JP4644379B2 - High frequency induction heating method and apparatus - Google Patents

High frequency induction heating method and apparatus Download PDF

Info

Publication number
JP4644379B2
JP4644379B2 JP2001117646A JP2001117646A JP4644379B2 JP 4644379 B2 JP4644379 B2 JP 4644379B2 JP 2001117646 A JP2001117646 A JP 2001117646A JP 2001117646 A JP2001117646 A JP 2001117646A JP 4644379 B2 JP4644379 B2 JP 4644379B2
Authority
JP
Japan
Prior art keywords
induction heating
frequency
heated
heating coil
frequency induction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001117646A
Other languages
Japanese (ja)
Other versions
JP2002313544A (en
Inventor
横尾  敏浩
勇 羽太
啓一 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denki Kogyo Co Ltd
Original Assignee
Denki Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kogyo Co Ltd filed Critical Denki Kogyo Co Ltd
Priority to JP2001117646A priority Critical patent/JP4644379B2/en
Publication of JP2002313544A publication Critical patent/JP2002313544A/en
Application granted granted Critical
Publication of JP4644379B2 publication Critical patent/JP4644379B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Description

【0001】
【発明の属する技術分野】
本発明は、高周波誘導加熱コイルと被加熱体とを互いに接触させることなく間隔を隔てた状態で、高周波誘導加熱コイルと被加熱体とを相対的に移動させながら被加熱体を高周波誘導加熱する方法及びその装置に関するものである。
【0002】
【従来の技術】
このような高周波誘導加熱方法及び装置は、従来より、平面或いは非平面でかつ長手方向に延びる加熱対象領域を有する長尺状部品を高周波移動加熱するために用いられている。従来においては、多くの場合、目視によって高周波誘導加熱コイルと被加熱体との間の間隔(相対距離)を確認しながら手動で高周波誘導加熱コイルと被加熱体との間の距離を加熱に適正な距離に保持するように調整を行なっていた。しかし、目視による調整を行なうには熟練した作業者でなければならず、しかも、たとえ熟練者が上述の如き距離調整(間隔調整)を行なったとしても、適正な距離に正確に調整するのは極めて難しいのが実状である。特に、被加熱体の加熱対象領域において高周波誘導加熱コイルと被加熱体との相対移動速度が速くなると、熟練者であっても前記距離の調整が困難になる。
【0003】
そこで、このような実状に鑑みて、図3及び図4に示すように変位センサ1を備えた高周波誘導加熱装置2が従来より用いられている。本装置2は、多関節ロボット(図1では図示しない)を使用し、前記多関節ロボットのアームの先端に設けられた固定台4と、この固定台4に固定された小型変成器5と、この小型変成器5に取付けられた高周波誘導加熱コイル6と、小型変成器5に電源を供給するためのフレキシブル水冷ケーブル7とをそれぞれ有しており、上述の固定台4に変位センサ1が付設されている。ここで用いられている変位センサ1は、被加熱体8に接触した状態で使用される接触式のものであって(図5〜図7参照)、高周波誘導加熱コイル6の近傍位置に対応配置されている。なお、上述の高周波誘導加熱コイル6には、図5〜図7に示すように、加熱効率を向上させるために磁性材料9が配置されている。
【0004】
かくして、上述の高周波誘導加熱装置2を用いて高周波誘導加熱を行なう際には、高周波誘導加熱コイル6の近傍に配置された変位センサ1にて高周波誘導加熱コイル6と被加熱体8(図5図7参照)との間の距離を検知し、その検知信号を高周波誘導加熱コイル6と被加熱体8との間の距離を相対的に変化させる機構(図示せず)にフィードバックすることにより、前記距離を調整しながら高周波誘導加熱を行なうようにしている。
【0005】
【発明が解決しようとする課題】
しかしながら、上述の如く変位センサ1を使用して高周波誘導加熱コイル6と被加熱体8との距離を調整するようにした従来の高周波誘導加熱装置2では、変位センサ1と高周波誘導加熱コイル6との相対的な位置関係が被加熱体8の加熱面の形状に応じて変動してしまうため、高周波誘導加熱コイル6と被加熱体8との間の距離を正確に検出することができず、従って前記距離の調整を適正に行なうことができない場合がある。
【0006】
この点について具体的に詳述すると、次の通りである。先ず、図5に示す如く、被加熱体8の加熱対象領域が平坦面Sである場合、変位センサ1が距離測定を行なう際の基準面(平坦面)Pを設定し、この基準面Pから高周波誘導加熱コイル6の基準点Tまでの距離をL(一定値)とし、高周波誘導加熱コイル6と被加熱体8との間の加熱に適正な距離をdとし、基準面Pから変位センサ1の先端の接触ローラ1aまでの距離すなわち前記基準面Pから被加熱体8と前記接触ローラ1aとの接触点Mまでの距離をLとすると、被加熱体8の加熱対象領域(被加熱面)が平坦面であることから、d=L−Lとなる。そこで、被加熱体8の加熱対象領域が平坦面である場合には、基準面Pから変位センサ1の先端の接触ローラ1aまでの距離がLの時に高周波誘導加熱コイル6と被加熱体8との間の距離が適正距離(適正値)dとなるように加熱コイル移動機構3を図外の多関節ロボットにて作動するように設定することにより、変位センサ1による距離計測の結果に基づいて、高周波誘導加熱コイル6と被加熱体8との間の距離を適正距離dに調整制御することが可能である。
【0007】
しかし、図6に示す如く被加熱体8の加熱対象領域が凸状の円弧形状面Sであるような場合に上述のような条件の下で距離の調整制御を行なうようにすると、次のような不具合を生じる。なお、図6に示す状態は、高周波誘導加熱を開始していない状態であって、高周波誘導加熱コイル6が被加熱体8の円弧形状面Sに適正距離dを隔てて配置されると共に変位センサ1の先端の接触ローラ1aが円弧形状面Sに接触された時点の状態である。この場合、高周波誘導加熱コイル6と被加熱体8の加熱対象領域(円弧形状面S)との間の距離が適正距離dであっても、被加熱体8の加熱対象領域が円弧形状面Sであるため、基準面Pから変位センサ1の先端の接触ローラ1aまでの距離Lが前記距離Lよりも大きくなる(L>L)。従って、図5の場合に較べて(L−L)に相当する距離分だけ高周波誘導加熱コイル6と被加熱体8との間の間隔が離れたような状態として測定(検出)してしまうこととなり、高周波誘導加熱コイル6が適正位置に配置されているにも拘わらず、高周波誘導加熱コイル6を被加熱体8に近づけるような移動制御がなされてこれらの間の距離が適正距離dよりも狭く設定される結果となる。かくして、このような場合には、高周波誘導加熱コイル6と被加熱体8の円弧形状面Sとの間の距離を適正距離dに保持することができなくなる。
【0008】
さらに、図6に示す状態にした後に高周波誘導加熱を開始すると、図7に示す如く被加熱体Sの円弧形状面Sが熱膨張等により加熱前の状態から変化量Zだけ膨出変形し、その変化量Zの分だけ高周波誘導加熱コイル6に接近し、高周波誘導加熱コイル6と被加熱体8の円弧形状面Sとの間の距離d´はd´=d−Z<dとなる。なお、図7において、破線αは変形前における被加熱体8の形状を示している。この場合、前記距離d´の値は加熱に適正な距離d値よりも小さくなるので、被加熱体8が必要以上に過熱されてしまうか、或いは高周波誘導加熱コイル6が被加熱体8に接触してしまうおそれがある。
【0009】
また、図示を省略したが、被加熱体8の加熱対象領域の形状が凹状の円弧形状面である場合には、上記とは全く逆の現象が生じる。この場合には、高周波誘導加熱コイル6が被加熱体8の円弧形状面に対して適正距離dよりも大きな距離を隔てた位置に調整制御されることとなり、このため高周波誘導加熱が充分に行われず、しかも加熱効率が低下することとなる。
【0010】
本発明は、このような不具合を解消するためになされたものであって、その目的は、作業者の熟練を必要とせず、被加熱体の加熱対象領域がどのような形状であっても適正に高周波誘導加熱を行なうことができるような高周波誘導加熱方法及び装置を提供することにある。
【0011】
【課題を解決するための手段】
上述の目的を達成するために、本発明では、平面及び曲面を有する被加熱体を載置具に固定した状態で、多関節ロボットのアームの先端部に設けられた高周波誘導加熱コイルを前記被加熱体に沿って移動させて、前記被加熱体を高周波誘導加熱する方法が提供される。当該方法において、前記高周波誘導加熱コイルは、一定の高周波出力電圧を供給する高周波電源に接続されており、前記高周波誘導加熱コイルを前記被加熱体に沿って移動させる際に、前記高周波誘導加熱コイルと前記被加熱体と互いに接触ることなく間隔を隔てた状態になっており、
前記高周波誘導加熱コイルと前記被加熱体との間の距離の変化に伴って変化する前記高周波電源の高周波出力電流及び発振周波数のうちの少なくとも1つについての変化量を検出し
(a)前記発振周波数が所定の周波数の値より大きくなった場合は、前記高周波誘導加熱コイルと前記被加熱体との間の距離を大きくし、前記発振周波数が前記所定の周波数の値より小さくなった場合は、前記高周波誘導加熱コイルと前記被加熱体との間の距離を小さくし、
(b)前記高周波出力電流が所定の電流値より大きくなった場合は、前記高周波誘導加熱コイルと前記被加熱体との間の距離を大きくし、前記高周波出力電流が前記所定の電流値より小さくなった場合は、前記高周波誘導加熱コイルと前記被加熱体との間の距離を小さくし、
これにより、前記高周波誘導加熱コイルと前記被加熱体との間の距離を加熱に適正な距離に常に保持するようにしている。
また、本発明は平面及び曲面を有する被加熱体を高周波誘導加熱する装置であって、
(a)前記被加熱体を載置する載置具と、
(b)アームを有する多関節ロボットと、
前記多関節ロボットのアームの先端部に設けられ、前記被加熱体の加熱対象領域に対応配置される高周波誘導加熱コイルと、
)前記高周波誘導加熱コイルに一定の高周波出力電圧を供給するように構成された高周波電源と、
)前記高周波電源の高周波出力電流及び発振周波数のうちの少なくとも1つについての変化量を検出する検出手段と、
)前記検出手段にて検出された変化量に基づいて、前記高周波誘導加熱コイルを前記被加熱体に対して移動させて、前記高周波誘導加熱コイルと前記被加熱体との相対距離を調整する制御手段と、
をそれぞれ備え、
前記制御手段は、前記高周波誘導加熱コイルと前記被加熱体とが互いに接触することなく間隔を隔てた状態になるように前記前記多関節ロボットの前記アームを制御するものであり、
前記制御手段は、
前記発振周波数が所定の周波数の値より大きくなった場合は、前記高周波誘導加熱コイルと前記被加熱体との間の距離を大きくし、前記発振周波数が前記所定の周波数の値より小さくなった場合は、前記高周波誘導加熱コイルと前記被加熱体との間の距離を小さくするように前記多関節ロボットの前記アームを制御し、
前記高周波出力電流が所定の電流値より大きくなった場合は、前記高周波誘導加熱コイルと前記被加熱体との間の距離を大きくし、前記高周波出力電流が前記所定の電流値より小さくなった場合は、前記高周波誘導加熱コイルと前記被加熱体との間の距離を小さくするように前記多関節ロボットの前記アームを制御し、
これにより、前記高周波誘導加熱コイルを前記被加熱体に対して加熱に適正な距離を保持する位置に常に配置するようにしている。
また、本発明は平面及び曲面を有する被加熱体を高周波誘導加熱する装置であって、
(a)前記被加熱体を載置する載置具と、
(b)アームを有する多関節ロボットと、
前記多関節ロボットのアームの先端部に設けられ、前記被加熱体の加熱対象領域に対応配置される高周波誘導加熱コイルと、
)前記高周波誘導加熱コイルに一定の高周波出力電流を供給するように構成された高周波電源と、
)前記高周波電源の発振周波数についての変化量を検出する検出手段と、
)前記検出手段にて検出された変化量に基づいて、前記高周波誘導加熱コイルを前記被加熱体に対して移動させて前記高周波誘導加熱コイルと前記被加熱体との相対距離を調整する制御手段と、
をそれぞれ備え、
前記制御手段は、前記高周波誘導加熱コイルと前記被加熱体とが互いに接触することなく間隔を隔てた状態になるように前記前記多関節ロボットの前記アームを制御するものであり、
前記制御手段は、
前記発振周波数が所定の周波数の値より大きくなった場合は、前記高周波誘導加熱コイルと前記被加熱体との間の距離を大きくし、前記発振周波数が前記所定の周波数の値より小さくなった場合は、前記高周波誘導加熱コイルと前記被加熱体との間の距離を小さくするように前記多関節ロボットの前記アームを制御し、
これにより、前記高周波誘導加熱コイルを前記被加熱体に対して加熱に適正な間隔を保持する位置に常に配置するようにしている。
また、本発明は平面及び曲面を有する被加熱体を高周波誘導加熱する装置であって、
(a)前記被加熱体を載置する載置具と、
(b)アームを有する多関節ロボットと、
前記多関節ロボットのアームの先端部に設けられ、前記被加熱体の加熱対象領域に対応配置される高周波誘導加熱コイルと、
)前記高周波誘導加熱コイルに一定の高周波出力電力を供給するように構成された高周波電源と、
)前記高周波電源高周波出力電流及び発振周波数のうちの少なくとも1つについての変化量を検出する検出手段と、
)前記検出手段にて検出された変化量に基づいて、前記高周波誘導加熱コイルを前記被加熱体に対して移動させて前記高周波誘導加熱コイルと前記被加熱体との相対距離を調整する制御手段と、
をそれぞれ備え、
前記制御手段は、前記高周波誘導加熱コイルと前記被加熱体とが互いに接触することなく間隔を隔てた状態になるように前記前記多関節ロボットの前記アームを制御するものであり、
前記制御手段は、
前記発振周波数が所定の周波数の値より大きくなった場合は、前記高周波誘導加熱コイルと前記被加熱体との間の距離を大きくし、前記発振周波数が前記所定の周波数の値より小さくなった場合は、前記高周波誘導加熱コイルと前記被加熱体との間の距離を小さくするように前記多関節ロボットの前記アームを制御し、
前記高周波出力電流が所定の電流値より大きくなった場合は、前記高周波誘導加熱コイルと前記被加熱体との間の距離を大きくし、前記高周波出力電流が前記所定の電流値より小さくなった場合は、前記高周波誘導加熱コイルと前記被加熱体との間の距離を小さくするように前記多関節ロボットの前記アームを制御し、
これにより、前記高周波誘導加熱コイルを前記被加熱体に対して加熱に適正な間隔を保持する位置に常に配置するようにしている。
【0012】
高周波誘導加熱コイルと被加熱体を相対的に移動させながら高周波誘導加熱する際、高周波出力電圧を一定とした場合、高周波電源から出力される高周波出力電流、高周波電源の発振周波数、及び、高周波誘導加熱コイルに流れる高周波電流は、高周波誘導加熱コイルと被加熱体との距離の変化に伴い変化する。その高周波出力電流の変化量、発振周波数の変化量、若しくは高周波誘導加熱コイルに流れる高周波電流の変化量の少なくとも1つの変化量を、高周波誘導加熱コイルと被加熱体との相対位置を変化させる機構を備えた装置の制御ユニットにフィードバックすることによって、高周波誘導加熱コイルと被加熱体との間の距離を加熱に適正な距離に保持しながら高周波誘導加熱コイルと被加熱体を相対的に移動させて高周波誘導加熱を行なうことが可能になる。これは、高周波出力電流或いは高周波出力電力を一定とした場合でも同様である。高周波出力電流を一定とした場合には、高周波出力電圧の変化量及び発振周波数の変化量のうちの少なくとも1つの変化量に基づいて、また高周波出力電力を一定とした場合には、高周波出力電圧の変化量、高周波出力電流の変化量、発振周波数の変化量、及び高周波誘導加熱コイルに流れる高周波電流の変化量のうちの少なくとも1つの変化量に基づいて、高周波誘導加熱コイルと被加熱体との間の距離を加熱に適正な距離に保持しながら高周波誘導加熱コイルと被加熱体を相対的に移動させて高周波誘導加熱を行なうことが可能になる。
【0013】
【発明の実施の形態】
以下、本発明の実施形態について図1及び図2を参照して説明する。なお、図1及び図2において、図3〜図7と同様の部分には同一の符号を付して重複する説明を省略する。
【0014】
図1及び図2は、本発明の一実施形態に係る高周波誘導加熱方法を施行する高周波誘導加熱装置10を示すものである。図1及び図2に示すように、高周波誘導加熱装置10は、自動車のボディーパネル11を被加熱体(加熱対象)とし、載置治具12上に固定されたボディーパネル(被加熱体)11に対して高周波誘導加熱コイル6を相対的に移動させることにより、ボディーパネル(被加熱体)11の所要の加熱対象領域を焼入処理等のために高周波誘導加熱する装置である。なお、高周波誘導加熱コイル6の移動手段として多関節ロボット13が用いられており、後に詳述する如く、この多関節ロボット13を駆動制御する駆動制御ユニット14(図2参照)に所要の指令信号が入力されるのに応じて、高周波誘導加熱コイル6とボディーパネル(被加熱体)11との間の距離が適正距離に調整されるようになっている。
【0015】
多関節ロボット13のアーム3の先端部分には固定台4が取付られ、この固定台4に小型変成器5が取付けられている。そして、小型変成器5は、多関節ロボット13のアームの動きを妨げないようなフレキシブルな水冷ケーブル25を介して高周波電源(高周波発振器)15に接続されると共に、この小型変成器5に高周波誘導加熱コイル6が接続されている。また、上述の高周波誘導加熱コイル6には、加熱効率を向上させるための磁性材料(図示せず)が取付けられている。一方、被加熱体であるボディーパネル(被加熱体)11を載置するための載置治具12は、アンカーボルト等で床面に固定されている。さらに、図1に示すように、焼入冷却水供給用ホース16がアーム3に沿って配設され、この焼入冷却水供給用ホース16を介して供給される焼入冷却水をボディーパネル(被加熱体)11の加熱部分に向けて噴射する焼入冷却ジャケット17が高周波誘導加熱コイル6近傍箇所に配置されている。
【0016】
かくして、高周波電源(高周波発振器)15により通電状態となされている高周波誘導加熱コイル6が、載置治具12上に載置されたボディーパネル(被加熱体)11の加熱対象領域に対して後述の如く常に適正な間隔を保持した状態で加熱対象領域の始端から終端まで多関節ロボット13により移動されて高周波誘導加熱が行なわれ、しかる後にその加熱部分に焼入冷却ジャケット17から焼入水が噴射されて焼入処理がなされるようになっている。
【0017】
また、上述の高周波誘導加熱装置10は、上述の高周波誘導加熱に際して高周波誘導加熱コイル6とボディーパネル(被加熱体)11との間の距離を常に適正な距離に保持するための制御系20(図2参照)を備えている。なお、制御系20を構成するに当たっては、高周波電源(高周波発振器)15の高周波出力電圧を一定とした状態の下で、高周波誘導加熱コイル6と被加熱体(例えばボディーパネル(被加熱体)11)との間の距離dを変化させて、高周波電源(高周波発振器)15から出力される高周波出力電流(高周波電源(高周波発振器)15内の高周波電流)、及び、高周波電源(高周波発振器)15の発振周波数(駆動周波数)をそれぞれ計測した。それにより得られたデータは、下記の表1に示す如くであった。
【0018】
【表1】

Figure 0004644379
【0019】
上記の表1に示されるデータを勘案した結果、高周波電源(高周波発振器)15の高周波出力電圧を一定とした状態の下では、前記距離dが変化するのに伴って高周波出力電流及び発振周波数が変化することが確認された。そこで、本実施形態においては、図2のような構成の制御系20を用いて高周波出力電流の変化を多関節ロボット13の駆動制御ユニット14にフィードバックして高周波誘導加熱コイル6とボディーパネル(被加熱体)11との間の距離を常に適正な距離となるように調整するようにしている。
【0020】
図2に示す制御系20は、高周波電源(高周波発振器)15から出力される高周波出力電圧を一定とした状態の下で、高周波誘導加熱コイル6とボディーパネル(被加熱体)11との間の距離dを適正な距離dに設定し得るような構成となっている。具体的には、上述の制御系20は、図2に示すように、高周波電源(高周波発振器)15から出力される高周波出力電圧を検出する出力電圧検出器21と、この出力電圧検出器21から出力される電圧検出値と予め基準値として設定されている電圧設定値とを比較してその比較値に応じた高周波出力電圧調整指令を高周波電源(高周波発振器)15に入力する出力電圧調整指令出力回路22と、高周波電源(高周波発振器)15から出力される高周波出力電流を検出するための出力電流検出器23と、この出力電流検出器23にて検出された高周波出力電流と予め基準値として設定されている電流設定値とを比較してその比較値に応じた距離調整指令を多関節ロボット13の駆動制御ユニット14に入力する距離調整指令出力回路24とから構成されている。
【0021】
上述の制御系20により高周波誘導加熱装置10は、次のように制御される。まず、高周波誘導加熱コイル6を通電状態にしてボディーパネル(被加熱体)11の加熱対象領域を高周波誘導加熱しているときに、高周波電源(高周波発振器)15の高周波出力電圧が出力電圧検出器21にて検出され、検出された高周波出力電圧に応じて高周波出力電圧調整指令信号が出力電圧調整指令出力回路22から多関節ロボット13の駆動制御ユニット14に送られ、これに基づいて、高周波電源(高周波発振器)15から出力される高周波出力電圧が常に一定に維持される。
【0022】
このような状態(出力電圧一定状態)の下で、高周波誘導加熱コイル6とボディーパネル(被加熱体)11との間の距離が変化するのに応じて高周波電源(高周波発振器)15からの高周波出力電流が変化すると、その変化量が出力電流検出器23及び距離調整指令出力回路24により検出され、その変化量に応じて、距離調整指令信号が多関節ロボット13の駆動制御ユニット14に入力される。これにより、多関節ロボット13が上述の距離調整指令信号に基づいて作動されるのに伴って、高周波誘導加熱コイル6とボディーパネル(被加熱体)11との間の距離dが常に適正距離dとなるように調整制御される。
【0023】
すなわち、本実施形態では、高周波誘導加熱中に高周波誘導加熱コイル6に供給される高周波電流を検知して増幅し、その変化量を多関節ロボット13のアームの移動量に変換して成る距離調整指令信号を多関節ロボット13の駆動制御ユニット14に入力し、これにより、高周波誘導加熱コイル6とボディーパネル(被加熱体)11との間の距離dが常に加熱に適正な距離dを保つように多関節ロボット13を制御するように構成している。
【0024】
また、上述の実施形態では、高周波電源(高周波発振器)15から出力される高周波出力電圧を一定にした状態の下で高周波誘導加熱中における高周波出力電流の変化量をフィードバック要素としているが、これに限らず、高周波出力電圧を一定にした状態の下で高周波電源(高周波発振器)15の発振周波数の変化量のみ、或いは、発振周波数の変化量及び既述の高周波出力電流の変化量の組合せ、それらを比較した結果をフィードバック要素として用いるようにしても良い。この場合にも、既述の実施形態と同様に、高周波誘導加熱コイル6とボディーパネル(被加熱体)11との間の距離dを常に適正距離dに保持することができる。
【0025】
また、高周波電源(高周波発振器)15から出力される高周波出力電流を一定にした状態の下で、高周波誘導加熱中に高周波電源(高周波発振器)15から出力される高周波出力電圧及び発振周波数のうちの少なくとも1つについての変化量を検出し、その変化量に基づいて多関節ロボット13を作動させて高周波誘導加熱コイル6とボディーパネル(被加熱体)11との間の距離dを適正距離dに調整制御するようにしても良い。
【0026】
また、高周波電源(高周波発振器)15から出力される高周波出力電力を一定にした状態の下で、高周波誘導加熱中に高周波電源(高周波発振器)15から出力される高周波出力電圧高周波出力電流、及び発振周波数のうちの少なくとも1つについての変化量を検出し、その変化量に基づいて多関節ロボット13を作動させて高周波誘導加熱コイル6とボディーパネル(被加熱体)11との間の距離dを適正距離dに調整制御するようにしても良い。
【0027】
また、高周波電源(高周波発振器)15から出力される高周波出力電圧又は高周波出力電力を一定にした状態の下で、高周波誘導加熱中に高周波誘導加熱コイルに流れる高周波電流の変化量を検出し、その変化量に基づいて多関節ロボット13を作動させて高周波誘導加熱コイル6とボディーパネル(被加熱体)11との間の距離dを適正距離dに調整制御するようにしても良い。このように高周波誘導加熱コイル6に流れる高周波電流の変化量をフィードバック要素とした場合には、距離調整をより高精度で行なうことが可能となる。なお、高周波誘導加熱コイル6に流れる高周波電流の計測(検出)のために、例えばロゴスキータイプの電流検出器等を使用することにより装置をコンパクトにすることができる。
【0028】
以上、本発明の実施形態につき述べたが、本発明はこれらの実施形態に限定されるものではなく、本発明の技術的思想に基づいて各種の変形及び変更が可能である。例えば、既述の実施形態では、被加熱体(ボディーパネル(被加熱体)11等)を固定して高周波誘導加熱コイル6を移動させながら加熱を行なうようにしているが、高周波誘導加熱コイル6を固定(静止)した状態で被加熱体を移動させる場合でも本発明を適用できることは言う迄もない。また、被加熱体としては、ボディーパネル(被加熱体)11の限らず、その他の各種の部材である場合にも本発明を適用可能である。
【0029】
【発明の効果】
以上の如く、本発明は、高周波誘導加熱コイルと被加熱体を相対的に移動させながら高周波誘導加熱する際に、高周波誘導加熱コイルと被加熱体との距離の変化に伴って変化する発振周波数、出力電圧、出力電流、及び高周波誘導加熱コイルに流れる高周波電流のうちの少なくとも1つについての変化量を検出し、この変化量に基づいて、前記高周波誘導加熱コイルと被加熱体との相互間の距離を加熱に適正な距離に常に保持するようにしたものであるから、手動による距離(間隔)調整のように作業者の熟練を必要とせず、また特に被加熱体の加熱対象領域が非平面でかつ複雑な形状であったとしても、従来のように変位センサを使用する場合に較べてより平易にしかも適正に高周波誘導加熱することが可能となる。さらに、本発明によれば、変位センサを使用しないので高周波誘導加熱コイルの周辺の構造を簡素化することができる。
【図面の簡単な説明】
【図1】本発明の一実施形態に係る高周波誘導加熱装置の側面図である。
【図2】図1の高周波誘導加熱装置に備えられた制御系の構成を示す構成図である。
【図3】接触式変位センサを備えた従来の高周波誘導加熱装置の正面図である。
【図4】図6の高周波誘導加熱装置の側面図である。
【図5】被加熱体の加熱面が平坦面である場合における被加熱体、変位センサ及び高周波誘導加熱コイルの配置関係を示す側面図である。
【図6】被加熱体の加熱面が凸状の円弧形状面である場合における被加熱体、変位センサ及び高周波誘導加熱コイルの加熱開始前の配置関係を示す側面図である。
【図7】加熱開始後に被加熱体が熱膨張した状態を示す図6と同様の側面図である。
【符号の説明】
1 変位センサ
2 高周波誘導加熱装置(図3、図4)
アーム
4 固定台
5 小型変成器
6 高周波誘導加熱コイル
7 フレキシブル水冷ケーブル(図3、図4)
8 被加熱体
9 磁性材料
10 高周波誘導加熱装置
11 ボディーパネル(被加熱体)
13 多関節ロボット
14 駆動制御ユニット
15 高周波電源(高周波発振器)
16 焼入冷却水供給用ホース
17 焼入冷却ジャケット
20 制御系
21 出力電圧検出器
22 出力電圧調整指令出力回路
23 出力電流検出器
24 距離調整指令出力回路
25 水冷ケーブル [0001]
BACKGROUND OF THE INVENTION
The present invention performs high frequency induction heating of a heated body while relatively moving the high frequency induction heating coil and the heated body with the high frequency induction heating coil and the heated body spaced apart from each other without contacting each other. The present invention relates to a method and apparatus.
[0002]
[Prior art]
Such high-frequency induction heating method and apparatus, conventionally, are needed use the elongated part having a heating target region extending in a plane or non-plane a and the longitudinal direction to a high frequency movement heating. Conventionally, in many cases, the distance between the high-frequency induction heating coil and the heated body is manually appropriate for heating while visually confirming the distance (relative distance) between the high-frequency induction heating coil and the heated body. Adjustments were made to maintain a proper distance. However, it is necessary to be a skilled worker to perform visual adjustment, and even if the skilled person performs the distance adjustment (spacing adjustment) as described above, it is not necessary to accurately adjust to an appropriate distance. The actual situation is extremely difficult. In particular, if the relative movement speed of the high-frequency induction heating coil and the heated body is increased in the heating target area of the heated body, it is difficult for the skilled person to adjust the distance.
[0003]
In view of this situation, a high-frequency induction heating device 2 having a displacement sensor 1 as shown in FIGS. 3 and 4 has been conventionally used. This apparatus 2 uses an articulated robot (not shown in FIG. 1), and includes a fixed base 4 provided at the tip of an arm of the articulated robot, a small transformer 5 fixed to the fixed base 4, A high-frequency induction heating coil 6 attached to the small transformer 5 and a flexible water-cooled cable 7 for supplying power to the small transformer 5 are provided, and the displacement sensor 1 is attached to the fixed base 4 described above. Has been. The displacement sensor 1 used here is a contact type that is used in contact with the object to be heated 8 (see FIGS. 5 to 7), and is arranged corresponding to the position near the high-frequency induction heating coil 6. Has been. In addition, as shown in FIGS. 5-7, the magnetic material 9 is arrange | positioned in the above-mentioned high frequency induction heating coil 6 in order to improve heating efficiency.
[0004]
Thus, when high-frequency induction heating is performed using the above-described high-frequency induction heating device 2, the high-frequency induction heating coil 6 and the object to be heated 8 ( FIG. 5) are detected by the displacement sensor 1 disposed in the vicinity of the high-frequency induction heating coil 6 . by detecting the distance between the reference to FIG. 7), and feeds back the detection signal to the mechanism for relatively changing the distance between the high-frequency induction heating coil 6 and the heated body 8 (not shown) The high-frequency induction heating is performed while adjusting the distance.
[0005]
[Problems to be solved by the invention]
However, in the conventional high-frequency induction heating device 2 in which the distance between the high-frequency induction heating coil 6 and the object to be heated 8 is adjusted using the displacement sensor 1 as described above, the displacement sensor 1, the high-frequency induction heating coil 6, Since the relative positional relationship of fluctuates according to the shape of the heating surface of the heated body 8, the distance between the high frequency induction heating coil 6 and the heated body 8 cannot be accurately detected, Therefore, the distance may not be adjusted properly.
[0006]
This point will be specifically described as follows. First, as shown in FIG. 5, and set to be when heating the target area of the heating member 8 is flat surfaces S 1, a reference plane (flat surface) when the displacement sensor 1 performs a distance measurement P o, the reference plane The distance from P o to the reference point T of the high-frequency induction heating coil 6 is L o (a constant value), the appropriate distance for heating between the high-frequency induction heating coil 6 and the object to be heated 8 is d 1 , and the reference plane from distance or the reference plane P o from P o to the contact roller 1a of the tip of the displacement sensor 1 and the distance to the contact point M between the contact roller 1a and the heated body 8, L 1, of the object to be heated 8 since the heating target region (the heated surface) is a flat surface, and d 1 = L 1 -L o. Therefore, when the heating target region of the object to be heated 8 is a flat surface, the distance from the reference plane P o to the contact roller 1a of the tip of the displacement sensor 1 is a high-frequency induction heating coil 6 when L 1 heated body As a result of distance measurement by the displacement sensor 1, the heating coil moving mechanism 3 is set to operate by an articulated robot (not shown) so that the distance to the distance 8 is an appropriate distance (appropriate value) d 1. based on, it is possible to adjust the control to the appropriate distance d 1 the distance between the high-frequency induction heating coil 6 and the object to be heated 8.
[0007]
However, as shown in FIG. 6, when to perform the distance adjustment control, under conditions as described above when the heating target region of the object to be heated 8 such that convex arc shaped surface S 2, the following The following problems occur. The state shown in FIG. 6 is a state in which high-frequency induction heating is not started, and the high-frequency induction heating coil 6 is disposed on the arcuate surface S 2 of the body 8 to be heated with an appropriate distance d 1. contact roller 1a of the tip of the displacement sensor 1 is in the state of the time of the contact with the arcuate surface S 2. In this case, even if the distance between the high-frequency induction heating coil 6 and the heating target region (arc-shaped surface S 2 ) of the heated object 8 is an appropriate distance d 1 , the heating target region of the heated object 8 is arc-shaped. because the surface S 2, the distance L 2 from the reference plane P o to the contact roller 1a of the tip of the displacement sensor 1 is greater than the distance L 1 (L 2> L 1 ). Therefore, it is measured (detected) as if the interval between the high-frequency induction heating coil 6 and the object to be heated 8 is separated by a distance corresponding to (L 2 -L 1 ) as compared with the case of FIG. will be put away, despite the high frequency induction heating coil 6 is disposed in the proper position, the high-frequency induction heating coil 6 is made moved control as close to the object to be heated 8, proper distance between the distance results are set narrower than d 1. Thus, in such a case, it becomes impossible to retain the distance between the high-frequency induction heating coil 6 and the arcuate surface S 2 of the object to be heated 8 in appropriate distance d 1.
[0008]
Further, when starting the high-frequency induction heating after the state shown in FIG. 6, as shown in FIG. 7, variation Z by bulging deformation from the state before the heating arcuate surfaces S 2 of the object to be heated S is the thermal expansion Then, the distance d 1 ′ approaches the high-frequency induction heating coil 6 by the amount of change Z, and the distance d 1 ′ between the high-frequency induction heating coil 6 and the arcuate surface S 2 of the object to be heated 8 is d 1 ′ = d 1 − Z becomes a <d 1. In FIG. 7, the broken line α indicates the shape of the heated object 8 before deformation. In this case, since the distance d 1 value of 'the remote reduced by an appropriate value of the distance d 1 to the heating, or would be overheated more than necessary object to be heated 8, or high-frequency induction heating coil 6 to be heated There is a risk of contact with the body 8.
[0009]
Although not shown, when the shape of the heating target region of the heated object 8 is a concave arcuate surface, a phenomenon completely opposite to the above occurs. In this case, the high-frequency induction heating coil 6 is adjusted and controlled to a position that is separated from the arc-shaped surface of the object 8 to be heated by a distance larger than the appropriate distance d 1. This is not done, and the heating efficiency is reduced.
[0010]
The present invention has been made to solve such problems, and its purpose is not to require the skill of the operator, and is appropriate regardless of the shape of the heating target region of the heated object. Another object is to provide a high frequency induction heating method and apparatus capable of performing high frequency induction heating.
[0011]
[Means for Solving the Problems]
In order to achieve the above object, in the present invention, a high-frequency induction heating coil provided at the tip of an arm of an articulated robot is fixed to the object to be heated having a flat surface and a curved surface on a mounting tool. A method for high-frequency induction heating of the object to be heated is provided by moving along the heating body. In the method, the high-frequency induction heating coil is connected to a high-frequency power source that supplies a constant high-frequency output voltage, and the high-frequency induction heating coil is moved when the high-frequency induction heating coil is moved along the body to be heated. wherein is the state from the body to be heated with spaced Rukoto without spacing to contact with each other and,
Detecting a change in amount of at least one of the high frequency output current and the oscillation frequency of the high frequency power source that varies with changes in the distance between the high-frequency induction heating coil and the object to be heated,
(A) When the oscillation frequency is greater than a predetermined frequency value, the distance between the high-frequency induction heating coil and the object to be heated is increased, and the oscillation frequency is smaller than the predetermined frequency value. If so, reduce the distance between the high-frequency induction heating coil and the object to be heated,
(B) When the high-frequency output current is larger than a predetermined current value, the distance between the high-frequency induction heating coil and the object to be heated is increased, and the high-frequency output current is smaller than the predetermined current value. If so, reduce the distance between the high-frequency induction heating coil and the object to be heated,
Thus, so that always held in a proper distance the distance between the high-frequency induction heating coil and the object to be heated in the heating.
The present onset Ming, a device for high-frequency induction heating materials having a planar surface and a curved surface,
(A) a placing tool for placing the object to be heated;
(B) an articulated robot having an arm;
( C ) a high-frequency induction heating coil provided at the tip of the arm of the articulated robot and disposed corresponding to the heating target region of the heated object;
( D ) a high frequency power source configured to supply a constant high frequency output voltage to the high frequency induction heating coil;
(E) a detector for detecting the amount of change for at least one of said high frequency power source of high frequency output current and an oscillation frequency,
Based on the detected amount of change in (f) said detection means, said high-frequency induction heating coil are moved relative to the object to be heated, the relative distance between the high-frequency induction heating coil and the object to be heated Control means to adjust;
Each with
The control means controls the arm of the articulated robot so that the high frequency induction heating coil and the heated object are in a state of being spaced apart from each other,
The control means includes
When the oscillation frequency is greater than a predetermined frequency value, the distance between the high-frequency induction heating coil and the object to be heated is increased, and the oscillation frequency is smaller than the predetermined frequency value. Controls the arm of the articulated robot so as to reduce the distance between the high-frequency induction heating coil and the object to be heated;
When the high-frequency output current is larger than a predetermined current value, the distance between the high-frequency induction heating coil and the heated body is increased, and the high-frequency output current is smaller than the predetermined current value Controls the arm of the articulated robot so as to reduce the distance between the high-frequency induction heating coil and the object to be heated;
Thus, the high-frequency induction heating coil is always arranged at a position that maintains an appropriate distance for heating with respect to the object to be heated.
The present onset Ming, a device for high-frequency induction heating materials having a planar surface and a curved surface,
(A) a placing tool for placing the object to be heated;
(B) an articulated robot having an arm;
( C ) a high-frequency induction heating coil provided at the tip of the arm of the articulated robot and disposed corresponding to the heating target region of the heated object;
( D ) a high-frequency power source configured to supply a constant high-frequency output current to the high-frequency induction heating coil;
(E) it detecting means for detecting a variation about the oscillation frequency of the high frequency power source,
Based on the detected amount of change in (f) said detection means, said high-frequency induction heating coil are moved relative to the object to be heated, adjust the relative distance between the high-frequency induction heating coil and the object to be heated Control means to
Each with
The control means controls the arm of the articulated robot so that the high frequency induction heating coil and the heated object are in a state of being spaced apart from each other,
The control means includes
When the oscillation frequency is greater than a predetermined frequency value, the distance between the high-frequency induction heating coil and the object to be heated is increased, and the oscillation frequency is smaller than the predetermined frequency value. Controls the arm of the articulated robot so as to reduce the distance between the high-frequency induction heating coil and the object to be heated;
Thus, the high-frequency induction heating coil is always arranged at a position that maintains an appropriate interval for heating with respect to the object to be heated.
The present onset Ming, a device for high-frequency induction heating materials having a planar surface and a curved surface,
(A) a placing tool for placing the object to be heated;
(B) an articulated robot having an arm;
( C ) a high-frequency induction heating coil provided at the tip of the arm of the articulated robot and disposed corresponding to the heating target region of the heated object;
( D ) a high-frequency power source configured to supply a constant high-frequency output power to the high-frequency induction heating coil;
(E) a detector for detecting the amount of change for at least one of said high frequency power source of high frequency output current and an oscillation frequency,
Based on the detected amount of change in (f) said detection means, said high-frequency induction heating coil are moved relative to the object to be heated, adjust the relative distance between the high-frequency induction heating coil and the object to be heated Control means to
Each with
The control means controls the arm of the articulated robot so that the high frequency induction heating coil and the heated object are in a state of being spaced apart from each other,
The control means includes
When the oscillation frequency is greater than a predetermined frequency value, the distance between the high-frequency induction heating coil and the object to be heated is increased, and the oscillation frequency is smaller than the predetermined frequency value. Controls the arm of the articulated robot so as to reduce the distance between the high-frequency induction heating coil and the object to be heated;
When the high-frequency output current is larger than a predetermined current value, the distance between the high-frequency induction heating coil and the heated body is increased, and the high-frequency output current is smaller than the predetermined current value Controls the arm of the articulated robot so as to reduce the distance between the high-frequency induction heating coil and the object to be heated;
Thus, the high-frequency induction heating coil is always arranged at a position that maintains an appropriate interval for heating with respect to the object to be heated.
[0012]
When high-frequency induction heating is performed while relatively moving the high-frequency induction heating coil and the object to be heated, if the high-frequency output voltage is constant, the high-frequency output current output from the high-frequency power supply, the oscillation frequency of the high-frequency power supply, and the high-frequency induction The high-frequency current that flows through the heating coil changes as the distance between the high-frequency induction heating coil and the object to be heated changes. A mechanism for changing the relative position between the high-frequency induction heating coil and the object to be heated using at least one change amount of the high-frequency output current change amount, the oscillation frequency change amount, or the high-frequency current change amount flowing through the high-frequency induction heating coil. By feeding back to the control unit of the apparatus equipped with, the high frequency induction heating coil and the heated object are relatively moved while maintaining the distance between the high frequency induction heating coil and the heated object at an appropriate distance for heating. Thus, high frequency induction heating can be performed. This is the same even when the high-frequency output current or the high-frequency output power is constant. When the high-frequency output current is constant, the high-frequency output voltage is based on the change amount of at least one of the change amount of the high-frequency output voltage and the change amount of the oscillation frequency, and when the high-frequency output power is constant. Of the high frequency induction heating coil and the object to be heated based on at least one change amount of the change amount of the high frequency output current, the change amount of the oscillation frequency, and the change amount of the high frequency current flowing in the high frequency induction heating coil. It is possible to perform high-frequency induction heating by relatively moving the high-frequency induction heating coil and the object to be heated while keeping the distance between the two at an appropriate distance for heating.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to FIGS. 1 and 2. In FIGS. 1 and 2, the same parts as those in FIGS.
[0014]
FIG.1 and FIG.2 shows the high frequency induction heating apparatus 10 which enforces the high frequency induction heating method which concerns on one Embodiment of this invention. As shown in FIGS. 1 and 2, the high-frequency induction heating apparatus 10 uses a body panel 11 of an automobile as a heated body (heating target), and is a body panel (heated body) 11 fixed on a mounting jig 12. On the other hand, by moving the high frequency induction heating coil 6 relative to each other, a required heating target region of the body panel (object to be heated) 11 is subjected to high frequency induction heating for quenching treatment or the like. Note that an articulated robot 13 is used as a moving means of the high frequency induction heating coil 6, and as will be described in detail later, a required command signal is supplied to a drive control unit 14 (see FIG. 2) for controlling the articulated robot 13. Is input, the distance between the high frequency induction heating coil 6 and the body panel (object to be heated) 11 is adjusted to an appropriate distance.
[0015]
The tip portion of the arm 3 fixed base 4 is attached only are of the articulated robot 13, a small transformer 5 is attached to the fixed base 4. The small transformer 5 is connected to a high frequency power source (high frequency oscillator) 15 via a flexible water-cooled cable 25 that does not interfere with the movement of the arm 3 of the articulated robot 13, and the small transformer 5 An induction heating coil 6 is connected. Further, a magnetic material (not shown) for improving the heating efficiency is attached to the high-frequency induction heating coil 6 described above. On the other hand, a mounting jig 12 for mounting a body panel (heated body) 11 which is a heated body is fixed to the floor surface with an anchor bolt or the like. Further, as shown in FIG. 1, a quenching cooling water supply hose 16 is disposed along the arm 3, and the quenching cooling water supplied through the quenching cooling water supply hose 16 is supplied to the body panel ( quenching cooling jacket 17 for injecting toward the heated part of the heated body) 11 is disposed in the vicinity portion of the high-frequency induction heating coil 6.
[0016]
Thus, the high-frequency induction heating coil 6 that is energized by the high- frequency power source (high-frequency oscillator) 15 is applied to the heating target region of the body panel ( object to be heated) 11 placed on the placement jig 12 . is moved by the articulated robot 13 from the beginning of the heating target region while holding always proper intervals as described below to the end frequency induction heating is performed, thereafter, the baked incoming water from quenching the cooling jacket 17 to the heating portion Is injected and quenching is performed.
[0017]
In addition, the above-described high-frequency induction heating apparatus 10 includes a control system 20 (always maintaining the distance between the high-frequency induction heating coil 6 and the body panel (object to be heated) 11 at an appropriate distance during the above-described high-frequency induction heating. 2). In configuring the control system 20, the high-frequency induction heating coil 6 and a heated object (for example, a body panel (heated object) 11 ) are set under a state where the high-frequency output voltage of the high-frequency power supply (high-frequency oscillator) 15 is constant. ) by changing the distance d between the high-frequency current of the high frequency power source (the high-frequency oscillator) is output from the 15 high-frequency output current (high-frequency power source (the high-frequency oscillator) 15.), and a high frequency power supply (high-frequency oscillator) 15 The oscillation frequency (drive frequency) was measured. The data obtained thereby were as shown in Table 1 below.
[0018]
[Table 1]
Figure 0004644379
[0019]
As a result of considering the data shown in Table 1 above, under the condition that the high frequency output voltage of the high frequency power source (high frequency oscillator) 15 is constant, the high frequency output current and the oscillation frequency are changed as the distance d changes. It was confirmed that it changed. Therefore, in the present embodiment, by feeding back the change in the high frequency output current to the drive control unit 14 of the articulated robot 13 high-frequency induction heating coil 6 and the body panel (to be using a control system 20 of the configuration shown in FIG. 2 The distance between the heating body 11 and the heating body 11 is always adjusted to be an appropriate distance.
[0020]
The control system 20 shown in FIG. 2 has a high frequency output voltage output from a high frequency power supply (high frequency oscillator) 15 between the high frequency induction heating coil 6 and the body panel (object to be heated) 11 under a constant state. the distance d has a like can be set to an appropriate distance d 1 configuration. Specifically, as shown in FIG. 2, the control system 20 described above includes an output voltage detector 21 that detects a high-frequency output voltage output from a high-frequency power source (high-frequency oscillator) 15, and the output voltage detector 21. Output voltage adjustment command output for comparing output voltage detection value with voltage setting value set in advance as reference value and inputting high frequency output voltage adjustment command according to the comparison value to high frequency power source (high frequency oscillator) 15 A circuit 22, an output current detector 23 for detecting a high-frequency output current output from a high-frequency power source (high-frequency oscillator) 15, and a high-frequency output current detected by the output current detector 23 are set in advance as a reference value. A distance adjustment command output circuit 24 that compares the current setting value that has been set and inputs a distance adjustment command according to the comparison value to the drive control unit 14 of the articulated robot 13. It is configured.
[0021]
The high frequency induction heating device 10 is controlled by the control system 20 as described below. First, when the high frequency induction heating coil 6 is energized and the heating target region of the body panel (object to be heated) 11 is subjected to high frequency induction heating, the high frequency output voltage of the high frequency power source (high frequency oscillator) 15 is output voltage detector. In accordance with the detected high frequency output voltage, a high frequency output voltage adjustment command signal is sent from the output voltage adjustment command output circuit 22 to the drive control unit 14 of the articulated robot 13, and on the basis of this, the high frequency power supply (High Frequency Oscillator) The high frequency output voltage output from 15 is always kept constant.
[0022]
Under such a state (a constant output voltage state), the high frequency from the high frequency power source (high frequency oscillator) 15 is changed in accordance with the change in the distance between the high frequency induction heating coil 6 and the body panel (heated body) 11. When the output current changes, the change amount is detected by the output current detector 23 and the distance adjustment command output circuit 24, and the distance adjustment command signal is input to the drive control unit 14 of the articulated robot 13 according to the change amount. The Thereby, as the articulated robot 13 is operated based on the above-described distance adjustment command signal, the distance d between the high-frequency induction heating coil 6 and the body panel (object to be heated) 11 is always the appropriate distance d. Adjustment control is performed so as to be 1 .
[0023]
That is, in this embodiment, the distance adjustment formed by detecting and amplifying the high-frequency current supplied to the high-frequency induction heating coil 6 during high-frequency induction heating and converting the change amount into the movement amount of the arm of the articulated robot 13. A command signal is input to the drive control unit 14 of the articulated robot 13, whereby the distance d between the high frequency induction heating coil 6 and the body panel (heated body) 11 always maintains a distance d 1 appropriate for heating. Thus, the articulated robot 13 is configured to be controlled.
[0024]
In the above-described embodiment, the amount of change in the high-frequency output current during high-frequency induction heating with the high-frequency output voltage output from the high- frequency power source (high-frequency oscillator) 15 being constant is used as a feedback element. Not limited to this, only the amount of change in the oscillation frequency of the high- frequency power source (high-frequency oscillator) 15 under the condition that the high-frequency output voltage is constant, or a combination of the amount of change in the oscillation frequency and the amount of change in the high-frequency output current described above, The result of comparing these may be used as a feedback element. In this case also, similarly to the above embodiment, it is possible to hold the distance d between the high-frequency induction heating coil 6 and the body panel (heated body) 11 is always in a proper distance d 1.
[0025]
Further, of the high frequency output voltage and the oscillation frequency output from the high frequency power supply (high frequency oscillator) 15 during the high frequency induction heating under the condition that the high frequency output current output from the high frequency power supply (high frequency oscillator) 15 is constant. The amount of change for at least one is detected, and the articulated robot 13 is operated based on the amount of change, and the distance d between the high frequency induction heating coil 6 and the body panel (heated body) 11 is set to an appropriate distance d 1. It is also possible to perform adjustment control.
[0026]
Further, a high-frequency output voltage , a high-frequency output current, and a high-frequency output current output from the high-frequency power source (high-frequency oscillator) 15 during high-frequency induction heating with a high-frequency output power output from the high-frequency power source (high-frequency oscillator) 15 constant. A change amount for at least one of the oscillation frequencies is detected, and the articulated robot 13 is operated based on the change amount, and the distance d between the high frequency induction heating coil 6 and the body panel (heated body) 11 is detected. the may be adjusted controlled to a proper distance d 1.
[0027]
Further, the amount of change in the high-frequency current flowing in the high-frequency induction heating coil during high-frequency induction heating is detected under the condition that the high-frequency output voltage or high-frequency output power output from the high- frequency power source (high-frequency oscillator) 15 is constant. based on the amount of change to operate the articulated robot 13 may be adjusted controlled to a proper distance d 1 the distance d between the high-frequency induction heating coil 6 and the body panel (object to be heated) 11. Thus, when the amount of change of the high-frequency current flowing through the high-frequency induction heating coil 6 is used as a feedback element, the distance adjustment can be performed with higher accuracy. In order to measure (detect) the high-frequency current flowing through the high-frequency induction heating coil 6, the apparatus can be made compact by using, for example, a Rogowski type current detector.
[0028]
As mentioned above, although embodiment of this invention was described, this invention is not limited to these embodiment, Based on the technical idea of this invention, a various deformation | transformation and change are possible. For example, in the above-described embodiment, the object to be heated (body panel (object to be heated) 11 or the like) is fixed and heating is performed while the high-frequency induction heating coil 6 is moved. Needless to say, the present invention can also be applied to the case where the object to be heated is moved in a state where is fixed (stationary). Further, the body to be heated is not limited to the body panel (heated body) 11, and the present invention can be applied to other various members.
[0029]
【The invention's effect】
As described above, according to the present invention, when high-frequency induction heating is performed while relatively moving the high-frequency induction heating coil and the body to be heated, the oscillation frequency that changes with the change in the distance between the high-frequency induction heating coil and the body to be heated. , An amount of change in at least one of the output voltage, the output current, and the high-frequency current flowing in the high-frequency induction heating coil is detected, and based on this change amount, between the high-frequency induction heating coil and the object to be heated Therefore, the operator's skill is not required unlike manual distance (interval) adjustment, and the area to be heated of the object to be heated is not particularly heated. plane is and as was the complicated shape, it is possible to more simple terms yet properly high-frequency induction heating as compared with the case of using the conventional displacement sensor as. Furthermore, according to the present invention, it is possible to simplify the structure around the high-frequency induction heating coil does not use the displacement sensor.
[Brief description of the drawings]
FIG. 1 is a side view of a high-frequency induction heating apparatus according to an embodiment of the present invention.
2 is a configuration diagram showing a configuration of a control system provided in the high-frequency induction heating device of FIG. 1;
FIG. 3 is a front view of a conventional high-frequency induction heating device provided with a contact-type displacement sensor.
4 is a side view of the high frequency induction heating device of FIG. 6. FIG.
FIG. 5 is a side view showing an arrangement relationship of a heated body, a displacement sensor, and a high frequency induction heating coil when the heated surface of the heated body is a flat surface.
FIG. 6 is a side view showing an arrangement relationship before heating of the heated body, the displacement sensor, and the high-frequency induction heating coil when the heated surface of the heated body is a convex arc-shaped surface.
7 is a side view similar to FIG. 6, showing a state in which a heated object has thermally expanded after the start of heating.
[Explanation of symbols]
1 Displacement sensor
2 High frequency induction heating device (Figs. 3 and 4)
3 arms
4 fixed base 5 small transformer 6 high frequency induction heating coil
7 Flexible water-cooled cable (Figs. 3 and 4)
8 Object to be heated
9 Magnetic material 10 High frequency induction heating device 11 Body panel (object to be heated)
13 Articulated Robot 14 Drive Control Unit 15 High Frequency Power Supply (High Frequency Oscillator)
16 Hose for quenching cooling water supply
17 Quenching and cooling jacket 20 Control system 21 Output voltage detector 22 Output voltage adjustment command output circuit 23 Output current detector 24 Distance adjustment command output circuit
25 Water-cooled cable

Claims (4)

平面及び曲面を有する被加熱体を載置具に固定した状態で、多関節ロボットのアームの先端部に設けられた高周波誘導加熱コイルを前記被加熱体に沿って移動させて、前記被加熱体を高周波誘導加熱する方法であって、
前記高周波誘導加熱コイルは、一定の高周波出力電圧を供給する高周波電源に接続されており、前記高周波誘導加熱コイルを前記被加熱体に沿って移動させる際に、前記高周波誘導加熱コイルと前記被加熱体と互いに接触ることなく間隔を隔てた状態になっており、
前記高周波誘導加熱コイルと前記被加熱体との間の距離の変化に伴って変化する前記高周波電源の高周波出力電流及び発振周波数のうちの少なくとも1つについての変化量を検出し
(a)前記発振周波数が所定の周波数の値より大きくなった場合は、前記高周波誘導加熱コイルと前記被加熱体との間の距離を大きくし、前記発振周波数が前記所定の周波数の値より小さくなった場合は、前記高周波誘導加熱コイルと前記被加熱体との間の距離を小さくし、
(b)前記高周波出力電流が所定の電流値より大きくなった場合は、前記高周波誘導加熱コイルと前記被加熱体との間の距離を大きくし、前記高周波出力電流が前記所定の電流値より小さくなった場合は、前記高周波誘導加熱コイルと前記被加熱体との間の距離を小さくし、
これにより、前記高周波誘導加熱コイルと前記被加熱体との間の距離を加熱に適正な距離に常に保持するようにしたことを特徴とする高周波誘導加熱方法。
A high-frequency induction heating coil provided at the tip of an articulated robot arm is moved along the heated body in a state where the heated body having a flat surface and a curved surface is fixed to the mounting tool, and the heated body Is a method of induction heating of
The high-frequency induction heating coil is connected to a high frequency power source supplies a constant high-frequency output voltage, the high-frequency induction heating coil when moving along said body to be heated, the heated and the high-frequency induction heating coil body are in a state of spaced Rukoto without spacing to contact with each other and,
Detecting a change in amount of at least one of the high frequency output current and the oscillation frequency of the high frequency power source that varies with changes in the distance between the high-frequency induction heating coil and the object to be heated,
(A) When the oscillation frequency is greater than a predetermined frequency value, the distance between the high-frequency induction heating coil and the object to be heated is increased, and the oscillation frequency is smaller than the predetermined frequency value. If so, reduce the distance between the high-frequency induction heating coil and the object to be heated,
(B) When the high-frequency output current is larger than a predetermined current value, the distance between the high-frequency induction heating coil and the object to be heated is increased, and the high-frequency output current is smaller than the predetermined current value. If so, reduce the distance between the high-frequency induction heating coil and the object to be heated,
Thus, high frequency induction heating method being characterized in that so as always to retain a proper distance the distance between the high-frequency induction heating coil and the object to be heated in the heating.
平面及び曲面を有する被加熱体を高周波誘導加熱する装置であって、
(a)前記被加熱体を載置する載置具と、
(b)アームを有する多関節ロボットと、
前記多関節ロボットのアームの先端部に設けられ、前記被加熱体の加熱対象領域に対応配置される高周波誘導加熱コイルと、
)前記高周波誘導加熱コイルに一定の高周波出力電圧を供給するように構成された高周波電源と、
)前記高周波電源の高周波出力電流及び発振周波数のうちの少なくとも1つについての変化量を検出する検出手段と、
)前記検出手段にて検出された変化量に基づいて、前記高周波誘導加熱コイルを前記被加熱体に対して移動させて、前記高周波誘導加熱コイルと前記被加熱体との相対距離を調整する制御手段と、
をそれぞれ備え、
前記制御手段は、前記高周波誘導加熱コイルと前記被加熱体とが互いに接触することなく間隔を隔てた状態になるように前記前記多関節ロボットの前記アームを制御するものであり、
前記制御手段は、
前記発振周波数が所定の周波数の値より大きくなった場合は、前記高周波誘導加熱コイルと前記被加熱体との間の距離を大きくし、前記発振周波数が前記所定の周波数の値より小さくなった場合は、前記高周波誘導加熱コイルと前記被加熱体との間の距離を小さくするように前記多関節ロボットの前記アームを制御し、
前記高周波出力電流が所定の電流値より大きくなった場合は、前記高周波誘導加熱コイルと前記被加熱体との間の距離を大きくし、前記高周波出力電流が前記所定の電流値より小さくなった場合は、前記高周波誘導加熱コイルと前記被加熱体との間の距離を小さくするように前記多関節ロボットの前記アームを制御し、
これにより、前記高周波誘導加熱コイルを前記被加熱体に対して加熱に適正な距離を保持する位置に常に配置するようにしたことを特徴とする高周波誘導加熱装置。
An apparatus for high-frequency induction heating an object to be heated having a flat surface and a curved surface,
(A) a placing tool for placing the object to be heated;
(B) an articulated robot having an arm;
( C ) a high-frequency induction heating coil provided at the tip of the arm of the articulated robot and disposed corresponding to the heating target region of the heated object;
( D ) a high frequency power source configured to supply a constant high frequency output voltage to the high frequency induction heating coil;
(E) a detector for detecting the amount of change for at least one of said high frequency power source of high frequency output current and an oscillation frequency,
Based on the detected amount of change in (f) said detection means, said high-frequency induction heating coil are moved relative to the object to be heated, the relative distance between the high-frequency induction heating coil and the object to be heated Control means to adjust;
Each with
The control means controls the arm of the articulated robot so that the high frequency induction heating coil and the heated object are in a state of being spaced apart from each other,
The control means includes
When the oscillation frequency is greater than a predetermined frequency value, the distance between the high-frequency induction heating coil and the object to be heated is increased, and the oscillation frequency is smaller than the predetermined frequency value. Controls the arm of the articulated robot so as to reduce the distance between the high-frequency induction heating coil and the object to be heated;
When the high-frequency output current is larger than a predetermined current value, the distance between the high-frequency induction heating coil and the heated body is increased, and the high-frequency output current is smaller than the predetermined current value Controls the arm of the articulated robot so as to reduce the distance between the high-frequency induction heating coil and the object to be heated;
Thus, the high-frequency induction heating apparatus is characterized in that the high-frequency induction heating coil is always arranged at a position that maintains an appropriate distance for heating with respect to the heated object.
平面及び曲面を有する被加熱体を高周波誘導加熱する装置であって、
(a)前記被加熱体を載置する載置具と、
(b)アームを有する多関節ロボットと、
前記多関節ロボットのアームの先端部に設けられ、前記被加熱体の加熱対象領域に対応配置される高周波誘導加熱コイルと、
)前記高周波誘導加熱コイルに一定の高周波出力電流を供給するように構成された高周波電源と、
)前記高周波電源の発振周波数についての変化量を検出する検出手段と、
)前記検出手段にて検出された変化量に基づいて、前記高周波誘導加熱コイルを前記被加熱体に対して移動させて前記高周波誘導加熱コイルと前記被加熱体との相対距離を調整する制御手段と、
をそれぞれ備え、
前記制御手段は、前記高周波誘導加熱コイルと前記被加熱体とが互いに接触することなく間隔を隔てた状態になるように前記前記多関節ロボットの前記アームを制御するものであり、
前記制御手段は、
前記発振周波数が所定の周波数の値より大きくなった場合は、前記高周波誘導加熱コイルと前記被加熱体との間の距離を大きくし、前記発振周波数が前記所定の周波数の値より小さくなった場合は、前記高周波誘導加熱コイルと前記被加熱体との間の距離を小さくするように前記多関節ロボットの前記アームを制御し、
これにより、前記高周波誘導加熱コイルを前記被加熱体に対して加熱に適正な間隔を保持する位置に常に配置するようにしたことを特徴とする高周波誘導加熱装置。
An apparatus for high-frequency induction heating an object to be heated having a flat surface and a curved surface,
(A) a placing tool for placing the object to be heated;
(B) an articulated robot having an arm;
( C ) a high-frequency induction heating coil provided at the tip of the arm of the articulated robot and disposed corresponding to the heating target region of the heated object;
( D ) a high-frequency power source configured to supply a constant high-frequency output current to the high-frequency induction heating coil;
(E) it detecting means for detecting a variation about the oscillation frequency of the high frequency power source,
Based on the detected amount of change in (f) said detection means, said high-frequency induction heating coil are moved relative to the object to be heated, adjust the relative distance between the high-frequency induction heating coil and the object to be heated Control means to
Each with
The control means controls the arm of the articulated robot so that the high frequency induction heating coil and the heated object are in a state of being spaced apart from each other,
The control means includes
When the oscillation frequency is greater than a predetermined frequency value, the distance between the high-frequency induction heating coil and the object to be heated is increased, and the oscillation frequency is smaller than the predetermined frequency value. Controls the arm of the articulated robot so as to reduce the distance between the high-frequency induction heating coil and the object to be heated;
Thus, the high-frequency induction heating apparatus is characterized in that the high-frequency induction heating coil is always arranged at a position that maintains an appropriate interval for heating with respect to the heated object.
平面及び曲面を有する被加熱体を高周波誘導加熱する装置であって、
(a)前記被加熱体を載置する載置具と、
(b)アームを有する多関節ロボットと、
前記多関節ロボットのアームの先端部に設けられ、前記被加熱体の加熱対象領域に対応配置される高周波誘導加熱コイルと、
)前記高周波誘導加熱コイルに一定の高周波出力電力を供給するように構成された高周波電源と、
)前記高周波電源高周波出力電流及び発振周波数のうちの少なくとも1つについての変化量を検出する検出手段と、
)前記検出手段にて検出された変化量に基づいて、前記高周波誘導加熱コイルを前記被加熱体に対して移動させて前記高周波誘導加熱コイルと前記被加熱体との相対距離を調整する制御手段と、
をそれぞれ備え、
前記制御手段は、前記高周波誘導加熱コイルと前記被加熱体とが互いに接触することなく間隔を隔てた状態になるように前記前記多関節ロボットの前記アームを制御するものであり、
前記制御手段は、
前記発振周波数が所定の周波数の値より大きくなった場合は、前記高周波誘導加熱コイルと前記被加熱体との間の距離を大きくし、前記発振周波数が前記所定の周波数の値より小さくなった場合は、前記高周波誘導加熱コイルと前記被加熱体との間の距離を小さくするように前記多関節ロボットの前記アームを制御し、
前記高周波出力電流が所定の電流値より大きくなった場合は、前記高周波誘導加熱コイルと前記被加熱体との間の距離を大きくし、前記高周波出力電流が前記所定の電流値より小さくなった場合は、前記高周波誘導加熱コイルと前記被加熱体との間の距離を小さくするように前記多関節ロボットの前記アームを制御し、
これにより、前記高周波誘導加熱コイルを前記被加熱体に対して加熱に適正な間隔を保持する位置に常に配置するようにしたことを特徴とする高周波誘導加熱装置。
An apparatus for high-frequency induction heating an object to be heated having a flat surface and a curved surface,
(A) a placing tool for placing the object to be heated;
(B) an articulated robot having an arm;
( C ) a high-frequency induction heating coil provided at the tip of the arm of the articulated robot and disposed corresponding to the heating target region of the heated object;
( D ) a high-frequency power source configured to supply a constant high-frequency output power to the high-frequency induction heating coil;
(E) a detector for detecting the amount of change for at least one of said high frequency power source of high frequency output current and an oscillation frequency,
Based on the detected amount of change in (f) said detection means, said high-frequency induction heating coil are moved relative to the object to be heated, adjust the relative distance between the high-frequency induction heating coil and the object to be heated Control means to
Each with
The control means controls the arm of the articulated robot so that the high frequency induction heating coil and the heated object are in a state of being spaced apart from each other,
The control means includes
When the oscillation frequency is greater than a predetermined frequency value, the distance between the high-frequency induction heating coil and the object to be heated is increased, and the oscillation frequency is smaller than the predetermined frequency value. Controls the arm of the articulated robot so as to reduce the distance between the high-frequency induction heating coil and the object to be heated;
When the high-frequency output current is larger than a predetermined current value, the distance between the high-frequency induction heating coil and the heated body is increased, and the high-frequency output current is smaller than the predetermined current value Controls the arm of the articulated robot so as to reduce the distance between the high-frequency induction heating coil and the object to be heated;
Thus, the high-frequency induction heating apparatus is characterized in that the high-frequency induction heating coil is always arranged at a position that maintains an appropriate interval for heating with respect to the heated object.
JP2001117646A 2001-04-17 2001-04-17 High frequency induction heating method and apparatus Expired - Fee Related JP4644379B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001117646A JP4644379B2 (en) 2001-04-17 2001-04-17 High frequency induction heating method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001117646A JP4644379B2 (en) 2001-04-17 2001-04-17 High frequency induction heating method and apparatus

Publications (2)

Publication Number Publication Date
JP2002313544A JP2002313544A (en) 2002-10-25
JP4644379B2 true JP4644379B2 (en) 2011-03-02

Family

ID=18968159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001117646A Expired - Fee Related JP4644379B2 (en) 2001-04-17 2001-04-17 High frequency induction heating method and apparatus

Country Status (1)

Country Link
JP (1) JP4644379B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2210961B1 (en) * 2007-09-13 2016-06-15 Neturen Co., Ltd. High-frequency hardening monitor device
JP5496584B2 (en) * 2009-09-04 2014-05-21 デルタ工業株式会社 Induction hardening method for plate-like parts
CN117467837A (en) * 2023-12-27 2024-01-30 季华实验室 Robot tail end control method and device, electronic equipment and storage medium

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5528311A (en) * 1978-08-16 1980-02-28 Nippon Steel Corp Controlling method for heating for edge of metallic piece
JPS59134588A (en) * 1983-01-24 1984-08-02 新日本製鐵株式会社 Method of inductively heating metal piece side terminal
JPH0362495A (en) * 1989-07-31 1991-03-18 Kawasaki Steel Corp Induction heating device of steel plate edge
JPH05299164A (en) * 1992-04-22 1993-11-12 Sumitomo Metal Ind Ltd Induction heating device
JPH07146077A (en) * 1993-11-25 1995-06-06 Fuji Electric Co Ltd Lifting melting apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5528311A (en) * 1978-08-16 1980-02-28 Nippon Steel Corp Controlling method for heating for edge of metallic piece
JPS59134588A (en) * 1983-01-24 1984-08-02 新日本製鐵株式会社 Method of inductively heating metal piece side terminal
JPH0362495A (en) * 1989-07-31 1991-03-18 Kawasaki Steel Corp Induction heating device of steel plate edge
JPH05299164A (en) * 1992-04-22 1993-11-12 Sumitomo Metal Ind Ltd Induction heating device
JPH07146077A (en) * 1993-11-25 1995-06-06 Fuji Electric Co Ltd Lifting melting apparatus

Also Published As

Publication number Publication date
JP2002313544A (en) 2002-10-25

Similar Documents

Publication Publication Date Title
US7156277B2 (en) Friction stir welding method and apparatus
US7253380B2 (en) Induction heating of rail welds
CA2914974C (en) System device and methods for heating an inside wall of a pipe or a vessel with a heating means and a movable mechanical device
JP5306338B2 (en) Induction heating treatment of workpiece
JPH0695474B2 (en) Electromagnetic induction heating device
JP4644379B2 (en) High frequency induction heating method and apparatus
JP2006344421A (en) High frequency induction heating device
US10596657B2 (en) Friction stir welding apparatus, friction stir welding control device, and friction stir welding method
US10834788B2 (en) Induction heating device
US3365563A (en) Brazing tool
JP4377996B2 (en) Pulling device for bearings, etc.
JP2014224298A (en) Movement hardening apparatus and movement hardening method for long work
WO2005002282A1 (en) Method and device for thin plate article induction heating, and thin plate article
JP2002343544A (en) High frequency moving heating method
JP2002190374A (en) Temperature-sensing method and mechanism for high- frequency induction heating apparatus
JP2005205425A (en) Heating and melting device
KR960016456B1 (en) Induction heating system for heating edges of plate material
JPH10328820A (en) Heating construction of soldering iron and soldering equipment
JP2005281801A (en) Apparatus and method for electrically heating sheet metal
JP3015805B2 (en) Metal pipe bending method and apparatus
JPH0811294B2 (en) Non-consumable electrode welding equipment
JPS6347765B2 (en)
JPH07249478A (en) Billet heating device
KR970073260A (en) Non-contact soldering apparatus and method
JPH03205779A (en) High-frequency induction heating control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101112

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101206

R150 Certificate of patent or registration of utility model

Ref document number: 4644379

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees