deformation and the belly side of the bending deformation, a calculator for calculating the temperature difference from the output difference of the detector, and a temperature difference setting device for inputting a desired temperature difference There is a processing temperature control device including a high-frequency induction heating coil and a coil movement control unit that relatively eccentrically moves the metal tube in and out of bending in accordance with a deviation between the calculated temperature difference and the set temperature difference. . If control is performed to make the temperature difference of this device zero, the temperature on the ventral side and the temperature on the dorsal side should match, but the temperature itself will vary with the thickness of the metal tube and the metal tube during processing. There is a possibility that the metal will oscillate in the direction of the processing axis due to movement or the like. Therefore, the structure of the metal after processing becomes non-uniform, and the possibility of local decrease in strength still remains.

【0005】[0005]

【発明が解決しようとする課題】そこで本発明は、高周
波誘導加熱コイルにより金属管を加熱しながら曲げ加工
する際、加熱される金属管の周方向の温度を目標温度に
制御し、曲げ加工部分の組織の均一化を図ることのでき
る金属管の曲げ加工方法及びその装置を提供しようとす
るものである。
SUMMARY OF THE INVENTION Accordingly, the present invention provides a method for controlling the temperature of a metal tube to be heated in a circumferential direction to a target temperature when the metal tube is bent while being heated by a high-frequency induction heating coil. It is an object of the present invention to provide a method and an apparatus for bending a metal pipe, which can make the structure uniform.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
の本発明の金属管の曲げ加工方法の一つは、金属管を高
周波誘導加熱コイルにより加熱しながら曲げ加工するに
於いて、金属管の加熱部の曲げ変形の腹側又は背側のい
ずれか一点の温度を、高周波加熱電力の制御により目標
温度に保ち、一方この目標温度と対面する位置での温度
との差を取り、この温度差により高周波誘導加熱コイル
の位置を制御し、金属管の加熱部の周方向の温度を前記
目標温度と全周等しくなして、金属管を高周波誘導加熱
コイルにより加熱しながら曲げ加工することを特徴とす
るものである。
One of the methods for bending a metal tube according to the present invention for solving the above problems is to bend the metal tube while heating it with a high-frequency induction heating coil. The temperature of either the ventral side or the dorsal side of the bending deformation of the heating section is maintained at the target temperature by controlling the high-frequency heating power, and the difference between this target temperature and the temperature at the facing position is taken. The position of the high-frequency induction heating coil is controlled by the difference, the circumferential temperature of the heating section of the metal tube is made equal to the target temperature over the entire circumference, and the metal tube is bent while being heated by the high-frequency induction heating coil. It is assumed that.

【0007】本発明の金属管の曲げ加工方法の他の一つ
は、金属管を高周波誘導加熱コイルにより加熱しながら
曲げ加工するに於いて、金属管の加熱部の曲げ変形の腹
側又は背側のいずれか一点の温度を、高周波加熱電力の
制御により目標温度に保ち、一方この目標温度と対面す
る位置での温度との差及び金属管の加熱部の前記曲げ変
形の腹側及び背側と略90度位相をずらした相対向する
置での温度との差を取り、これらの温度差により高周波
誘導加熱コイルの位置を制御し、金属管の加熱部の周方
向の温度を前記目標温度と全周等しくなして、金属管を
高周波誘導加熱コイルにより加熱しながら曲げ加工する
ことを特徴とするものである。
Another method of bending a metal tube according to the present invention is to perform bending while heating the metal tube with a high-frequency induction heating coil. The temperature at any one of the two sides is maintained at a target temperature by controlling the high-frequency heating power, while the difference between the target temperature and the temperature at the position facing the same and the bending deformation of the heating portion of the metal tube.
The difference between the ventral and dorsal sides of the shape and the temperature at opposing positions shifted by about 90 degrees from each other is taken, and the position of the high-frequency induction heating coil is controlled by these temperature differences, and the metal tube In this method, the metal tube is bent while being heated by a high-frequency induction heating coil by making the circumferential temperature of the heating section equal to the target temperature over the entire circumference.

【0008】前記の金属管の曲げ加工方法の一つを実施
するための本発明の金属管の曲げ加工装置の一つは、金
属管を高周波誘導加熱コイルにより加熱しながら曲げ加
工する装置に於いて、高周波誘導加熱コイルに取り付け
られ金属管の加熱部の曲げ変形の腹側(又は背側)の温
度を測定する第一放射温度計及び背側(又は腹側)の温
度を測定する第二放射温度計と、前記第一放射温度計の
測温結果が入力され目標温度との偏差に応じた出力を高
周波発生装置に対して出力し曲げ変形の腹側(又は背
側)の温度を目標温度と一致させるように高周波発生装
置を制御する第一温度調節器と、前記第一放射温度計及
び第二放射温度計の測温結果が入力されその温度差を演
算し出力する演算器と、該演算器の出力が入力され予め
設定された温度差との偏差を出力する第二温度調節器
と、該第二温度調節器からの入力に応じた周波数に設定
されるインバータと、同じく第二温度調節器からの入力
により高周波誘導加熱コイルの横方向の移動距離を算出
し前記高周波誘導加熱コイルをねじ送り方式に移動する
ギャードモータの回転方向及び起動指令を前記インバー
タに対して出力するシーケンサとを備えたことを特徴と
するものである。
One of the metal pipe bending apparatuses of the present invention for implementing one of the above-described metal pipe bending methods is an apparatus for bending a metal pipe while heating it with a high-frequency induction heating coil. A first radiation thermometer that is attached to the high-frequency induction heating coil and measures the ventral (or dorsal) temperature of the bending deformation of the heating portion of the metal tube, and the second radiation thermometer that measures the dorsal (or ventral) temperature A radiation thermometer and a temperature measurement result of the first radiation thermometer are input, and an output corresponding to a deviation from a target temperature is output to a high frequency generator to target a ventral (or dorsal) temperature of bending deformation. A first temperature controller that controls the high-frequency generator so as to match the temperature, and a calculator that receives the temperature measurement results of the first radiation thermometer and the second radiation thermometer and calculates and outputs the temperature difference, The output of the computing unit is input and a preset temperature difference A second temperature controller for outputting a deviation, an inverter set to a frequency corresponding to an input from the second temperature controller, and a lateral movement of the high-frequency induction heating coil by an input from the second temperature controller. A sequencer for calculating a distance and outputting a rotation direction and a start command of a geared motor for moving the high-frequency induction heating coil in a screw feed mode to the inverter.

【0009】前記金属管の曲げ加工方法の他の一つを実
施するための本発明の金属管の曲げ加工装置の他の一つ
は、上記の金属管の曲げ加工装置に於いて、高周波誘導
加熱コイルに取り付けられ金属管の加熱部の曲げ変形の
腹側及び背側と略90度位相をずらした相対向する位置の
温度を測定する第三放射温度計及び第四放射温度計と、
この第三放射温度計及び第四放射温度計の測温結果が入
力されその温度差を演算し出力する第二演算器と、第二
演算器の出力が入力され予め設定された温度差との偏差
を出力する第三温度調節器と、該第三温度調節器からの
入力に応じた周波数に設定される第二インバータと、同
じく第三温度調節器からの入力により高周波誘導加熱コ
イルの縦方向の移動距離を算出し前記高周波誘導加熱コ
イルをねじ送り方式に縦方向に移動する第二ギャードモ
ータの回転方向及び起動指令を前記第二インバータに対
して出力する第二シーケンサとを備えたことを特徴とす
るものである。
Another embodiment of the metal pipe bending apparatus of the present invention for carrying out another one of the above metal pipe bending methods is the high frequency induction machine according to the above metal pipe bending apparatus. Bending deformation of the heating part of the metal tube attached to the heating coil
A third radiation thermometer and a fourth radiation thermometer that measure the temperature of the abdominal and dorsal sides and the position at the opposite position shifted by about 90 degrees ,
A second computing unit that receives the temperature measurement results of the third radiation thermometer and the fourth radiation thermometer and calculates and outputs the temperature difference between the second and third computing units. A third temperature controller that outputs a deviation, a second inverter that is set to a frequency corresponding to the input from the third temperature controller, and a longitudinal direction of the high-frequency induction heating coil that is also input by the third temperature controller. And a second sequencer that outputs a rotation direction and a start command of a second geared motor that calculates the moving distance of the second high-frequency induction heating coil and moves the high-frequency induction heating coil vertically in a screw feed manner to the second inverter. It is assumed that.

【0010】[0010]

【発明の実施の形態】本発明の金属管の曲げ加工方法及
びその装置の実施の形態について説明する。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of a method and apparatus for bending a metal pipe according to the present invention will be described.

【0011】先ず、金属管の曲げ加工方法の一つを実施
するための曲げ加工装置の一つを図1によって説明す
る。図1に於いて、1は曲げ加工する金属管で、この金
属管1は図3に示されると同様に冷却液3を噴射するノ
ズルを備えた高周波誘導加熱コイル2に挿通され、その
先端部が支点0を中心として旋回する曲げアーム4にク
ランプ5で把持される。
First, one of the bending apparatuses for performing one of the bending methods of the metal pipe will be described with reference to FIG. In FIG. 1, reference numeral 1 denotes a metal tube to be bent. The metal tube 1 is inserted into a high-frequency induction heating coil 2 having a nozzle for spraying a cooling liquid 3 as shown in FIG. Is gripped by the clamp 5 on the bending arm 4 that pivots about the fulcrum 0.

【0012】図1に示される金属管1の前記高周波誘導
加熱コイル2に加熱される部分の曲げ変形の腹側の温度
を測定する第一放射温度計6及び背側の温度を測定する
第二放射温度計7を、加熱コイル2の左右対称位置で外
周面から内周面に貫通穿設した透孔8に向けて加熱コイ
ル2に熱絶縁の支持具9を介して取り付けている。第一
放射温度計6は測定した温度の信号を増幅する増幅回路
10に接続し、増幅回路10は第一温度調節器11に接
続している。この第一温度調節器11は増幅回路10で
増幅されて入力された測定温度信号と予め設定された目
標温度信号との偏差を高周波発生装置12に対して出力
し、曲げ変形の腹側の温度を目標温度と一致させるよう
に高周波発生装置12の加熱電力を制御するものであ
る。13は演算器で、この演算器13は前記第一放射温
度計6で測定された温度信号を増幅回路10で増幅の上
入力された測定温度信号と第二放射温度計7で測定され
た温度信号を増幅回路14で増幅の上入力された測定温
度信号とにより温度差を演算し出力するものである。1
5は演算器13に接続され、演算器13から入力した温
度差と予め設定された温度差との偏差を出力する第二温
度調節器である。16は第二温度調節器15に接続さ
れ、該第二温度調節器15からの入力に応じた周波数に
設定されるインバータである。17は同じく第2温度調
節器15に接続され、該第二温度調節器15からの入力
により加熱コイル2の横方向の移動距離を算出し、前記
加熱コイル2をねじ送り方式に横方向に移動する駆動源
であるギャードモータ18の回転方向及び起動指令を前
記インバータ16に対して出力するシーケンサである。
加熱コイル2は、絶縁材を介在したすり割りアーム19
がトランス20のブースバー21に接続支持され、トラ
ンス20を設置固定したベース22が下側の支持台23
上のギャードモータ18の正逆回転により駆動されるボ
ールねじ軸24上に横方向に移動可能に支持されてい
る。
A first radiation thermometer 6 for measuring the temperature on the ventral side of the bending deformation of a portion of the metal tube 1 shown in FIG. 1 which is heated by the high-frequency induction heating coil 2, and a second temperature for measuring the temperature on the back side. A radiation thermometer 7 is attached to the heating coil 2 via a heat-insulating support 9 at a symmetrical position of the heating coil 2 toward a through hole 8 penetrating from the outer peripheral surface to the inner peripheral surface. The first radiation thermometer 6 is connected to an amplifier circuit 10 for amplifying a signal of the measured temperature, and the amplifier circuit 10 is connected to a first temperature controller 11. The first temperature controller 11 outputs a deviation between the measured temperature signal amplified and input by the amplifier circuit 10 and a preset target temperature signal to the high-frequency generator 12, and outputs the temperature on the ventral side of the bending deformation. The heating power of the high-frequency generator 12 is controlled so that is equal to the target temperature. Numeral 13 denotes an arithmetic unit. The arithmetic unit 13 amplifies the temperature signal measured by the first radiation thermometer 6 by the amplifier circuit 10 and inputs the measured temperature signal and the temperature measured by the second radiation thermometer 7. The signal is amplified by the amplifier circuit 14 and a temperature difference is calculated based on the measured temperature signal input and output. 1
Reference numeral 5 denotes a second temperature controller which is connected to the calculator 13 and outputs a deviation between the temperature difference input from the calculator 13 and a preset temperature difference. An inverter 16 is connected to the second temperature controller 15 and is set to a frequency corresponding to an input from the second temperature controller 15. Numeral 17 is also connected to the second temperature controller 15 to calculate the lateral movement distance of the heating coil 2 based on the input from the second temperature controller 15 and to move the heating coil 2 in the screw feed system in the lateral direction. The sequencer outputs a rotation direction and a start command of a geared motor 18 as a driving source to the inverter 16.
The heating coil 2 has a slit arm 19 with an insulating material interposed.
Are connected and supported by a booth bar 21 of a transformer 20, and a base 22 on which the transformer 20 is installed and fixed is connected to a lower support 23
It is supported on a ball screw shaft 24 driven by forward and reverse rotation of the upper gear motor 18 so as to be movable in the lateral direction.

【0013】このように構成された曲げ加工装置を用い
て金属管1を曲げ加工する本発明の曲げ加工方法の一つ
の実施例を説明すると、金属管1を高周波誘導加熱コイ
ル2に挿通し、その先端部を図3に示すように曲げアー
ム4にクランプ5で把持させ、加熱コイル2によって金
属管1を環状狭幅に加熱しながら、金属管1を前進さ
せ、曲げアーム4の旋回により曲げ加工するに於いて、
金属管1の加熱部の曲げ変形の腹側の一点の温度を、第
一放射温度計6により測定し、その測定温度の信号を増
幅回路10で増幅の上第一温度調節器11に送る。第一
温度調節器11は入力された測定温度信号と予め設定し
ておいた目標温度信号との偏差を高周波発生装置12に
出力する結果、高周波発生装置12は加熱コイル2に対
する高周波加熱電力を制御し、曲げ変形の腹側の一点の
温度を目標温度にする。一方この目標温度と対面する曲
げ変形の背側の温度を第二放射温度計7により測定し、
その測定温度の信号を増幅回路14で増幅の上演算器1
3に送る。演算器13では第一放射温度計6側から入力
された測定温度信号と第二放射温度計7側から入力され
た測定温度信号とにより温度差を演算し、この温度差を
第二温度調節器15に出力する。第二温度調節器15で
は演算器13から入力した温度差と予め設定された温度
差との偏差をインバータ16に出力する結果、該インバ
ータ16は偏差に応じた周波数に設定される。第二温度
調節器15から出力する偏差はシーケンサ17にも入力
され、ここで加熱コイル2の横方向の移動距離を算出
し、加熱コイル2をねじ送り方式に横移動する駆動源で
あるギャードモータ18の回転方向及び起動指令を前記
インバータ16に対して出力する。その結果、インバー
タ16はギャードモータ18の起動と正又は逆回転を開
始させ、ボールねじ軸24を同方向に回転し、ボールね
じ軸24上のベース22を所定距離横方向に移動し、ベ
ース22上のトランス20のブースバー21に接続支持
された加熱コイル2を一体に所定距離横方向に移動し、
加熱コイル2の位置を制御し、金属管1の加熱部の周方
向を加熱コイル2により全周等しく目標温度に加熱しな
がら曲げ加工する。このような加熱コイル2の温度制御
と位置制御は金属管1の曲げ加工終了まで連続して行わ
れ、曲げの進展による条件変化に対して温度制御と位置
制御が補完し合い、目標温度に保たれる。
One embodiment of the bending method according to the present invention for bending the metal tube 1 using the bending apparatus having the above-described configuration will be described. The metal tube 1 is inserted into the high-frequency induction heating coil 2. As shown in FIG. 3, the distal end is gripped by the bending arm 4 with the clamp 5, and the metal tube 1 is advanced while the metal tube 1 is heated to a narrow annular width by the heating coil 2, and the bending is performed by turning the bending arm 4. In processing
The temperature of one point on the belly side of the bending deformation of the heating portion of the metal tube 1 is measured by the first radiation thermometer 6, and the signal of the measured temperature is amplified by the amplifier circuit 10 and sent to the first temperature controller 11. The first temperature controller 11 outputs a deviation between the input measured temperature signal and a preset target temperature signal to the high frequency generator 12, so that the high frequency generator 12 controls the high frequency heating power for the heating coil 2. Then, the temperature at one point on the ventral side of the bending deformation is set as the target temperature. On the other hand, the temperature on the back side of the bending deformation facing this target temperature is measured by the second radiation thermometer 7,
The signal of the measured temperature is amplified by the amplifier circuit 14 and the arithmetic unit 1
Send to 3. The calculator 13 calculates a temperature difference based on the measured temperature signal input from the first radiation thermometer 6 and the measured temperature signal input from the second radiation thermometer 7, and calculates the temperature difference as a second temperature controller. 15 is output. The second temperature controller 15 outputs a difference between the temperature difference input from the arithmetic unit 13 and a preset temperature difference to the inverter 16, so that the inverter 16 is set to a frequency corresponding to the difference. The deviation output from the second temperature controller 15 is also input to the sequencer 17, where the movement distance of the heating coil 2 in the lateral direction is calculated, and a gear motor 18 which is a driving source for laterally moving the heating coil 2 in a screw feed system. Is output to the inverter 16. As a result, the inverter 16 starts the rotation of the geared motor 18 and starts the forward or reverse rotation, rotates the ball screw shaft 24 in the same direction, moves the base 22 on the ball screw shaft 24 in the lateral direction by a predetermined distance, and The heating coil 2 connected and supported by the booth bar 21 of the transformer 20 is integrally moved in the lateral direction by a predetermined distance,
The position of the heating coil 2 is controlled, and the circumferential direction of the heating portion of the metal tube 1 is bent by the heating coil 2 while being heated to the target temperature equally over the entire circumference. The temperature control and the position control of the heating coil 2 are continuously performed until the bending of the metal tube 1 is completed. The temperature control and the position control complement each other with respect to a change in conditions due to the progress of bending, and the target temperature is maintained. Dripping.

【0014】次に金属管の曲げ加工方法の他の一つを実
施するための曲げ加工装置の他の一つを図2によって説
明する。この曲げ加工装置は、前述の曲げ加工装置に於
いて、さらに金属管1の高周波誘導加熱コイル2に加熱
される部分の曲げ変形の腹側及び背側と略90度位相を
ずらした相対向する位置の温度を測定する第三放射温度
計25及び第四放射温度計26を加熱コイル2の上下位
置で外周面から内周面に貫通穿設した透孔8に向けて加
熱コイル2に熱絶縁の支持具9を介して取り付けてい
る。この第三放射温度計25及び第四放射温度計26は
夫々測定した温度の信号を増幅する増幅回路27,28
に接続し、増幅回路27,28は測定温度信号を入力し
その温度差を演算し出力する第二演算器29に接続し、
第二演算器29は入力される温度差と予め設定された温
度差との偏差に応じた出力をする第三温度調節器30に
接続している。31は第三温度調節器30に接続され、
第三温度調節器30からの入力に応じた周波数に設定さ
れる第二インバータである。32は同じく第三温度調節
器30に接続され、該第三温度調節器30からの入力に
より加熱コイル2の縦方向の移動距離を算出し、前記加
熱コイル2をねじ送り方式に縦方向に移動する駆動源で
ある第二ギャードモータ33の回転方向及び起動指令を
前記第二インバータ31に対して出力する第二シーケン
サである。加熱コイル2は、絶縁材を介在したすり割り
アーム19がトランス20のブースバー21に接続支持
されている点は前述の曲げ加工装置と同じであるが、ト
ランス20は第二ギャードモータ33の正逆回転により
駆動されるボールねじ軸34上に縦方向に移動可能に支
持された受台35上に設置固定され、ボールねじ軸34
はベース22の垂直壁22aに設けられ、ベース22は
下側の支持台23上のギャードモータ18の正逆回転に
より駆動されるボールねじ軸24上に横方向に移動可能
に支持されている。
Next, another embodiment of a bending apparatus for implementing another method of bending a metal pipe will be described with reference to FIG. In this bending apparatus, in addition to the bending apparatus described above, the phase of the metal tube 1 heated by the high-frequency induction heating coil 2 is substantially 90 degrees in phase with the ventral and dorsal sides of the bending deformation.
A third radiation thermometer 25 and a fourth radiation thermometer 26 for measuring the temperature of the displaced and opposed positions are heated at the upper and lower positions of the heating coil 2 from the outer peripheral surface to the through hole 8 penetrating through the inner peripheral surface. It is attached to the coil 2 via a heat insulating support 9. The third radiation thermometer 25 and the fourth radiation thermometer 26 are amplifier circuits 27 and 28 for amplifying the signal of the measured temperature, respectively.
, And the amplifier circuits 27 and 28 are connected to a second computing unit 29 which inputs the measured temperature signal, calculates and outputs the temperature difference,
The second computing unit 29 is connected to a third temperature controller 30 that outputs according to a difference between the input temperature difference and a preset temperature difference. 31 is connected to the third temperature controller 30;
The second inverter is set to a frequency according to the input from the third temperature controller 30. Numeral 32 is also connected to the third temperature controller 30 to calculate the vertical movement distance of the heating coil 2 based on the input from the third temperature controller 30 and to move the heating coil 2 in the screw feed system in the vertical direction. The second sequencer outputs a rotation direction and a start command of the second geared motor 33 as a driving source to the second inverter 31. The heating coil 2 is the same as the above-described bending apparatus in that a slit arm 19 with an insulating material interposed is connected to and supported by a booth bar 21 of a transformer 20. Is mounted and fixed on a receiving base 35 movably supported in a vertical direction on a ball screw shaft 34 driven by the
Is provided on a vertical wall 22a of a base 22, and the base 22 is supported movably in a lateral direction on a ball screw shaft 24 driven by forward and reverse rotation of a gear motor 18 on a lower support 23.

【0015】このように構成された曲げ加工装置を用い
て金属管1を曲げ加工する本発明の曲げ加工方法の他の
一つの実施例を説明すると、金属管1を高周波誘導加熱
コイル2に挿通し、その先端部を図3に示すように曲げ
アーム4にクランプ5で把持させ、加熱コイル2によっ
て金属管1を環状狭幅に加熱しながら、金属管1を前進
させ、曲げアーム4の旋回により曲げ加工するに於い
て、金属管1の加熱部の曲げ変形の腹側の一点の温度
を、前述の曲げ加工方法の場合と同様の制御により目標
温度にする。一方この目標温度と対面する曲げ変形の背
側の温度を、前述の曲げ加工方法の場合と同様に第二放
射温度計7により測定し、その測定温度の信号を増幅回
路14で増幅の上演算器13に送る。演算器13では第
一放射温度計6側から入力された測定温度信号と第二放
射温度計7側から入力された測定温度信号とにより温度
差を演算し、この温度差を第二温度調節器15に出力す
る。第二温度調節器15では演算器13から入力した温
度差と予め設定された温度差との偏差をインバータ16
に出力する結果、該インバータ16は偏差に応じた周波
数に設定される。第二温度調節器15から出力する偏差
はシーケンサ17にも入力され、ここで加熱コイル2の
横方向の移動距離を算出し、加熱コイル2を横方向に移
動する駆動源であるギャードモータ18の回転方向及び
起動の指令を前記インバータ16に対して出力する。そ
の結果、インバータ16はギャードモータ18の起動と
正又は逆回転を開始させ、ボールねじ軸24を同方向に
回転し、ボールねじ軸24上のベース22を所定距離横
方向に移動し、ベース22の垂直壁22aにボールねじ
軸34にて縦方向に移動可能に支持された受台35上の
トランス20のブースバー21に接続支持された加熱コ
イル2を一体に所定距離横方向に移動する。
Another embodiment of the bending method of the present invention for bending the metal tube 1 by using the bending apparatus configured as described above will be described. The metal tube 1 is inserted into the high-frequency induction heating coil 2. Then, as shown in FIG. 3, the bending arm 4 is gripped by the clamp 5 and the metal tube 1 is moved forward while the heating coil 2 heats the metal tube 1 to an annular narrow width. In the bending process, the temperature of one point on the ventral side of the bending deformation of the heating portion of the metal tube 1 is set to the target temperature by the same control as in the above-described bending method. On the other hand, the temperature on the back side of the bending deformation facing this target temperature is measured by the second radiation thermometer 7 in the same manner as in the above-described bending method, and the signal of the measured temperature is amplified by the amplifier circuit 14 and calculated. To the vessel 13. The calculator 13 calculates a temperature difference based on the measured temperature signal input from the first radiation thermometer 6 and the measured temperature signal input from the second radiation thermometer 7, and calculates the temperature difference as a second temperature controller. 15 is output. In the second temperature controller 15, the difference between the temperature difference input from the calculator 13 and the preset temperature difference is calculated by the inverter 16.
, The inverter 16 is set to a frequency corresponding to the deviation. The deviation output from the second temperature controller 15 is also input to the sequencer 17, where the movement distance of the heating coil 2 in the horizontal direction is calculated, and the rotation of the gear motor 18, which is a driving source for moving the heating coil 2 in the horizontal direction, is performed. A direction and start command are output to the inverter 16. As a result, the inverter 16 starts the rotation of the gear motor 18 in the forward or reverse direction, rotates the ball screw shaft 24 in the same direction, moves the base 22 on the ball screw shaft 24 in the lateral direction by a predetermined distance, and The heating coil 2 connected and supported by the booth bar 21 of the transformer 20 on the receiving table 35 supported on the vertical wall 22a by the ball screw shaft 34 so as to be movable in the vertical direction is integrally moved in the horizontal direction by a predetermined distance.

【0016】これと同様に金属管1の加熱部の曲げ変形
の腹側及び背側と略90度位相をずらした相対向する
置の温度を、第三放射温度計25及び第四放射温度計2
6により測定し、その測定温度の信号を夫々増幅回路2
7,28にて増幅の上第二演算器29に送る。第二演算
器29では第三放射温度計25側から入力された測定温
度信号と第四放射温度計26側から入力された測定温度
信号とにより温度差を演算し、この温度差を第三温度調
節器30に出力する。第三温度調節器30では第二演算
器29から入力した温度差と予め設定された温度差との
偏差を第二インバータ31に出力する結果、該第二イン
バータ31は偏差に応じた周波数に設定される。第三温
度調節器30から出力する偏差は第二シーケンサ32に
も入力され、ここで加熱コイル2の縦方向の移動距離を
算出し、加熱コイル2を縦方向に移動する駆動源である
第二ギャードモータ33の回転方向及び起動の指令を前
記第二インバータ31に対して出力する。その結果、第
二インバータ31は第二ギャードモータ33の起動と正
又は逆回転を開始させ、ボールねじ軸34を同方向に回
転し、ボールねじ軸34上の受台35を所定距離縦方向
に移動し、受台35上のトランス20のブースバー21
に接続支持された加熱コイル2を一体に所定距離縦方向
に移動する。
Similarly, bending deformation of the heating portion of the metal tube 1
The temperature at the position opposite to the ventral side and the back side of the radiator by approximately 90 degrees is measured by the third radiation thermometer 25 and the fourth radiation thermometer 2.
6, and the signals of the measured temperatures are respectively amplified by the amplifier circuits 2.
At 7 and 28, the signal is amplified and sent to the second computing unit 29. The second calculator 29 calculates a temperature difference based on the measured temperature signal input from the third radiation thermometer 25 and the measured temperature signal input from the fourth radiation thermometer 26, and calculates the temperature difference as a third temperature. Output to the controller 30. The third temperature controller 30 outputs the difference between the temperature difference input from the second computing unit 29 and the preset temperature difference to the second inverter 31. As a result, the second inverter 31 sets a frequency corresponding to the difference. Is done. The deviation output from the third temperature controller 30 is also input to the second sequencer 32, where the vertical movement distance of the heating coil 2 is calculated, and the second driving source, which is a driving source for moving the heating coil 2 in the vertical direction, is calculated. A rotation direction of the geared motor 33 and a start command are output to the second inverter 31. As a result, the second inverter 31 starts the forward or reverse rotation with the start of the second geared motor 33, rotates the ball screw shaft 34 in the same direction, and moves the cradle 35 on the ball screw shaft 34 in the vertical direction by a predetermined distance. Then, the booth bar 21 of the transformer 20 on the receiving stand 35
The heating coil 2 connected to and supported by the moving member is integrally moved by a predetermined distance in the vertical direction.

【0017】このようにして加熱コイル2を横方向及び
縦方向に所定距離移動して、加熱コイル2の位置を制御
し、金属管1の加熱部の周方向を、加熱コイル2により
全周等しく目標温度に加熱しながら曲げ加工する。この
ような加熱コイル2の温度制御と位置制御は金属管1の
曲げ加工終了まで連続して行われ、曲げの進展による条
件変化に対して温度制御と位置制御が補完し合い、目標
温度に保たれる。特に上記のように金属管1の加熱部の
曲げ変形の腹側及び背側と略90度位相をずらした相対
向する位置の温度も目標温度に制御すべく、加熱コイル
2を縦方向にも移動して位置制御した場合は、金属管1
の加熱部の全周の温度を正確に目標温度に設定できる。
In this manner, the heating coil 2 is moved in the horizontal and vertical directions by a predetermined distance to control the position of the heating coil 2 so that the circumferential direction of the heating portion of the metal tube 1 is made equal by the heating coil 2 over the entire circumference. Bending while heating to the target temperature. The temperature control and the position control of the heating coil 2 are continuously performed until the bending of the metal tube 1 is completed. The temperature control and the position control complement each other with respect to a change in conditions due to the progress of bending, and the target temperature is maintained. Dripping. In particular, as described above, the heating section of the metal tube 1
Relative phase shifted approximately 90 degrees from ventral and dorsal sides of bending deformation
If the position of the heating coil 2 is also moved in the vertical direction to control the temperature at the position to
The temperature of the entire circumference of the heating section can be accurately set to the target temperature.

【0018】尚、本発明の二つの金属管の曲げ加工方法
に於いては、加熱コイル2の横方向の移動、さらには縦
方向の移動の位置制御を行うことにより、加熱コイル2
と金属管1が接触する可能性があり、しかも金属管1の
曲げ加工による加熱部の外観形状が縦に長く横に短くな
って扁平となること、及び曲げ方向によって金属管1が
変形し、加熱コイル2と接触する可能性があることか
ら、直接的に加熱コイル2と金属管1の位置関係を測定
し、接触を感知するセンサを使用するものとする。勿
論、センサの金属部分は、高周波により加熱され使用す
ることができないので、銅管を空冷し、銅管と金属管1
の間に電位を持たせ、両者の接触によりスイッチングさ
せることで加熱コイル2と金属管1の接触を感知するよ
うにすると良い。
In the method of bending two metal tubes according to the present invention, the heating coil 2 is controlled by controlling the position of the heating coil 2 in the horizontal and vertical directions.
And the metal tube 1 may come into contact with each other, and furthermore, the external shape of the heating portion formed by bending the metal tube 1 becomes longer and shorter in the horizontal direction and becomes flat, and the metal tube 1 is deformed by the bending direction. Since there is a possibility of contact with the heating coil 2, a sensor that directly measures the positional relationship between the heating coil 2 and the metal tube 1 and detects the contact is used. Of course, since the metal part of the sensor is heated by high frequency and cannot be used, the copper tube is air-cooled and the copper tube and the metal tube 1 are cooled.
It is preferable to sense a contact between the heating coil 2 and the metal tube 1 by providing a potential between them and performing switching by contact between the two.

【0019】[0019]

【発明の効果】以上の説明で判るように本発明の金属管
の曲げ加工方法によれば、高周波誘導加熱コイルにより
金属管を加熱しながら曲げ加工する際、金属管の加熱部
の全周の温度を目標温度に的確に制御できるので、曲げ
加工部分の組織の均一化が達成される。
As can be seen from the above description, according to the metal pipe bending method of the present invention, when the metal pipe is bent while being heated by the high-frequency induction heating coil, the entire circumference of the heating portion of the metal pipe is heated. Since the temperature can be accurately controlled to the target temperature, the structure of the bent portion can be made uniform.

【0020】また、本発明の金属管の曲げ加工装置によ
れば、上記の優れた効果を奏する曲げ加工方法を円滑に
且つ適正に精度良く行うことができる。
Further, according to the metal pipe bending apparatus of the present invention, the bending method exhibiting the above-described excellent effects can be performed smoothly and appropriately accurately.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の金属管の曲げ加工方法の一つを実施す
る曲げ加工装置を示す図である。
FIG. 1 is a diagram showing a bending apparatus for performing one of the bending methods of a metal pipe according to the present invention.

【図2】本発明の金属管の曲げ加工方法の他の一つを実
施する曲げ加工装置を示す図である。
FIG. 2 is a view showing a bending apparatus for carrying out another method of bending a metal pipe according to the present invention.

【図3】一般的な金属管の曲げ加工方法の説明図であ
る。
FIG. 3 is an explanatory view of a general metal pipe bending method.

【符号の説明】[Explanation of symbols]

1 金属管 2 高周波誘導加熱コイル 3 冷却液 4 曲げアーム 5 クランプ 6 第一放射温度計 7 第二放射温度計 10 増幅回路 11 第一温度調節器 12 高周波発生装置 13 演算器 14 増幅回路 15 第二温度調節器 16 インバータ 17 シーケンサ 18 ギャードモータ 24 ボールねじ軸 25 第三放射温度計 26 第四放射温度計 27,28 増幅回路 29 第二演算器 30 第三温度調節器 31 第二インバータ 32 第二シーケンサ 33 第二ギャードモータ 34 ボールねじ軸 DESCRIPTION OF SYMBOLS 1 Metal tube 2 High frequency induction heating coil 3 Coolant 4 Bending arm 5 Clamp 6 First radiation thermometer 7 Second radiation thermometer 10 Amplification circuit 11 First temperature controller 12 High frequency generator 13 Computing unit 14 Amplification circuit 15 Second Temperature controller 16 Inverter 17 Sequencer 18 Gear motor 24 Ball screw shaft 25 Third radiation thermometer 26 Fourth radiation thermometer 27, 28 Amplification circuit 29 Second computing unit 30 Third temperature controller 31 Second inverter 32 Second sequencer 33 Second gear motor 34 Ball screw shaft

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 金属管を高周波誘導加熱コイルにより加
熱しながら曲げ加工するに於いて、金属管の加熱部の曲
げ変形の腹側又は背側のいずれか一点の温度を、高周波
加熱電力の制御により目標温度に保ち、一方この目標温
度と対面する位置での温度との差を取り、この温度差に
より高周波誘導加熱コイルの位置を制御し、金属管の加
熱部の周方向の温度を前記目標温度と全周等しくなし
て、金属管を高周波誘導加熱コイルにより加熱しながら
曲げ加工することを特徴とする金属管の曲げ加工方法。
When a metal tube is bent while being heated by a high-frequency induction heating coil, the temperature of one of an abdominal side and a back side of bending deformation of a heating portion of the metal tube is controlled by controlling high-frequency heating power. By maintaining the target temperature, the difference between the target temperature and the temperature at the position facing the target temperature is determined, and the position of the high-frequency induction heating coil is controlled by the temperature difference, and the temperature in the circumferential direction of the heating portion of the metal tube is set to the target temperature. A method for bending a metal tube, wherein the metal tube is bent while being heated at a temperature equal to the entire circumference and heated by a high-frequency induction heating coil.
【請求項2】 金属管を高周波誘導加熱コイルにより加
熱しながら曲げ加工するに於いて、金属管の加熱部の曲
げ変形の腹側又は背側のいずれか一点の温度を、高周波
加熱電力の制御により目標温度に保ち、一方この目標温
度と対面する位置での温度との差及び金属管の加熱部の
前記曲げ変形の腹側及び背側と略90度位相をずらした相
対向する位置での温度との差を取り、これらの温度差に
より高周波誘導加熱コイルの位置を制御し、金属管の加
熱部の周方向の温度を前記目標温度と全周等しくなし
て、金属管を高周波誘導加熱コイルにより曲げ加工する
ことを特徴とする金属管の曲げ加工方法。
2. A method of controlling a high-frequency heating power by heating a metal tube by a high-frequency induction heating coil while bending the metal tube at one point on the abdominal or back side of the bending deformation of the heating portion of the metal tube. To the target temperature, while the difference between the target temperature and the temperature at the position facing the
A phase that is approximately 90 degrees out of phase with the ventral and dorsal sides of the bending deformation
The difference between the temperature at the opposing position is taken, the position of the high-frequency induction heating coil is controlled by these temperature differences, the temperature in the circumferential direction of the heating section of the metal tube is made equal to the target temperature over the entire circumference, and the metal tube is heated. A metal tube by a high-frequency induction heating coil.
【請求項3】 金属管を高周波誘導加熱コイルにより加
熱しながら曲げ加工する装置に於いて、高周波誘導加熱
コイルに取り付けられ金属管の加熱部の曲げ変形の腹側
又は背側の温度を測定する第一放射温度計及び背側又は
腹側の温度を測定する第二放射温度計と、前記第一放射
温度計の測温結果が入力され目標温度との偏差に応じた
出力を高周波発生装置に対して出力し曲げ変形の腹側又
は背側の温度を目標温度と一致させるように高周波発生
装置を制御する第一温度調節器と、前記第一放射温度計
及び第二放射温度計の測温結果が入力されその温度差を
演算し出力する演算器と、該演算器の出力が入力され予
め設定された温度差との偏差を出力する第二温度調節器
と、該第二温度調節器からの入力に応じた周波数に設定
されるインバータと、同じく第二温度調節器からの入力
により高周波誘導加熱コイルの横方向の移動距離を算出
し前記高周波誘導加熱コイルをねじ送り方式に横方向に
移動するギャードモータの回転方向及び起動指令を前記
インバータに対して出力するシーケンサとを備えたこと
を特徴とする金属管の曲げ加工装置。
3. An apparatus for bending a metal tube while heating the metal tube with a high-frequency induction heating coil, wherein a temperature of a belly side or a back side of bending deformation of a heating portion of the metal tube attached to the high-frequency induction heating coil is measured. A first radiation thermometer and a second radiation thermometer for measuring the temperature of the back or the abdomen, and a temperature measurement result of the first radiation thermometer is input and an output corresponding to a deviation from a target temperature is output to the high frequency generator. And a first temperature controller for controlling the high-frequency generator so that the temperature on the abdominal or back side of the bending deformation matches the target temperature, and measuring the temperature of the first radiation thermometer and the second radiation thermometer. A computing unit to which the result is inputted and computes and outputs the temperature difference, a second temperature regulator to which the output of the computing unit is inputted and outputs a deviation from a preset temperature difference, and And the inverter set to the frequency according to the input of Similarly, the rotation direction and the start command of the geared motor that horizontally moves the high-frequency induction heating coil in the screw feed mode by calculating the lateral movement distance of the high-frequency induction heating coil based on the input from the second temperature controller are sent to the inverter. A bending device for a metal pipe, comprising: a sequencer for outputting to a metal pipe.
【請求項4】 請求項3記載の金属管の曲げ加工装置に
於いて、高周波誘導加熱コイルに取り付けられ金属管の
加熱部の曲げ変形の腹側及び背側と略90度位相をずらし
た相対向する位置の温度を測定する第三放射温度計及び
第四放射温度計と、この第三放射温度計及び第四放射温
度計の測温結果が入力されその温度差を演算し出力する
第二演算器と、該第二演算器の出力が入力され予め設定
された温度差との偏差を出力する第三温度調節器と、該
第三温度調節器からの入力に応じた周波数に設定される
第二インバータと、同じく第三温度調節器からの入力に
より高周波誘導加熱コイルの縦方向の移動距離を算出し
前記高周波誘導加熱コイルをねじ送り方式に縦方向に移
動する第二ギャードモータの回転方向及び起動指令を前
記第二インバータに対して出力する第二シーケンサとを
備えたことを特徴とする金属管の曲げ加工装置。
4. A metal pipe bending apparatus according to claim 3, wherein the heating section of the metal pipe is attached to the high-frequency induction heating coil, and the heating section of the metal pipe is shifted by approximately 90 degrees in phase from the ventral side and the back side.
And a third radiation thermometer and a fourth radiation thermometer for measuring the temperature at the opposed positions, and the temperature measurement results of the third radiation thermometer and the fourth radiation thermometer are input, and the difference between the temperatures is calculated and output. A second computing unit, a third temperature regulator to which an output of the second computing unit is input and outputs a deviation from a preset temperature difference, and a frequency set according to an input from the third temperature regulator. The second inverter and the rotation of the second geared motor that calculates the vertical moving distance of the high-frequency induction heating coil in the same manner as the input from the third temperature controller and moves the high-frequency induction heating coil in the screw feed system in the vertical direction. A second sequencer for outputting a direction and a start command to the second inverter.
JP7338199A 1995-12-01 1995-12-01 Metal pipe bending method and apparatus Expired - Lifetime JP3015805B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7338199A JP3015805B2 (en) 1995-12-01 1995-12-01 Metal pipe bending method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7338199A JP3015805B2 (en) 1995-12-01 1995-12-01 Metal pipe bending method and apparatus

Publications (2)

Publication Number Publication Date
JPH09155455A JPH09155455A (en) 1997-06-17
JP3015805B2 true JP3015805B2 (en) 2000-03-06

Family

ID=18315869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7338199A Expired - Lifetime JP3015805B2 (en) 1995-12-01 1995-12-01 Metal pipe bending method and apparatus

Country Status (1)

Country Link
JP (1) JP3015805B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5729059B2 (en) * 2011-03-22 2015-06-03 新日鐵住金株式会社 Heat-treated steel or bending member manufacturing apparatus and manufacturing method
CN103128142B (en) * 2013-02-06 2015-10-28 天津二十冶建设有限公司 The electrician's pipe swan neck system controlled based on PLC and bending method thereof

Also Published As

Publication number Publication date
JPH09155455A (en) 1997-06-17

Similar Documents

Publication Publication Date Title
JP4468125B2 (en) Friction stir welding method and apparatus
US4195506A (en) Method and apparatus for bending elongated materials
JPS6218245B2 (en)
JP3015805B2 (en) Metal pipe bending method and apparatus
JP2000126821A (en) Method for bending and device therefor
US3708354A (en) Method and apparatus for measuring and controlling the continuous annealing of a long length of metal tubing
JPS6025208B2 (en) Process and equipment for bending elongated items
JP2001293521A (en) Bending apparatus of tube
JPH08197146A (en) Position controller for high-frequency heating coil
JP2006351477A (en) High-frequency heating device, high-frequency heating method, and surface temperature sensor
JP3209549B2 (en) Metal tube bending method
JP3624017B2 (en) Hot bending method for metal pipe
JP3594262B2 (en) Metal tube bending method
JPH0261335B2 (en)
JPH04276010A (en) Method for conditioning forging
JP4644379B2 (en) High frequency induction heating method and apparatus
JPH0140578Y2 (en)
JPH02200317A (en) Hot bending method for steel tube
KR20190040549A (en) Bending measuring apparatus of turbine rotor
JP7538757B2 (en) Electrical heating system and electrode
JPS63220958A (en) Apparatus for controlling cast slab weight in continuous casting
JP2002343544A (en) High frequency moving heating method
JPH0243323A (en) Electrical heat treatment of bend part of u-bend pipe
JPH02147223A (en) Method for temperature control of mold clamping apparatus and device thereof
JPS59129727A (en) Production of heat treated bent pipe