JPH0215922B2 - - Google Patents

Info

Publication number
JPH0215922B2
JPH0215922B2 JP55046682A JP4668280A JPH0215922B2 JP H0215922 B2 JPH0215922 B2 JP H0215922B2 JP 55046682 A JP55046682 A JP 55046682A JP 4668280 A JP4668280 A JP 4668280A JP H0215922 B2 JPH0215922 B2 JP H0215922B2
Authority
JP
Japan
Prior art keywords
magnetic
metal
nickel
disk
head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55046682A
Other languages
Japanese (ja)
Other versions
JPS56143538A (en
Inventor
Masahiro Yanagisawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP4668280A priority Critical patent/JPS56143538A/en
Publication of JPS56143538A publication Critical patent/JPS56143538A/en
Publication of JPH0215922B2 publication Critical patent/JPH0215922B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/72Protective coatings, e.g. anti-static or antifriction

Landscapes

  • Preventing Corrosion Or Incrustation Of Metals (AREA)
  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Description

【発明の詳細な説明】 本発明は磁気的記憶装置(磁気デイスク装置ま
たは磁気ドラム装置等)に用いられる磁気記憶体
の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a magnetic storage body used in a magnetic storage device (such as a magnetic disk device or a magnetic drum device).

一般に記録再生磁気ヘツド(以下ヘツドと呼
ぶ)、と磁気記憶体とを構成部とする磁気記憶装
置の記録再生方法には次のような方法がある。す
なわち操作開始時にヘツドと磁気記憶体面とを接
触状態でセツトした後、前記磁気記憶体に所要の
回転を与えることにより前記ヘツドと前記磁気記
憶体面との間に空気層分の空間を作り、この状態
で記録再生をする方法である(コンタクト・スタ
ート・ストツプ方式。以下CSS方式と呼ぶ)。こ
の方法では操作終了時に磁気記憶体の回転が止ま
り、この時ヘツドと磁気記憶体面は操作開始時と
同様に接触摩擦状態にある。
In general, there are the following methods for recording and reproducing a magnetic storage device comprising a recording and reproducing magnetic head (hereinafter referred to as a head) and a magnetic storage body. That is, after the head and the magnetic storage surface are set in contact at the start of operation, a space corresponding to an air layer is created between the head and the magnetic storage surface by giving the magnetic storage the required rotation, and this This is a method of recording and reproducing in the current state (contact start-stop method, hereinafter referred to as CSS method). In this method, at the end of the operation, the magnetic storage body stops rotating, and at this time the head and the magnetic storage body surface are in a frictional state of contact, as at the beginning of the operation.

これらの接触摩擦状態におけるヘツドと磁気記
憶体の間に生じる摩擦力は、ヘツドおよび磁気記
憶体を摩耗させついにはヘツドおよび金属磁性媒
体に傷を生じせしめることがある。また前記接触
摩擦状態においてヘツドのわずかな姿勢の変化が
ヘツドにかかる荷重を不均一にさせヘツドおよび
磁気記憶体表面に傷を作ることもある。
The frictional force generated between the head and the magnetic storage material under these contact friction conditions can wear out the head and the magnetic storage material and may eventually cause scratches on the head and the metal magnetic medium. Further, in the contact friction state, a slight change in the posture of the head may cause the load applied to the head to become uneven, causing scratches on the surface of the head and the magnetic storage body.

また更に記録再生中に突発的にヘツドが磁気記
憶体に接触しヘツドと磁気記憶体間に大きな摩擦
力が働き、ヘツドおよび磁気記憶体が破壊される
ことがしばしば起こる。この様なヘツドと磁気記
憶体との接触摩擦、接触摩耗および接触破壊から
ヘツドおよび磁気記憶体を保護するために磁気記
憶体の表面に保護膜を被覆することが必要であ
る。
Furthermore, during recording and reproducing, the head suddenly comes into contact with the magnetic storage body, and a large frictional force acts between the head and the magnetic storage body, often resulting in destruction of the head and the magnetic storage body. In order to protect the head and the magnetic memory from such contact friction, contact wear and contact breakage between the head and the magnetic memory, it is necessary to coat the surface of the magnetic memory with a protective film.

従来より種々の保護膜が提案されており、その
うちの1つに磁気記憶体の記憶媒体として用いら
れる金属磁性媒体の表面を化成処理したのち200
〜290℃の温度で焼成して金属酸化物からなる保
護膜を形成させる方法が知られている(特公昭49
−29445号公報、特公昭50−30443号公報参照)。
A variety of protective films have been proposed in the past, and one of them is a 200% protective film that has been chemically treated on the surface of a metal magnetic medium used as a storage medium in a magnetic storage body.
A method is known in which a protective film made of metal oxide is formed by firing at a temperature of ~290°C (Japanese Patent Publication No. 49
(Refer to Publication No.-29445 and Japanese Patent Publication No. 50-30443).

しかしこの方法では化成処理による金属磁性媒
体の局部的な腐食が生じるうえに高温で焼成する
為に磁気記憶体を構成する各被覆層に熱膨張係数
の差によるクラツクあるいはそりが生じ、また、
被覆層の1つであるニツケル−燐の帯磁をもたら
す。またさらに金属磁性媒体の磁気等性をも損な
うことが多い。
However, with this method, local corrosion of the metal magnetic medium occurs due to chemical conversion treatment, and since it is fired at a high temperature, cracks or warpage occur in each coating layer that constitutes the magnetic storage body due to differences in thermal expansion coefficients.
One of the coating layers, nickel-phosphorus, is magnetized. Moreover, it often impairs the magnetic properties of the metal magnetic medium.

さらに別の方法として、金属磁性媒体の上に非
磁性のニツケルまたはコバルト合金を被覆しその
表面を電気化学的に酸化する方法がある(特開昭
52−80804号公報参照)。しかし電気化学的に形成
した金属酸化物は金属水酸化物あるいは含水金属
酸化物であり、高温酸化によつて作られた無水金
属酸化物に比べ強度的に弱く、また、耐食性にも
弱い欠点がある。
Yet another method is to coat a non-magnetic nickel or cobalt alloy on a metal magnetic medium and electrochemically oxidize the surface (Japanese Patent Application Laid-Open No.
(See Publication No. 52-80804). However, electrochemically formed metal oxides are metal hydroxides or hydrated metal oxides, which have weaker strength and lower corrosion resistance than anhydrous metal oxides made by high-temperature oxidation. be.

本発明の目的は上記の高温焼成に伴なう弊害を
もたらさず、かつ、強度が大きく耐食性に優れた
無水の金属酸化物を保護膜として形成される磁気
記憶体の製造方法を提供することにある。
An object of the present invention is to provide a method for manufacturing a magnetic memory body which does not cause the above-mentioned disadvantages associated with high-temperature firing, and which is formed using an anhydrous metal oxide as a protective film, which has high strength and excellent corrosion resistance. be.

すなわち、本発明は鏡面を有する下地体の上に
金属磁性媒体を被覆し、その媒体又はその上に被
覆された別の金属の表面にレーザー光を照射して
金属酸化物を形成させることを特徴としている。
金属酸化物を形成するために表面に被覆される金
属としては、Co、Ni、Fe、Cr、Al、Cu、Zr、
Ti、Ag、Ni−P、Co−Ni−P、Co−Cr、Co−
B、Ni−Sn−P、N−W若しくはNi−B又はこ
れらの組合わせによる合金を例示することができ
る。
That is, the present invention is characterized in that a metal magnetic medium is coated on a base body having a mirror surface, and the surface of the medium or another metal coated thereon is irradiated with laser light to form a metal oxide. It is said that
Metals coated on the surface to form metal oxides include Co, Ni, Fe, Cr, Al, Cu, Zr,
Ti, Ag, Ni-P, Co-Ni-P, Co-Cr, Co-
Examples include alloys of B, Ni-Sn-P, N-W, Ni-B, or a combination thereof.

次に図面を参照して本発明を詳細に説明する。 Next, the present invention will be explained in detail with reference to the drawings.

第1,2図は磁気記憶体の部分断面図である。
第1図において磁気記憶体の基盤1としてアルミ
合金が軽くて加工性が良く安価なことから最も良
く用いられるが、場合によつてはチタン合金が用
いられることもある。基盤表面は機械加工により
小さなうねり(円周方向で50μm以下、半径方向
で100μm以下)を有する面に仕上げられる。
1 and 2 are partial cross-sectional views of the magnetic storage body.
In FIG. 1, aluminum alloy is most often used as the base 1 of the magnetic memory body because it is light, easy to work with, and inexpensive, but titanium alloy may also be used in some cases. The base surface is finished by machining into a surface with small undulations (50 μm or less in the circumferential direction and 100 μm or less in the radial direction).

次にこの基盤1の上に下地体2としてニツケル
−燐合金がめつきにより被覆され、この下地体2
の表面は機械的研摩により表面粗さ0.03μm
(Rmax)以下に鏡面仕上げされる。
Next, a nickel-phosphorus alloy is coated on this base 1 as a base body 2 by plating, and this base body 2
The surface has a surface roughness of 0.03μm by mechanical polishing.
Mirror finish is achieved below (Rmax).

次に上記下地体2の鏡面研磨上に金属磁性媒体
3としてコバルト−ニツケル−燐合金がめつきに
より被覆される。
Next, a cobalt-nickel-phosphorus alloy is coated on the mirror-polished base body 2 as a metal magnetic medium 3 by plating.

次にその金属磁性媒体3の表面にレーザー光6
を照射することによりその媒体3の表面が金属酸
化物4に変換され保護膜が形成される。
Next, a laser beam 6 is applied to the surface of the metal magnetic medium 3.
By irradiating the medium 3 with , the surface of the medium 3 is converted into a metal oxide 4 and a protective film is formed.

また、第2図においては金属磁性媒体3の上に
金属膜5が被覆され、次にその金属膜5の表面に
レーザー光6を照射することによりその金属膜5
の全て又は表面が金属酸化物41に変換され保護
膜が形成される。
Further, in FIG. 2, a metal film 5 is coated on the metal magnetic medium 3, and then the surface of the metal film 5 is irradiated with a laser beam 6.
All or the surface thereof is converted into metal oxide 41 to form a protective film.

酸化は第1図の場合、金属磁性媒体3が0.05〜
0.10μm残る程度に留る必要があるが、第2図の
場合は金属膜5を全て酸化してもかまわない。
In the case of Fig. 1, the oxidation of the metal magnetic medium 3 is from 0.05 to
Although it is necessary that only 0.10 μm remain, in the case of FIG. 2, the metal film 5 may be completely oxidized.

本発明によるレーザー光による金属酸化物の形
成は金属酸化物のレーザー光の吸収による熱焼成
および熱硬化以外に下地体2として用いられるニ
ツケル−燐合金を帯磁させたりあるいは基盤1と
下地体2の熱膨張係数の差によるクラツク、剥離
あるいはそりをもたらさないことが優れた特徴の
1つである。
Formation of a metal oxide by laser light according to the present invention involves magnetizing the nickel-phosphorus alloy used as the base body 2, or by magnetizing the nickel-phosphorus alloy used as the base body 2, or by magnetizing the nickel-phosphorus alloy used as the base body 2, in addition to thermal baking and thermosetting by the absorption of laser light by the metal oxide. One of its excellent features is that it does not cause cracks, peeling, or warping due to differences in thermal expansion coefficients.

すなわち、レーザー光の高エネルギー密度と、
金属酸化物の高いレーザー光吸収と、金属の高い
レーザー光反射率により、金属酸化物と下地体と
の間に高い温度勾配が生じて、金属の酸化物の熱
焼成および熱硬化と同時に下地体の帯磁、クラツ
クそりおよび剥離を防止するという二重の効果を
もたらすことが出来る。
In other words, the high energy density of laser light and
Due to the high laser light absorption of metal oxides and the high laser light reflectance of metals, a high temperature gradient is created between the metal oxide and the substrate, which causes thermal sintering and thermal curing of the metal oxide and simultaneous thermal curing of the substrate. This has the dual effect of preventing magnetization, crack warping, and peeling.

さらに金属表面にレーザー光を照射する工程を
酸素あるいはオゾンなどの酸化性雰囲気で行なう
ことにより、金属の酸化速度を速めることが出来
る。すなわち、金属表面はレーザー光を非常に良
く反射する一方、金属酸化物はレーザー光を良く
吸収するので金属表面を酸化雰囲気中でレーザー
光照射することにより急速に金属酸化物の形成が
進行する。
Furthermore, the oxidation rate of the metal can be increased by performing the step of irradiating the metal surface with laser light in an oxidizing atmosphere such as oxygen or ozone. That is, while metal surfaces reflect laser light very well, metal oxides absorb laser light well, so by irradiating the metal surface with laser light in an oxidizing atmosphere, the formation of metal oxides progresses rapidly.

次に実施例および比較例により本発明を詳細に
説明する。
Next, the present invention will be explained in detail with reference to Examples and Comparative Examples.

実施例 1 基盤1として施盤加工および熱矯正によつて十
分小さなうねり(円周方向で50μm以下および半
径方向で10μm以下)をもつた面に仕上げられた
デイスク状アルミニウム合金盤上に下地体2とし
てニツケル−燐合金を約50μmの厚さにめつき
し、このニツケル−燐めつき膜を表面粗さ0.02μ
m、厚さ30μmまで鏡面研磨仕上げした。次にこ
のニツケル−燐めつき膜の上に金属磁性媒体3と
してコバルト−ニツケル−燐合金を0.15μmの厚
さにめつきした。
Example 1 As the substrate 1, a disc-shaped aluminum alloy plate whose surface was finished with sufficiently small waviness (50 μm or less in the circumferential direction and 10 μm or less in the radial direction) by lathe machining and heat straightening was used as the base body 2. Nickel-phosphorus alloy is plated to a thickness of approximately 50μm, and this nickel-phosphorus plating film has a surface roughness of 0.02μm.
Mirror polished to a thickness of 30 μm. Next, a cobalt-nickel-phosphorus alloy was plated on the nickel-phosphorus plating film to a thickness of 0.15 μm as a metal magnetic medium 3.

次にコバルト−ニツケル−燐合金が被覆された
デイスク状円盤を200rpmで回転させつつ出力
250W、ビーム直径0.15mmの連続発振炭酸ガスレ
ーザーを半径方向に1分間に20mmの速さでコバル
ト−ニツケルー燐合金面上に空気中で照射して、
コバルトーニツケルー燐合金の表面にその合金の
酸化物を形成して磁気デイスクを作つた。
Next, a disk-shaped disk coated with cobalt-nickel-phosphorus alloy is rotated at 200 rpm and output.
A 250W continuous wave carbon dioxide laser with a beam diameter of 0.15mm is irradiated in the radial direction at a speed of 20mm per minute onto a cobalt-nickel phosphorus alloy surface in air.
A magnetic disk was made by forming an oxide of the cobalt-nickel-phosphorus alloy on the surface of the alloy.

実施例 2 実施例1と同様にして、但し、レーザー光源と
して50MW、ビーム直径30mmのパルス発振炭酸ガ
スレーザーを用いて磁気デイスクを作つた。
Example 2 A magnetic disk was manufactured in the same manner as in Example 1, except that a pulsed carbon dioxide laser of 50 MW and a beam diameter of 30 mm was used as the laser light source.

実施例 3 実施例1と同様にして、但し、レーザー光源と
して100MW、ビーム直径40mmのパレス発振ルビ
ーレーザーを用いて磁気デイスクを作つた。
Example 3 A magnetic disk was manufactured in the same manner as in Example 1, except that a pulse oscillation ruby laser of 100 MW and a beam diameter of 40 mm was used as the laser light source.

実施例 4 実施例1と同様にして、但し、レーザー光源と
して10MW、ビーム直径10mmのパルス発振YAG
レーザーを用いて磁気デイスクを作つた。
Example 4 Same as Example 1, except that pulse oscillation YAG with 10 MW and beam diameter of 10 mm was used as the laser light source.
Created a magnetic disk using a laser.

実施例 5 実施例1と同様にして、但し、酸素雰囲気中で
レーザー照射を行ない磁気デイスクを作つた。
Example 5 A magnetic disk was produced in the same manner as in Example 1, except that laser irradiation was performed in an oxygen atmosphere.

実施例 6 実施例3と同様にして、但し、オゾン雰囲気中
でレーザー照射を行ない磁気デイスクを作つた。
Example 6 A magnetic disk was produced in the same manner as in Example 3, except that laser irradiation was performed in an ozone atmosphere.

実施例 7 実施例1と同様にして、但し、金属磁性媒体3
としてコバルト−クロム合金を被覆したものを用
いて磁気デイスクを作つた。
Example 7 Same as Example 1, except that metal magnetic medium 3
A magnetic disk was made using a cobalt-chromium alloy coating.

実施例 8 実施例7と同様にして、但し、レーザー光源と
してパワー密度6.3×106W/cm2のパルス発振ルビ
ーレーザーを用いて10μs照射を酸素雰囲気中で行
ない磁気デイスクを作つた。
Example 8 A magnetic disk was produced in the same manner as in Example 7, except that a pulsed ruby laser with a power density of 6.3×10 6 W/cm 2 was used as the laser light source and irradiation was performed for 10 μs in an oxygen atmosphere.

実施例 9 実施例7と同様にして、但し、レーザー光源と
してパワー密度1×107W/cm2のパルス発振YAG
レーザーを用いて50μs照射をオゾン雰囲気中で行
ない磁気デイスクを作つた。
Example 9 Same as Example 7, except that pulse oscillation YAG with a power density of 1×10 7 W/cm 2 was used as the laser light source.
A magnetic disk was fabricated using a laser for 50 μs irradiation in an ozone atmosphere.

実施例 10 実施例1と同様にして、但し、金属磁性媒体3
としてコバルト−ニツケルー燐合金を0.05μmの
厚さにめつきし、その上に金属膜5としてニツケ
ル−燐合金を0.05μmの厚さにめつきした。
Example 10 Same as Example 1, except that metal magnetic medium 3
A cobalt-nickel-phosphorus alloy was plated to a thickness of 0.05 .mu.m as a metal film 5, and a nickel-phosphorus alloy was plated thereon to a thickness of 0.05 .mu.m.

次にそのニツケル−燐合金の表面にパワー密度
1.4×106W/cm2の連続発振炭酸ガスレーザーを空
気中で4ms照射してニツケル−燐合金の酸化物
を形成して磁気デイスクを作つた。
Next, the power density is applied to the surface of the nickel-phosphorus alloy.
A 1.4×10 6 W/cm 2 continuous wave carbon dioxide laser was irradiated in the air for 4 ms to form a nickel-phosphorus alloy oxide to produce a magnetic disk.

実施例 11 実施例10と同様にして、但し、酸素雰囲気中で
レーザー照射を行ない磁気デイスクを作つた。
Example 11 A magnetic disk was produced in the same manner as in Example 10, except that laser irradiation was performed in an oxygen atmosphere.

実施例 12 実施例10と同様にして、但し、レーザー光源と
してパワー密度6.3×106W/cm2のパルス発振ルビ
ーレーザーを用いてオゾン雰囲気中でレーザー照
射を行ない磁気デイスクを作つた。
Example 12 A magnetic disk was produced in the same manner as in Example 10, except that a pulsed ruby laser with a power density of 6.3×10 6 W/cm 2 was used as the laser light source and laser irradiation was performed in an ozone atmosphere.

実施例 13 実施例10と同様にして、但し、金属膜5として
Crを0.1μmの厚さにめつきしたものを用いて磁気
デイスクを作つた。
Example 13 Same as Example 10, except that as the metal film 5
A magnetic disk was made using Cr plated to a thickness of 0.1 μm.

実施例 14 実施例10と同様にして、但し、金属膜5として
アルミニウムを0.05μmの厚さに被覆したものを
用いて磁気デイスクを作つた。
Example 14 A magnetic disk was fabricated in the same manner as in Example 10, except that the metal film 5 was coated with aluminum to a thickness of 0.05 μm.

実施例 15 実施例10と同様にして、但し、金属膜5として
ジルコニウムを0.10μmの厚さに被覆したものを
用いて磁気デイスクを作つた。
Example 15 A magnetic disk was fabricated in the same manner as in Example 10, except that the metal film 5 was coated with zirconium to a thickness of 0.10 μm.

実施例 16 実施例10と同様にして、但し、金属膜5として
チタンを0.10μmの厚さに被覆したものを用いて
磁気デイスクを作つた。
Example 16 A magnetic disk was fabricated in the same manner as in Example 10, except that the metal film 5 was coated with titanium to a thickness of 0.10 μm.

実施例 17 実施例10と同様にして、但し、金属膜5として
銅を0.10μmの厚さにめつきしたものを用いて磁
気デイスクを作つた。
Example 17 A magnetic disk was fabricated in the same manner as in Example 10, except that the metal film 5 was plated with copper to a thickness of 0.10 μm.

比較例 1 実施例1と同様にして作つた金属磁性媒体とし
てコバルト−ニツケル−燐合金を被覆したデイス
ク状円盤を2g/の硝酸と、20g/のクエン
酸3ナトリウムを含む水溶液中に2分間浸漬した
後、水洗、乾燥し、次に250℃で空気中で2時間
加熱して磁気デイスクを作つた。
Comparative Example 1 A disk-shaped disk coated with a cobalt-nickel-phosphorus alloy as a metal magnetic medium prepared in the same manner as in Example 1 was immersed for 2 minutes in an aqueous solution containing 2 g of nitric acid and 20 g of trisodium citrate. After that, it was washed with water, dried, and then heated in air at 250°C for 2 hours to make a magnetic disk.

比較例 2 実施例1と同様にして作つた金属磁性媒体とし
てコバルト−ニツケル−燐合金を被覆したデイス
ク状円盤を空気中で275℃で2時間焼成加熱して
磁気デイスクを作つた。
Comparative Example 2 A disk-shaped disk coated with a cobalt-nickel-phosphorus alloy as a metal magnetic medium produced in the same manner as in Example 1 was fired and heated in air at 275° C. for 2 hours to produce a magnetic disk.

比較例 3 実施例1と同様にして作つた金属磁性媒体とし
てコバルト−ニツケル−燐合金を被覆したデイス
ク状円盤の上にニツケル−燐合金をめつきにより
被覆し全体を10%硫酸溶液中に浸漬し、ニツケル
−燐合金の表面を次の条件で電気化学的に酸化し
た。
Comparative Example 3 A disk-shaped disk coated with a cobalt-nickel-phosphorus alloy was coated with a cobalt-nickel-phosphorus alloy as a metal magnetic medium prepared in the same manner as in Example 1.The disk-shaped disk was coated with a nickel-phosphorus alloy by plating, and the entire disc was immersed in a 10% sulfuric acid solution. Then, the surface of the nickel-phosphorus alloy was electrochemically oxidized under the following conditions.

陽極;デイスク状円盤、陰極;ステンレス板 温度;室温 陽極電流密度;1.5〜5.5A/dm2 実施例1〜17および比較例1〜3で示した各磁
気デイスクの表面に形成された無水金属酸化物あ
るいは含水金属酸化物の強度を0.03Rサフアイア
針による引掻試験により測定したところ、比較例
1、2、3においてそれぞれ荷重30g、40g、10
gで表面に引掻傷が生じたが実施例1〜9では60
gまで、実施例10〜17では60〜80gまで引掻傷は
生じなかつた。
Anode: disk-shaped disk, cathode: stainless steel plate Temperature: room temperature Anode current density: 1.5 to 5.5 A/ dm 2Anhydrous metal oxide formed on the surface of each magnetic disk shown in Examples 1 to 17 and Comparative Examples 1 to 3 The strength of the material or hydrated metal oxide was measured by a scratch test using a 0.03R sapphire needle. In Comparative Examples 1, 2, and 3, the strength was measured at a load of 30 g, 40 g, and 10 g.
Scratches occurred on the surface at 60 g in Examples 1 to 9.
In Examples 10-17, no scratches occurred up to 60-80 g.

また実施例1〜17の磁気デイスクを用いてCSS
方式のテストを1万回繰り返したが全く傷は生じ
なかつた。一方、比較例1、2の磁気デイスクは
約5000回、比較例3では約500回のCSSの繰り返
しでヘツドクラツシユを起こした。
Furthermore, using the magnetic disks of Examples 1 to 17, CSS
The method was tested 10,000 times and no scratches appeared. On the other hand, head crash occurred in the magnetic disks of Comparative Examples 1 and 2 after about 5000 CSS cycles, and in Comparative Example 3 after about 500 CSS cycles.

また各磁気デイスクの磁気特性を調べたところ
実施例1〜17の磁気デイスクには磁気特性の変化
は無かつたが、比較例1、2の磁気デイスクは下
地体として用いたニツケル−燐が帯磁してヘツド
からの出力電圧が50%減少した。
In addition, when the magnetic properties of each magnetic disk were investigated, there was no change in the magnetic properties of the magnetic disks of Examples 1 to 17, but the magnetic disks of Comparative Examples 1 and 2 had nickel-phosphorus used as the base material, which was magnetized. The output voltage from the head was reduced by 50%.

また湿度80%、温度40℃で120時間耐湿試験を
行なつたところ、比較例1、2、3ではそれぞれ
約50倍、10倍、50倍程度ドロツプアウトが増加し
たが実施例1〜17の磁気デイスクではほとんど増
加は見られなかつた。
In addition, when a humidity test was conducted for 120 hours at a humidity of 80% and a temperature of 40°C, the dropout increased by about 50 times, 10 times, and 50 times in Comparative Examples 1, 2, and 3, respectively, but in Examples 1 to 17, the dropout Almost no increase was observed in disks.

以上のことから本発明の磁気記憶体の製造方法
によつて製造した磁気デイスクはより優れた信頼
性を有していることが分つた。
From the above, it was found that the magnetic disk manufactured by the method for manufacturing a magnetic storage body of the present invention has superior reliability.

【図面の簡単な説明】[Brief explanation of drawings]

第1,2図はそれぞれ本発明により製造される
磁気記憶体を示す部分断面図である。 1は基盤、2は下地体、3は金属磁性媒体、4
は金属酸化物、5は金属膜、6はレーザー光であ
る。
FIGS. 1 and 2 are partial cross-sectional views showing magnetic storage bodies manufactured according to the present invention, respectively. 1 is a base, 2 is a base body, 3 is a metal magnetic medium, 4
is a metal oxide, 5 is a metal film, and 6 is a laser beam.

Claims (1)

【特許請求の範囲】 1 金属表面を有する磁気記憶体のその表面に酸
化性雰囲気中でレーザー光を照射してその表面金
属の酸化物からなる保護膜を付与することを特徴
とする磁気記憶体の製造方法。 2 金属がCo、Ni、Fe、Cr、Al、Cu、Zr、Ti、
Ag、Ni−P、Co−P、Co−Ni−P、Co−Cr、
Co−W、Co−B、Ni−Sn−P、Ni−W若しく
はNi−B又はこれらの組合わせによる合金であ
る特許請求の範囲第1項に記載の磁気記憶体の製
造方法。
[Claims] 1. A magnetic storage body having a metal surface, which is characterized in that the surface thereof is irradiated with laser light in an oxidizing atmosphere to provide a protective film made of an oxide of the surface metal. manufacturing method. 2 The metal is Co, Ni, Fe, Cr, Al, Cu, Zr, Ti,
Ag, Ni-P, Co-P, Co-Ni-P, Co-Cr,
2. The method for manufacturing a magnetic memory body according to claim 1, wherein the material is an alloy of Co-W, Co-B, Ni-Sn-P, Ni-W, Ni-B, or a combination thereof.
JP4668280A 1980-04-09 1980-04-09 Manufacture of magnetic storage body Granted JPS56143538A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4668280A JPS56143538A (en) 1980-04-09 1980-04-09 Manufacture of magnetic storage body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4668280A JPS56143538A (en) 1980-04-09 1980-04-09 Manufacture of magnetic storage body

Publications (2)

Publication Number Publication Date
JPS56143538A JPS56143538A (en) 1981-11-09
JPH0215922B2 true JPH0215922B2 (en) 1990-04-13

Family

ID=12754143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4668280A Granted JPS56143538A (en) 1980-04-09 1980-04-09 Manufacture of magnetic storage body

Country Status (1)

Country Link
JP (1) JPS56143538A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6018388A (en) * 1983-07-11 1985-01-30 Dainippon Printing Co Ltd Thermal magnetic recording medium
JPS6113425A (en) * 1984-06-29 1986-01-21 Nec Corp Magnetic recording medium and its production
JP2513597B2 (en) * 1985-02-04 1996-07-03 富士通株式会社 Perpendicular magnetic recording
JPH0758542B2 (en) * 1985-10-31 1995-06-21 帝人株式会社 Thin film type magnetic recording medium

Also Published As

Publication number Publication date
JPS56143538A (en) 1981-11-09

Similar Documents

Publication Publication Date Title
US4029541A (en) Magnetic recording disc of improved durability having tin-nickel undercoating
US5441788A (en) Method of preparing recording media for a disk drive and disk drive recording media
JPH0215922B2 (en)
US3471272A (en) Magnetic storage medium
JPS59148129A (en) Disk substrate and its manufacture
JPS633378B2 (en)
JP2000057564A (en) Manufacture of magnetic recording medium
JPH103630A (en) Thin-film magnetic head and its production
Baudrand et al. Autocatalytic Alloy Plating Processes for Thin-Film Memory Discs
JPS6250884B2 (en)
JPH0451885B2 (en)
JPS615437A (en) Manufacture of magnetic disk
KR950014824B1 (en) Producting method of magnetic recording medium
JPH0291813A (en) Magnetic recording medium
JPH0450648B2 (en)
JPS6313123A (en) Magnetic disk and its production
JPS62243115A (en) Magnetic recording medium
JPH0315254B2 (en)
JPS60219638A (en) Production of magnetic disk
JPS6216452B2 (en)
JPS6085433A (en) Magnetic recording material
JP2857136B2 (en) Magnetic recording medium and method of manufacturing the same
JPH0291810A (en) Magnetic recording carrier
JPH07169050A (en) Manufacture of magnetic recording medium
JPS62120630A (en) Magnetic memory medium and its production