JPH05299164A - Induction heating device - Google Patents

Induction heating device

Info

Publication number
JPH05299164A
JPH05299164A JP13192092A JP13192092A JPH05299164A JP H05299164 A JPH05299164 A JP H05299164A JP 13192092 A JP13192092 A JP 13192092A JP 13192092 A JP13192092 A JP 13192092A JP H05299164 A JPH05299164 A JP H05299164A
Authority
JP
Japan
Prior art keywords
heating
rolled material
gap
circuit
heating coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13192092A
Other languages
Japanese (ja)
Other versions
JP2677114B2 (en
Inventor
Shunji Fukushima
俊司 福島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP4131920A priority Critical patent/JP2677114B2/en
Publication of JPH05299164A publication Critical patent/JPH05299164A/en
Application granted granted Critical
Publication of JP2677114B2 publication Critical patent/JP2677114B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • General Induction Heating (AREA)

Abstract

PURPOSE:To prevent the collision between a rolled material and a heating coil by determining the upper limit value of the gap allowable for heating based on the approximate function, impedance, power factor, and efficiency obtained by theoretical analyses or experiments and the heating power obtained by the temperature rise command value and rolling information. CONSTITUTION:The rolling information and temperature rise command value DELTAT for a rolled material to be heated are inputted to a heating power calculating circuit 10, and the heating power Pref calculated by the circuit 10 is fed to a gap set value calculating circuit 11. An impedance/power factor/efficiency calculating circuit 12 calculates the impedance Z(g), power factor PF(g), and efficiency n(g) for a gap and inputs these values to a single capacity calculating circuit 13, and its heating output P'max(g) is fed to the circuit 11. The circuit 11 calculates the gate gap set value gref, it is fed to a gap control circuit 14, and upper and lower heating coils 2, 3 are vertically moved to decide the distances to the rolled material. The burning of the coils 2, 3 due to an excessive current is avoided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、圧延ラインを搬送中の
圧延材を誘導加熱するために用いる誘導加熱装置に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an induction heating device used for induction heating a rolled material which is being conveyed through a rolling line.

【0002】[0002]

【従来の技術】熱間圧延ラインを搬送中の圧延材を加熱
するために誘導加熱装置が使用されている。そして貫通
磁束式誘導加熱装置は、金属板材(非磁性材等)の加熱
に広く用いられており、熱間圧延ラインのエッジヒータ
に適用することが良く知られている。
2. Description of the Related Art An induction heating device is used to heat a rolled material while it is being transported through a hot rolling line. The through flux type induction heating device is widely used for heating a metal plate material (non-magnetic material or the like), and is well known to be applied to an edge heater of a hot rolling line.

【0003】図2は従来の貫通磁束式誘導加熱装置によ
り圧延材を加熱する状態を示す模式的側面図である。圧
延ラインを搬送する圧延材4の上方及び下方には、上側
加熱コイル2,2及び下側加熱コイル3,3が配設され
ている。上側加熱コイル2,2及び下側加熱コイル3,
3夫々は、圧延材4の搬送方向に適長離隔して配置され
ている。上側加熱コイル2,2及び下側加熱コイル3,
3夫々は上下動させ得るように駆動制御部1,1及び
1,1と各別に接続されている。そして圧延材4を加熱
する場合は、圧延材4と上側加熱コイル2,2との距離
x及び圧延材4と下側加熱コイル3,3との距離y、即
ち上側加熱コイル2,2と下側加熱コイル3,3とのギ
ャップgが適長となるように制御して、圧延材4に所定
の加熱電力を供給し、圧延材4を加熱する。
FIG. 2 is a schematic side view showing a state in which a rolled material is heated by a conventional penetration flux type induction heating device. The upper heating coils 2 and 2 and the lower heating coils 3 and 3 are arranged above and below the rolled material 4 that conveys the rolling line. Upper heating coil 2, 2 and lower heating coil 3,
Each of the three members is arranged so as to be separated from the rolled material 4 by an appropriate length in the conveying direction. Upper heating coil 2, 2 and lower heating coil 3,
Each of the three units is separately connected to the drive control units 1, 1 and 1, 1 so that they can be moved up and down. When heating the rolled material 4, the distance x between the rolled material 4 and the upper heating coils 2 and 2 and the distance y between the rolled material 4 and the lower heating coils 3 and 3, that is, the upper heating coils 2 and 2 are lower. The rolled material 4 is heated by controlling the gap g with the side heating coils 3 and 3 to be an appropriate length and supplying a predetermined heating power to the rolled material 4.

【0004】この方式の誘導加熱装置では上側加熱コイ
ル2,2と下側加熱コイル3,3とのギャップgが大き
くなるにともない、効率、力率、インピーダンスが低下
し、加熱コイルの有効単機容量が減少する。上側加熱コ
イル2,2及び下側加熱コイル3,3は、搬送される圧
延材4との衝突を防ぐために圧延材4に対して所定距離
を確保する必要があり、そのため上側加熱コイル2,2
及び下側加熱コイル3,3の加熱能力を考慮して所定距
離に選定している。一方、圧延材を加熱するための誘導
加熱装置は、例えば特開昭53-70063号及び特開昭59-116
318 号公報夫々に示されている。
In this type of induction heating apparatus, as the gap g between the upper heating coils 2 and 2 and the lower heating coils 3 and 3 increases, the efficiency, power factor and impedance decrease, and the effective single unit capacity of the heating coil increases. Is reduced. The upper heating coils 2 and 2 and the lower heating coils 3 and 3 need to secure a predetermined distance with respect to the rolled material 4 in order to prevent collision with the rolled material 4 being conveyed, and therefore, the upper heating coils 2 and 2 are provided.
The predetermined distance is selected in consideration of the heating capacities of the lower heating coils 3 and 3. On the other hand, an induction heating device for heating a rolled material is disclosed in, for example, JP-A-53-70063 and JP-A-59-116.
No. 318, respectively.

【0005】[0005]

【発明が解決しようとする課題】しかし乍ら、圧延材は
その搬送方向の前,後端部側が反り上り又は反り下りし
ている場合があるから、その反り高さを考慮して圧延材
と、上側加熱コイル及び下側加熱コイルとの各距離を長
くする必要がある。そうすると上側加熱コイルと下側加
熱コイルとの間のギャップg(図2参照)が大きくな
る。
However, since there are cases in which the front and rear end sides of the rolled material are warped or warped in the conveying direction, the rolled material is considered to be warped in consideration of the warped height. It is necessary to increase the distance between the upper heating coil and the lower heating coil. Then, the gap g (see FIG. 2) between the upper heating coil and the lower heating coil becomes large.

【0006】ここで、 g…上側加熱コイルと下側加熱コイルとの間のギャップ Z(g) …ギャップgのときの加熱コイルのコイルインピ
ーダンス(gの単調減減少関数) PF(g) …ギャップgのときの力率(gの単調減少関数) η(g) …ギャップgのときの加熱効率(gの単調減少関
数) V…加熱コイルの端子電圧 Imax …加熱コイルの許容最大電流 Pmax (g) …ギャップgのときの加熱コイルの許容最大
単機容量 P(g) …ギャップgのときの加熱コイルの有効電力 I…加熱コイルの電流 P′max (g) …ギャップgのときに加熱コイルの許容最
大単機容量を出力したときの圧延材が受取る加熱電力 とすると、加熱コイルの端子電圧Vは、 V=Z(g) I …(1) となり、加熱コイルの加熱電力P(g) は、 P(g) =VIPF(g) =Z(g) I2 PF(g) …(2) となり、加熱コイルの許容最大単機容量Pmax (g) は、 Pmax (g) =Z(g) I2 max PF(g) …(3) となり、加熱コイルの許容最大単機容量を出力したとき
の圧延材が受取る加熱電力P′max (g) は P′max (g) =η(g) Z(g) I2 max PF(g) …(4) となる。
Here, g ... Gap between upper heating coil and lower heating coil Z (g) ... Coil impedance of heating coil at gap g (monotonically decreasing function of g) PF (g) ... Gap Power factor when g (monotonic decreasing function of g) η (g) ... Heating efficiency when gap g (monotonic decreasing function of g) V ... Terminal voltage of heating coil I max ... Maximum allowable current of heating coil P max (g)… Maximum allowable single unit capacity of heating coil when gap is g P (g)… Active power of heating coil when gap is g I… Current of heating coil P ′ max (g)… Heating when gap is g Assuming that the heating power received by the rolled material when the maximum allowable single unit capacity of the coil is output, the terminal voltage V of the heating coil is V = Z (g) I ... (1), and the heating power P (g) of the heating coil is It is, P (g) = VIPF ( g) = Z (g) I 2 PF (g) ... (2) , and the heated co Le maximum allowable single machine capacity P max (g) is of rolled material when outputting P max (g) = Z ( g) I 2 max PF (g) ... (3) , and the maximum allowable single machine capacity of the heating coil the heating power is received P 'max (g) is P' max (g) = η (g) Z (g) I 2 max PF (g) ... (4).

【0007】そして(2) 式よりギャップgが大きくなる
とコイルインピーダンスZ(g) が低下するとともに力率
PF(g) が低下する故、加熱コイルの加熱電力P(g) が低
下する。また(3) 式よりギャップgが大きくなるとコイ
ルインピーダンスZ(g) が低下するとともに力率PF(g)
が低下する故、加熱電力Pmax が低下する。更に(4)式
よりギャップgが大きくなると、コイルインピーダンス
Z(g) 、力率PF(g) 及び加熱効率ηがともに低下する
故、圧延材が受取る加熱電力P′max (g) が低下する。
それにより加熱能力が低下する。また(1) 式より加熱コ
イルの端子電圧Vが所定値以上であれば、ギャップgが
大きくなると加熱コイルのインピーダンスZ(g) が低下
するので、加熱コイルの電流Iが過大になる等の問題が
ある。
When the gap g becomes larger than the equation (2), the coil impedance Z (g) decreases and the power factor
Since PF (g) decreases, the heating power P (g) of the heating coil decreases. Also, according to equation (3), when the gap g increases, the coil impedance Z (g) decreases and the power factor PF (g) increases.
Is decreased, the heating power P max is decreased. Further, when the gap g becomes larger from the formula (4), the coil impedance Z (g), the power factor PF (g) and the heating efficiency η are decreased, so that the heating power P ′ max (g) received by the rolled material is decreased. ..
This reduces the heating capacity. If the terminal voltage V of the heating coil is more than a predetermined value from the equation (1), the impedance Z (g) of the heating coil decreases as the gap g increases, so that the current I of the heating coil becomes excessive. There is.

【0008】このような問題を解決するために、圧延材
の反り高さを画像装置で検出して、それに応じて圧延材
の端部と加熱コイルとの距離、つまりギャップを選定す
ることが考えられるが、圧延材の中間部におけるギャッ
プの設定は圧延材の板厚にのみ依存させているためギャ
ップが不適正になり加熱能力に過不足が生じる。また圧
延材のその搬送方向の前,後端部側のギャップについて
は衝突防止のみに着眼しているから、適正な加熱能力を
確保できない。更にギャップを選定するにあたって加熱
コイルの電流制約条件を考慮していないので、大きいギ
ャップで加熱しようとすると、加熱コイルには過大な電
流が流れて加熱コイルを焼損する虞れがある等の問題が
ある。
In order to solve such a problem, it is considered that the warp height of the rolled material is detected by an image device and the distance between the end of the rolled material and the heating coil, that is, the gap is selected accordingly. However, since the setting of the gap in the middle portion of the rolled material depends only on the plate thickness of the rolled material, the gap becomes improper and heating capacity becomes excessive or insufficient. Further, since the gaps on the front and rear end sides of the rolled material in the conveying direction are focused only on the collision prevention, it is impossible to secure an appropriate heating capacity. Further, since the current constraint condition of the heating coil is not taken into consideration when selecting the gap, if an attempt is made to heat with a large gap, there is a problem that an excessive current may flow in the heating coil and burn the heating coil. is there.

【0009】一方、特開昭53-70063号及び特開昭59-116
318 号の各公報に示されている誘導加熱装置は、圧延材
を加熱する誘導加熱コイルを、圧延材の搬送方向に対し
て直角な方向へ移動させて、圧延材を最適温度に加熱す
る構造を示したものであり、加熱コイルを上下動させて
圧延材に対し適正なギャップを保持して適正な加熱能力
を確保するようにしたものではない。本発明は斯かる問
題に鑑み、圧延材に対し加熱コイルを上下動させて、そ
の対向距離を適正に制御し、圧延材を適正に加熱する誘
導加熱装置を提供することを目的とする。
On the other hand, JP-A-53-70063 and JP-A-59-116.
The induction heating device shown in each publication of No. 318 is a structure for heating the rolled material to an optimum temperature by moving the induction heating coil for heating the rolled material in a direction perpendicular to the conveying direction of the rolled material. However, it does not mean that the heating coil is moved up and down to maintain an appropriate gap with respect to the rolled material to ensure an appropriate heating capacity. In view of such problems, it is an object of the present invention to provide an induction heating device that vertically moves a heating coil with respect to a rolled material, appropriately controls the facing distance thereof, and appropriately heats the rolled material.

【0010】[0010]

【課題を解決するための手段】本発明に係る誘導加熱装
置は、圧延材の上面側及び下面側に加熱コイルを配置し
て圧延材を加熱する誘導加熱装置において、前記圧延材
の情報及び圧延材の昇温指令値に基づいて加熱電力を演
算する第1演算回路と、圧延材及び加熱コイル間のギャ
ップに対応するインピーダンス、力率、効率を演算する
第2演算回路と、該第2演算回路の演算結果に基づい
て、加熱コイルの電流上限値により得られる最大許容電
力を演算する第3演算回路と、第1演算回路の出力及び
第3演算回路の出力により、圧延材及び加熱コイル間の
ギャップ設定値を演算する第4演算回路と、該第4演算
回路が演算したギャップ設定値により、加熱コイルの位
置を制御するギャップ制御回路とを備えることを特徴と
する。
An induction heating apparatus according to the present invention is an induction heating apparatus for heating a rolled material by arranging heating coils on the upper surface side and the lower surface side of the rolled material, and the information of the rolled material and rolling A first arithmetic circuit that calculates heating power based on a temperature rise command value of the material, a second arithmetic circuit that calculates impedance, power factor, and efficiency corresponding to the gap between the rolled material and the heating coil, and the second arithmetic circuit Based on the calculation result of the circuit, between the rolled material and the heating coil, the third calculation circuit for calculating the maximum allowable power obtained by the current upper limit value of the heating coil and the output of the first calculation circuit and the output of the third calculation circuit And a gap control circuit that controls the position of the heating coil according to the gap setting value calculated by the fourth calculation circuit.

【0011】[0011]

【作用】加熱すべき圧延材の情報及び昇温指令値ΔTに
より、圧延材を加熱すべき加熱電力Pref を、 Pref =vtρCBe0.025/B ΔT×103 [kW]/圧延材片側エッジ …(5) (但し、v=圧延材速度[m/s ] C=比熱[kJ/kg
℃] ρ=比重[ T/m3 ] B=昇温分布パラメータ t=圧延材厚さ[m]) により求める。(4) 式と(5) 式とを比較して、 P′max (g) ≧Pref …(6) となるようなギャップgの上限値を求め、 gref ≦g(Pref )= P′max -1(Pref ) となるようギャップ設定値gref を求める。求めたギャ
ップ設定値gref になすべく加熱コイルを制御する。こ
れにより、圧延材と加熱コイルとの間に適正なギャップ
を得て、圧延材を適正に加熱できる。
The heating power P ref for heating the rolled material is P ref = vtρCBe 0.025 / B ΔT × 10 3 [kW] / edge on one side of the rolled material according to the information of the rolled material to be heated and the temperature rise command value ΔT. (5) (however, v = rolling material speed [m / s] C = specific heat [kJ / kg
° C] ρ = specific gravity [T / m 3 ] B = temperature increase distribution parameter t = rolled material thickness [m]) By comparing the equations (4) and (5), the upper limit value of the gap g such that P ′ max (g) ≧ P ref (6) is obtained, and g ref ≦ g (P ref ) = P The gap setting value g ref is calculated so as to be ′ max −1 (P ref ). The heating coil is controlled so as to achieve the determined gap set value g ref . As a result, an appropriate gap can be obtained between the rolled material and the heating coil, and the rolled material can be appropriately heated.

【0012】[0012]

【実施例】以下本発明をその実施例を示す図面により詳
述する。図1は本発明に係る誘導加熱装置の構成を示す
模式的ブロック図である。加熱すべき圧延材に対する圧
延情報たる圧延材速度v[m/s ]、比熱C[kJ/kg
℃]、比重ρ[ T/m3 ]、昇温分布パラメータB、圧延
材厚さt[m]及び昇温指令値ΔTが、加熱電力演算回
路10へ入力される。加熱電力演算回路10は入力された情
報により、圧延材を加熱すべき加熱電力Pref を(5) 式
により求める。そして、加熱電力回路10が演算した加熱
電力Pref はギャップ設定値演算回路11へ入力される。
インピーダンス・力率・効率演算回路12は、オフライン
の理論解析又は実験によって予め求めた、ギャップgの
近似関数形又はテーブル値としてインピーダンスZ(g)
、力率PF(g) 、効率η(g) を演算する。
The present invention will be described in detail below with reference to the drawings showing the embodiments thereof. FIG. 1 is a schematic block diagram showing the configuration of the induction heating device according to the present invention. Rolling information for rolling material to be heated: rolling material speed v [m / s], specific heat C [kJ / kg
[° C.], specific gravity ρ [T / m 3 ], temperature rise distribution parameter B, rolled material thickness t [m] and temperature rise command value ΔT are input to the heating power calculation circuit 10. The heating power calculation circuit 10 obtains the heating power P ref for heating the rolled material by the equation (5) based on the input information. Then, the heating power P ref calculated by the heating power circuit 10 is input to the gap setting value calculation circuit 11.
The impedance / power factor / efficiency calculation circuit 12 calculates the impedance Z (g) as an approximate function form or a table value of the gap g, which is obtained in advance by an offline theoretical analysis or experiment.
, Power factor PF (g) and efficiency η (g) are calculated.

【0013】インピーダンス・力率・効率演算回路12が
演算したインピーダンスZ(g) 、効率η(g) 及び力率PF
(g) は単機容量演算回路13へ入力され、単機容量演算回
路13は、(3) 式により加熱コイルの許容電流を最大にし
たときの加熱コイルの単機容量Pmax (g) を演算し、更
に加熱効率を考慮して(4) 式により、そのときの圧延材
が受取る加熱電力P′max (g) を演算する。単機容量演
算回路13が演算した加熱出力P′max (g) はギャップ設
定値演算回路11へ入力される。ギャップ設定値演算回路
11は、(5) 式と(4) 式とを比較し、P′max (g) ≧P
ref となるようなギャップgの上限値を求め、gref
g(Pref )= P′max -1(Pref )となるようギャ
ップ設定値gref を演算する。
Impedance / power factor / efficiency calculating circuit 12 calculates impedance Z (g), efficiency η (g) and power factor PF
(g) is input to the single-unit capacity calculation circuit 13, and the single-unit capacity calculation circuit 13 calculates the single-unit capacity P max (g) of the heating coil when the allowable current of the heating coil is maximized by the formula (3). Further, in consideration of heating efficiency, the heating power P ′ max (g) received by the rolled material at that time is calculated by the equation (4). The heating output P ′ max (g) calculated by the unit capacity calculation circuit 13 is input to the gap set value calculation circuit 11. Gap setting value calculation circuit
11 compares Eqs . (5) and (4), and P'max (g) ≥ P
Find the upper limit of the gap g such that ref becomes g ref
The gap setting value g ref is calculated so that g (P ref ) = P ′ max −1 (P ref ).

【0014】実際には加熱能力の余裕、衝突防止の余裕
を考慮してギャップ設定値gref を決定する。ギャップ
設定値演算回路11が演算したギャップ設定値gref は、
ギャップ制御回路14へ入力される。ギャップ制御回路14
は、入力されたギャップ設定指令値gref に応じて、上
側加熱コイル2,2及び下側加熱コイル3,3を上下動
させる制御をして、個別に位置決めする。このときの上
側加熱コイル2,2、下側加熱コイル3,3と圧延材4
との距離x,y及び圧延材4の厚さtは(図1参照)、
x+y=gref −tとなるように配分する。
Actually, the gap setting value g ref is determined in consideration of the margin of heating capacity and the margin of collision prevention. The gap setting value g ref calculated by the gap setting value calculation circuit 11 is
It is input to the gap control circuit 14. Gap control circuit 14
Controls the upper heating coils 2 and 2 and the lower heating coils 3 and 3 up and down according to the input gap setting command value g ref , and positions them individually. At this time, the upper heating coils 2 and 2, the lower heating coils 3 and 3 and the rolled material 4
And the thickness t of the rolled material 4 are (see FIG. 1),
Allocate so that x + y = g ref −t.

【0015】このようにして、理論解析又は実験により
予め求めた近似関数形、インピーダンスZ(g) 、力率PF
(g) 、効率η(g) と、昇温指令値ΔT及び圧延情報とに
より求めた加熱電力Pref から所定の加熱を行うのに許
容されるギャップgの上限値を求め、それに応じてギャ
ップ設定値gref を求めることにより、所定の加熱能力
を得るのに許容できるギャップgの設定が可能になり、
加熱コイルの電流が過大になることがない。そして圧延
材の反りを検出する反り検出器と組合せることにより、
圧延材と加熱コイルとの衝突を防止できる。
In this way, the approximate function form, the impedance Z (g), and the power factor PF obtained in advance by theoretical analysis or experiment are obtained.
(g), the efficiency η (g), the heating command value ΔT, and the heating power P ref obtained from the rolling information to obtain the upper limit value of the gap g allowed to perform the predetermined heating. By obtaining the set value g ref , it becomes possible to set the gap g that is allowable to obtain a predetermined heating capacity,
The heating coil current does not become excessive. And by combining with a warpage detector that detects the warpage of rolled material,
It is possible to prevent the rolled material from colliding with the heating coil.

【0016】[0016]

【発明の効果】以上詳述したように本発明によれば、所
定の加熱能力を得るために許容できるギャップを設定で
きる。また加熱コイルに過大な電流が流れることがな
い。更に圧延材の反りを検出する反り検出器と組合せる
ことにより、圧延材と加熱コイルとの衝突を防止でき
る。したがって、本発明は、過大な電流により加熱コイ
ルを焼損させる虞れがなく、圧延材と加熱コイルとの距
離を適正に制御して圧延材を適正に加熱できる誘導加熱
装置を提供できる優れた効果を奏する。
As described in detail above, according to the present invention, it is possible to set the allowable gap for obtaining the predetermined heating capacity. Moreover, an excessive current does not flow in the heating coil. Further, by combining with a warp detector for detecting the warp of the rolled material, it is possible to prevent the rolled material from colliding with the heating coil. Therefore, the present invention is not likely to burn the heating coil due to an excessive current, and it is possible to provide an induction heating device capable of appropriately controlling the distance between the rolled material and the heating coil to appropriately heat the rolled material. Play.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る誘導加熱装置の構成を示す模式的
ブロック図である。
FIG. 1 is a schematic block diagram showing a configuration of an induction heating device according to the present invention.

【図2】従来の誘導加熱装置による圧延材の加熱状態を
示す模式的側面図である。
FIG. 2 is a schematic side view showing a heating state of a rolled material by a conventional induction heating device.

【符号の説明】[Explanation of symbols]

2 上側加熱コイル 3 下側加熱コイル 10 加熱電力演算回路 11 ギャップ設定値演算回路 12 インピーダンス・力率・効率演算回路 13 単機容量演算回路 14 ギャップ制御回路 2 Upper heating coil 3 Lower heating coil 10 Heating power calculation circuit 11 Gap setting value calculation circuit 12 Impedance / power factor / efficiency calculation circuit 13 Single unit capacity calculation circuit 14 Gap control circuit

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 圧延材の上面側及び下面側に加熱コイル
を配置して圧延材を加熱する誘導加熱装置において、前
記圧延材の情報及び圧延材の昇温指令値に基づいて加熱
電力を演算する第1演算回路と、圧延材及び加熱コイル
間のギャップに対応するインピーダンス、力率、効率を
演算する第2演算回路と、該第2演算回路の演算結果に
基づいて、加熱コイルの電流上限値により得られる最大
許容電力を演算する第3演算回路と、第1演算回路の出
力及び第3演算回路の出力により、圧延材及び加熱コイ
ル間のギャップ設定値を演算する第4演算回路と、該第
4演算回路が演算したギャップ設定値により、加熱コイ
ルの位置を制御するギャップ制御回路とを備えることを
特徴とする圧延材の誘導加熱装置。
1. An induction heating apparatus for heating a rolled material by arranging heating coils on the upper surface side and the lower surface side of the rolled material, the heating power is calculated based on the information of the rolled material and a temperature rise command value of the rolled material. Based on a calculation result of the first calculation circuit, a second calculation circuit that calculates the impedance, power factor, and efficiency corresponding to the gap between the rolled material and the heating coil, and the upper limit of the current of the heating coil. A third arithmetic circuit for calculating the maximum allowable power obtained by the value, and a fourth arithmetic circuit for calculating the gap set value between the rolled material and the heating coil by the output of the first arithmetic circuit and the output of the third arithmetic circuit, An induction heating apparatus for rolled material, comprising: a gap control circuit for controlling the position of the heating coil according to the gap setting value calculated by the fourth arithmetic circuit.
JP4131920A 1992-04-22 1992-04-22 Induction heating device Expired - Fee Related JP2677114B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4131920A JP2677114B2 (en) 1992-04-22 1992-04-22 Induction heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4131920A JP2677114B2 (en) 1992-04-22 1992-04-22 Induction heating device

Publications (2)

Publication Number Publication Date
JPH05299164A true JPH05299164A (en) 1993-11-12
JP2677114B2 JP2677114B2 (en) 1997-11-17

Family

ID=15069290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4131920A Expired - Fee Related JP2677114B2 (en) 1992-04-22 1992-04-22 Induction heating device

Country Status (1)

Country Link
JP (1) JP2677114B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002313544A (en) * 2001-04-17 2002-10-25 Denki Kogyo Co Ltd Method and device for high frequency induction heating

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60151824A (en) * 1984-01-18 1985-08-09 Matsushita Electric Ind Co Ltd Magnetic recording tape
JPH02168591A (en) * 1988-12-21 1990-06-28 Mitsubishi Electric Corp Inductive heating device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60151824A (en) * 1984-01-18 1985-08-09 Matsushita Electric Ind Co Ltd Magnetic recording tape
JPH02168591A (en) * 1988-12-21 1990-06-28 Mitsubishi Electric Corp Inductive heating device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002313544A (en) * 2001-04-17 2002-10-25 Denki Kogyo Co Ltd Method and device for high frequency induction heating
JP4644379B2 (en) * 2001-04-17 2011-03-02 電気興業株式会社 High frequency induction heating method and apparatus

Also Published As

Publication number Publication date
JP2677114B2 (en) 1997-11-17

Similar Documents

Publication Publication Date Title
US20020092846A1 (en) Induction heating device for rolling roller and method of induction heating
JPH0210687A (en) Method and device of induction-heating
JP2677114B2 (en) Induction heating device
JP5466905B2 (en) Induction heating apparatus and control method of induction heating apparatus
KR20000067935A (en) System, apparatus and method for heating metal products in an oscillating induction furnace
US5214258A (en) Apparatus and method of ultra rapid annealing by induction heating of thin steel strip
JP4975235B2 (en) Material temperature control system in continuous strip material processing line
GB2043955A (en) Controlling the feeding of strip material
JP3614295B2 (en) Induction heating temperature control method for conductive material during conveyance
JPH07169561A (en) Induction heating device
KR101169125B1 (en) Material temperature control system in continuous strip material treatment line
JPH0332417A (en) Method for controlling electric timing of multiple looper
JP3082211B2 (en) Vacuum furnace and temperature uniforming method in vacuum furnace
JP3866850B2 (en) Induction heating method and apparatus
JPH05299162A (en) Induction heating device
JPS61288393A (en) Induction heating of slab
JP2604666B2 (en) Induction heating device
JP2001160481A (en) Electromagnetic induction heating device
JPS5528311A (en) Controlling method for heating for edge of metallic piece
JPS59157984A (en) Induction heating method
JPS61201302A (en) Induction heating device
JPH09140135A (en) Load power controller
JPS6331284B2 (en)
JPS623670B2 (en)
JP2008248386A (en) Heat-treatment method for steel material

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070725

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20080725

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080725

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090725

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees