JPS6113425A - Magnetic recording medium and its production - Google Patents

Magnetic recording medium and its production

Info

Publication number
JPS6113425A
JPS6113425A JP13433684A JP13433684A JPS6113425A JP S6113425 A JPS6113425 A JP S6113425A JP 13433684 A JP13433684 A JP 13433684A JP 13433684 A JP13433684 A JP 13433684A JP S6113425 A JPS6113425 A JP S6113425A
Authority
JP
Japan
Prior art keywords
magnetic
metal
magnetic metal
oxide
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13433684A
Other languages
Japanese (ja)
Inventor
Masahiro Yanagisawa
雅広 柳沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP13433684A priority Critical patent/JPS6113425A/en
Publication of JPS6113425A publication Critical patent/JPS6113425A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a magnetic recording medium for high-density recording provided with practicable durability by coating a magnetic medium and non-magnetic metal in this order on a substrate, coating the surface of the non-magnetic metal with an oxide and coating a bindable lubricating agent thereon. CONSTITUTION:The iron oxide such as Fe3O3 or gamma-Fe2O3 or metal or alloy such as Co-Ni is coated as a magnetic medium 2 on the substrate 1. Re or the like is coated as the non-magnetic metal 3 on the medium 2 and is then calcined in an oxidative atmosphere contg. oxygen or ozone to form the oxide coating 4 consisting of the non-magnetic metal on the surface. The lubricating agent 5 to be coated thereon is required to be bindable as the oxide film 4 of the non-magnetic metal. Silane which binds to said film by reacting securely therewith is most effective as such lubricating agent component. There are some lubricating agent components which bind to the film 4 by adsorbing thereto according to the polarity of -O-.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は磁気記録装置に用いられる磁気デ″4ンク、磁
気ドラム、磁気テープ等の磁気記録体にかかる。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to magnetic recording bodies such as magnetic discs, magnetic drums, and magnetic tapes used in magnetic recording devices.

(従来技術とその問題点) 近年、高密度磁気記録体として、記録媒体(磁性層)に
磁性金属薄膜を用いた磁気ディスク等が用いられ始めた
。記録媒体に磁性金属薄膜を用いる利鳥は、飽和磁束密
度が大きいので媒体の薄膜化が可能であシ、また高保磁
力が得られるため高密度記録に適することである0磁性
金属薄膜の他の利点は、無電解メッキ、電気メッキ、ス
パッタ蒸着等の方法で薄膜作製が容易なことである。
(Prior Art and its Problems) In recent years, magnetic disks and the like in which a magnetic metal thin film is used as a recording medium (magnetic layer) have begun to be used as high-density magnetic recording bodies. Ritori, which uses a magnetic metal thin film as a recording medium, has a high saturation magnetic flux density, so it is possible to make the medium thin, and it also has a high coercive force, making it suitable for high-density recording. The advantage is that thin films can be easily produced by methods such as electroless plating, electroplating, and sputter deposition.

ところで、磁気記録装置における高記録密度化への要請
は、年々高まりっつぁシ、これを実現するために磁気記
録体の媒体特性の改善、媒体の薄膜化および磁気ヘッド
の特性改善とともに、ヘッド−媒体分離長の減少が不可
欠となっている0磁気テープ、フロッピディスク等の磁
気記録体は記録密度を最大限に高めるために磁気ヘッド
と接触状態もしくはそれに近い状態で使用される。また
磁気ヘッドを磁気記録体から微小間隔浮上させて使用す
る磁気ディスクの場合には、磁気記録装置の高性能化に
伴ないこの浮上間隔を小さくするために磁気ヘッドの荷
重全小さくすると同時に接触始動・停止(コンタクト・
スタート・ストップ、C55)型のヘッド浮揚システム
が採用されている。このため磁気ヘッドによる磁気記録
体の損傷がしばしば生じる口これを防ぐ有効な方法とし
て磁性金属薄膜の表面に保護層を設ける方法があシ、耐
久性の改善がはられてきた。保護層としては耐摩耗性を
有するとともに、−磁性、平滑性と強固な密着力をもち
、可能な限シ薄膜化が図られねばならない。これらの目
的のために従来種々の検討が、なされたが、いづれも不
十分であった。
By the way, the demand for higher recording densities in magnetic recording devices is increasing year by year. -Magnetic recording media such as magnetic tapes and floppy disks, in which it is essential to reduce the medium separation length, are used in contact with a magnetic head or in a state close to it in order to maximize recording density. In addition, in the case of magnetic disks in which the magnetic head is used by being levitated at a minute distance from the magnetic recording material, as the performance of magnetic recording devices becomes higher, the total load on the magnetic head is reduced in order to reduce the flying distance, and at the same time, the contact starts.・Stop (contact・
A start/stop, C55) type head flotation system is adopted. For this reason, an effective method for preventing damage to the magnetic recording medium caused by the magnetic head is to provide a protective layer on the surface of the magnetic metal thin film, and efforts have been made to improve durability. The protective layer must have wear resistance, magnetism, smoothness, strong adhesion, and be as thin as possible. Various studies have been made for these purposes, but all have been insufficient.

従来、提案された方法としてRh、Cr等の高硬度の金
属を電気メツキ法によって媒体表面に被覆する方法があ
るが、電解液浸漬時に受ける媒体の侵食、またはそれを
避けるために設ける中間層にょる保護層の実質的な膜厚
増大という欠点がある◎別の方法としてOr、W等の金
属、8i0.、人!!0゜等の酸化物を蒸着、スパッタ
などの手段で媒体表面に被覆する方法があるが密着力が
不十分であル真空系内で作製するため生産性に問題があ
った〇耐摩耗性と密着力に優れた保護層として、C。
Conventionally, there is a method proposed in which a high hardness metal such as Rh or Cr is coated on the surface of the medium by electroplating. ◎Another method is to use metals such as Or, W, 8i0. ,Man! ! There are methods of coating the media surface with oxides such as 0° by vapor deposition, sputtering, etc., but the adhesion is insufficient, and since it is manufactured in a vacuum system, there are problems with productivity. C as a protective layer with excellent adhesion.

またはCo−N1の磁性金属薄膜の表面を酸化してCo
、−04の酸化膜全形成する方法が提案された。
Or, by oxidizing the surface of a Co-N1 magnetic metal thin film, Co
, -04 oxide film was proposed.

例えば、特公昭42−20025号では、温度および湿
度を制御した酸化雰囲気中でCof含む磁性金属の表面
に存在するCot−酸化し、保護酸化皮膜を形成する方
法が提案された。よル強固な酸化皮膜を得るために陽極
酸化による方法、酸処理による方法さらに空気中で焼成
する方法等が提案された0しかし、上記の方法で紘広い
処理面積にわたって均一なCo酸化皮膜を得ることは困
難であル、保護酸化皮膜の厚さのバラツキと残存磁性層
の厚さのパンツキによって、再生出力の均一性が損われ
、時にはビットエ2一の多発音生じるという問題がある
。このためこれを改善する方法として、米国特許4,1
24,736に示される様に記憶媒体の磁性層と保護酸
化皮膜を得るためのCof含む磁性金属層の間に酸化処
理の障壁となる中間層を形成する方法が提案された。し
かしこの方法は以下の様な問題点を含んでいる〇 第1にCoを含む磁性金属層は均一な酸化を行なわせる
ことが困難でLJ)、酸化処理を軽くすると磁性金属層
が残存し、電磁変換特性に悪影響を与える。また磁性金
属層を全て酸化させる様な強い酸化処理を行なうと、酸
化処理による磁性金属媒体への影響を防ぐために厚い中
間層が必要となシ、これは保護膜厚の実質的な増大をも
たらし、記録密度の低下を招く。第二に記録媒体、中間
層、保護層と、薄膜の積層数が増加する程、工程が複雑
化し、生産性が損なわれる口また中間層を1000x以
下に薄くすると、中間層のピンホールのために酸化処理
による磁性金属媒体への影響を完全に防ぐことは出来な
い〇 (発明の目的) 本発明の目的は、上述した従来技術の欠点を改善して、
実用的な耐久性を備えた高密度記録用の磁気記録体を提
供することにある0さらに保護酸化皮膜を有する磁気記
録体の再生出力の一様性を保持するとともに製作工程の
簡素化をはかることによシ、高品質かつ安価な磁気記録
体の製造方法を提供することにある0 (発明の構成) 本発明の磁気記憶体は下地体上に磁性媒体および非磁性
金属がこの順に被覆され、該非磁性金属の表面が該非磁
性金属の酸化物で被覆されている構造または該非磁性金
属の酸化物の上に該酸化物と固着可能な潤滑剤が被覆さ
れている構造を有していることを特徴としている。また
、本発明の方法は前記非磁性金属を熱処理によシ酸化さ
せるものである。
For example, Japanese Patent Publication No. 42-20025 proposed a method of oxidizing Cot present on the surface of a magnetic metal containing Cof in an oxidizing atmosphere with controlled temperature and humidity to form a protective oxide film. In order to obtain a strong oxide film, methods such as anodic oxidation, acid treatment, and firing in air have been proposed. However, due to variations in the thickness of the protective oxide film and variations in the thickness of the residual magnetic layer, the uniformity of the reproduction output is impaired, and there is a problem in that multiple bits of noise sometimes occur. Therefore, as a method to improve this, US Patent No. 4,1
As shown in No. 24,736, a method was proposed in which an intermediate layer serving as a barrier to oxidation treatment is formed between a magnetic layer of a storage medium and a magnetic metal layer containing Cof to obtain a protective oxide film. However, this method has the following problems: First, it is difficult to oxidize the magnetic metal layer containing Co uniformly (LJ), and if the oxidation treatment is lightened, the magnetic metal layer remains. Adversely affects electromagnetic conversion characteristics. Furthermore, if a strong oxidation treatment that oxidizes the entire magnetic metal layer is performed, a thick intermediate layer is required to prevent the oxidation treatment from affecting the magnetic metal medium, which results in a substantial increase in the protective film thickness. , leading to a decrease in recording density. Second, as the number of laminated layers of the recording medium, intermediate layer, protective layer, and thin film increases, the process becomes more complicated and productivity is impaired.Also, if the intermediate layer is thinned to less than 1000x, pinholes in the intermediate layer will occur. It is not possible to completely prevent the influence of oxidation treatment on magnetic metal media.(Objective of the Invention) The object of the present invention is to improve the drawbacks of the prior art described above,
Our objective is to provide a magnetic recording medium for high-density recording with practical durability.Furthermore, we aim to maintain the uniformity of the reproduction output of the magnetic recording medium having a protective oxide film and to simplify the manufacturing process. Particularly, it is an object of the present invention to provide a method for producing a high-quality and inexpensive magnetic recording body. (Structure of the Invention) The magnetic recording body of the present invention has a magnetic medium and a non-magnetic metal coated on a base body in this order. , the surface of the non-magnetic metal is coated with an oxide of the non-magnetic metal, or the oxide of the non-magnetic metal is coated with a lubricant that can adhere to the oxide. It is characterized by Further, in the method of the present invention, the nonmagnetic metal is oxidized by heat treatment.

(構成の詳細な説明) 次に図面を参照して本発明の詳細な説明する0第1図は
本発明の磁気記憶体の部分断面図で、下地体1はアルミ
合金又は、陽極酸化アルマイト。
(Detailed description of the structure) Next, the present invention will be described in detail with reference to the drawings. FIG. 1 is a partial sectional view of the magnetic storage body of the present invention, and the base body 1 is made of aluminum alloy or anodized alumite.

N1−Pメッキ膜、Cr、 FeN1. Mo tたは
W等を被覆のアルミ合金、又はポリエステル、ポリイミ
ド、ポリアミドイミドなどのプラスチック、又はCr、
 FeNilMo、Wなどの金属、又は窒化ケイ素、ア
ルミナなどのセラミックス又はガラス板である0次にこ
の下地体1の上に磁性媒体2としてFe104 g r
−Fe 20Hなどの鉄酸化物又はCo−Ni 。
N1-P plating film, Cr, FeN1. Aluminum alloy coated with Mot or W, or plastic such as polyester, polyimide, polyamideimide, or Cr,
On this base body 1, which is a metal such as FeNilMo or W, or a ceramic or glass plate such as silicon nitride or alumina, Fe104 gr is applied as a magnetic medium 2.
- Iron oxides such as Fe 20H or Co-Ni.

Co−N1−P、 Co−Mn−P、 Co−Ni−M
n−P、 Co −ne、 Co−Mn−Re−P、 
Co−Cr、 Co−V、  Co−Pt。
Co-N1-P, Co-Mn-P, Co-Ni-M
n-P, Co-ne, Co-Mn-Re-P,
Co-Cr, Co-V, Co-Pt.

Co−N1−Pi、 Co−Pt−Crg Co−Pt
 −V、  Co−Rh。
Co-N1-Pi, Co-Pt-Crg Co-Pt
-V, Co-Rh.

Co−NiMo又はCo −8m  などの金属又は合
金を被覆する0 該磁性媒体2の上に非磁性金属3としてRe。
Coating a metal or alloy such as Co-NiMo or Co-8m on the magnetic medium 2 as a non-magnetic metal 3.

Ru、 Os、 Pd、 Rh、 Ir、Mn、 Zn
、 Sn、 Cr、 Mo、 W。
Ru, Os, Pd, Rh, Ir, Mn, Zn
, Sn, Cr, Mo, W.

Ni、CuまたはAgまたはそれらの合金(B、Pのい
ずれか一方又は両方を含む場合もおるo)io、1μm
以下に被覆した後、酸素又はオゾンなど金含む酸化性雰
囲気中で焼成することによシ表面に該非磁性金属の酸化
物被覆4が形成される0第2図は本発明の磁気記憶体の
さらに別の部分断面図で、第1図と同様に下地体l、磁
性媒体2、非磁性金属3、該非磁性金属3の酸化物被膜
4がこの順に被覆され、該酸化物被膜4の上に潤滑剤5
が被覆される。
Ni, Cu or Ag or alloys thereof (may contain one or both of B and P)io, 1 μm
After coating, an oxide coating 4 of the non-magnetic metal is formed on the surface by firing in an oxidizing atmosphere containing gold such as oxygen or ozone. Another partial cross-sectional view shows that, similarly to FIG. 1, a base 1, a magnetic medium 2, a non-magnetic metal 3, and an oxide film 4 of the non-magnetic metal 3 are coated in this order, and the oxide film 4 is coated with lubricant. Agent 5
is coated.

潤滑剤5は非磁性金属の酸化物被膜4と固着可能なこと
が必要であシ、その様な潤滑剤としては次の様な構造の
ものが使用される0 Rf−0−%CF、−CF、−0址CFt−04Rf 
The lubricant 5 needs to be able to adhere to the non-magnetic metal oxide film 4, and such a lubricant has the following structure: 0 Rf-0-%CF, - CF, -0 CFt-04Rf
.

G−C,F’!に−0−ecFt−CF2−0話CF、
−0端C,F、、’−G’ 。
G-C, F'! ni-0-ecFt-CF2-0 episode CF,
-0 end C, F,,'-G'.

Rf−0+CFt−cp、−o許F鵞−0揄C1F意、
=GただしRfはCI!F、+2ここでlは1以上の整
数 mおよびnは10以上の整数である。
Rf-0+CFt-cp, -o゙F鵞-0揄C1F,
=G However, Rf is CI! F, +2 where l is an integer of 1 or more m and n are integers of 10 or more.

kは0又は1以上の整数であるoG又はG′は−COO
H、−COOC,H,、ゆ□(jは1以上の整数)。
k is 0 or an integer greater than or equal to 1 oG or G' is -COO
H, -COOC,H,, yu□ (j is an integer of 1 or more).

−CiHliOH(iは0又は1以上の整数)、NH,
-CiHliOH (i is an integer of 0 or 1 or more), NH,
.

−CHt=CH,、−8i(C,Hth+1)gXs 
= g (hは1以上の整数1gは0,1又は2、Xは
Ct又は−OH又はOCf山f+1 (’は1以上の整
数))、または−A−8i(ChH*b+1 )gXs
=g(h*geXは上記と同様。又AはC,H,N。
-CHt=CH,, -8i(C,Hth+1)gXs
= g (h is an integer of 1 or more 1g is 0, 1 or 2, X is Ct or -OH or OCf mountain f+1 (' is an integer of 1 or more)), or -A-8i (ChH*b+1)gXs
=g (h*geX is the same as above. Also, A is C, H, N.

0.8の1つ以上の元素からなる有機物)である。0.8 of one or more elements).

例えば−C0−NH−CH2−CHt −、−NH−C
Ht −CH(0H)−CHt−CH,−、−間−CO
−CH!−CHt +、−0−CH,−α、−、−5−
−NH−C−NH−CH,−CH,−などである。
For example, -C0-NH-CH2-CHt-, -NH-C
Ht-CH(0H)-CHt-CH,-,-CO
-CH! -CHt +, -0-CH, -α, -, -5-
-NH-C-NH-CH, -CH, -, etc.

上記一般式中官能基Gは非磁性金属の酸化物被膜4の上
に強固に反応して固着するため、ヘッドの摺動によって
除去されない。
The functional group G in the above general formula reacts strongly and adheres to the non-magnetic metal oxide film 4, and therefore is not removed by the sliding movement of the head.

この効果は官能基の中でも−8@ (Ch H! h+
 1) g為=g (hは1以上の整数、gは0,1又
は2、Xはct又拡−OH又はQC,H!、、(fは1
以上の整数))で表わされるシランが最も効果が有る0
さ性金属の酸化被膜5に吸着し、固着する。
This effect is especially noticeable among functional groups -8@ (Ch H! h+
1) g = g (h is an integer greater than or equal to 1, g is 0, 1 or 2, X is ct or expanded -OH or QC, H!, (f is 1
The silane represented by an integer greater than or equal to )) is the most effective.
It is adsorbed and fixed to the oxide film 5 of the metal.

使用出来る他の潤滑剤はパー70ロカルボン酸、パーフ
ロロアルコール、パー70ロカルyy y 酸エステル
、パー70ロアルコールの脂肪酸エステル、パー70ロ
アルキルアルコキシシ2ン、フロロシリコーン、パー7
0ロアルキルスルホン酸、パー70ロアルキルスルホン
酸アンモニウム、nh肪i  ゛アルキルアルコキシシ
ラン、高級脂肪酸、高級脂肪アルコール、高級脂肪酸エ
ステル、高級脂肪酸アミド、不飽和高級脂肪酸、長鎖脂
肪族炭化水素などがある〇 なお前記潤滑剤5t−被覆後50〜300℃で焼成して
も良い。
Other lubricants that can be used are Per 70 locarboxylic acids, Perfluoro alcohols, Per 70 local yy y acid esters, Per 70 fatty acid esters of alcohols, Per 70 loalkyl alkoxysilanes, Fluorosilicone, Par 7
0-roalkylsulfonic acid, ammonium per-70-roalkylsulfonate, nh-alkylalkoxysilane, higher fatty acid, higher fatty alcohol, higher fatty acid ester, higher fatty acid amide, unsaturated higher fatty acid, long-chain aliphatic hydrocarbon, etc. Yes In addition, after coating the lubricant 5t, it may be baked at 50 to 300°C.

次に実施例によル本発明の詳細な説明する。Next, the present invention will be explained in detail with reference to Examples.

(実施例) 機械加工によル表面を平坦かつ平滑に仕上げたアルミ合
金円板上に二、ケルー燐めりき膜が被覆され、表面粗さ
50Xに鏡面仕上げされた下地体重の上に磁性媒体2と
してコバルト−ニッケルー燐合金ro、osμmの厚さ
にめっきした。次にこの磁性媒体2の上に非磁性金属3
としてニッケルー燐合金を500芙の厚さにめっきした
。次に空気中で300℃で2時間焼成して前記非磁性金
属3として用いられているニッケルー燐合金の表面を2
00芙酸化して非磁性金属3の酸化物被膜4としてニッ
ケル酸化物を被覆して磁気ディスクを作った◎(試料1
) 実施例1と同様にして但しニッケル酸化物の上に潤滑剤
5として下記の構造を有するシ2/を含tr 直鎖ハー
フ0ロアルΦルボリエーテルvsol被覆して磁気ディ
スクを作った0(試料2)G−CtF4+0−CtFi
すO−CF、セC,F、−G但しGは−Co−NH−C
HH6−81(ocax)ap=q=37 実施例2と同様にして但し潤滑剤5として下記の構造を
有する直鎖パー70ロア〃キルポリエーテルを100X
被覆して磁気ディスクを作っ九〇(試料3) HO−CHt−CtFa(0−CtFaぜ0−CFへC
tFa −CHt−OH但し p=lO、q=100 実施例1と同様にして但し磁性媒体2の上に非磁性金属
3として銅を500Xの厚さにめっきした後、空気中で
200℃で5時間焼成して、前記非磁性金属3として用
いられている銅合金の表面を400X酸化して非磁性金
属3の酸化物被覆膜4として銅酸化物を被覆した・さら
に該銅酸化物の上に潤滑剤5として下記の構造を有する
。下記の構造を有する直鎖パーフロロアルキルポリエー
テルl5ol被覆して磁気ディスクを作った〇(試料4
) CxFi 十〇CtFa都0−CF、+qc、F、−G
但しGは一〇〇〇〇、)(、−8i(QC,H,)。
(Example) An aluminum alloy disk whose surface has been finished flat and smooth by machining is coated with a Keru phosphor plated film, and a magnetic medium is placed on the base weight whose surface is mirror-finished to a surface roughness of 50X. As No. 2, a cobalt-nickel-phosphorus alloy was plated to a thickness of ro, os μm. Next, a non-magnetic metal 3 is placed on top of this magnetic medium 2.
A nickel-phosphorus alloy was plated to a thickness of 500 mm. Next, the surface of the nickel-phosphorus alloy used as the non-magnetic metal 3 was heated in air at 300°C for 2 hours.
A magnetic disk was made by oxidizing the non-magnetic metal 3 and coating it with nickel oxide as the oxide film 4. (Sample 1)
) A magnetic disk was prepared in the same manner as in Example 1, except that nickel oxide was coated with 2/ containing Si2/ having the following structure as a lubricant 5. )G-CtF4+0-CtFi
sO-CF, ceC, F, -G, where G is -Co-NH-C
HH6-81 (ocax) ap = q = 37 Same as Example 2 except that as lubricant 5, 100X of linear Par70 lower kill polyether having the following structure was used.
90 (Sample 3) HO-CHt-CtFa (0-CtFaze 0-CF to C
tFa -CHt-OH where p=lO, q=100 After plating copper as the non-magnetic metal 3 on the magnetic medium 2 to a thickness of 500X in the same manner as in Example 1, it was plated in air at 200°C for 500X. The surface of the copper alloy used as the non-magnetic metal 3 was 400X oxidized by baking for a time to coat copper oxide as the oxide coating film 4 on the non-magnetic metal 3. The lubricant 5 has the following structure. A magnetic disk was made by coating with linear perfluoroalkyl polyether l5ol having the following structure (Sample 4).
) CxFi 10CtFa capital 0-CF, +qc, F, -G
However, G is 10000,)(,-8i(QC,H,).

p=200.q=20 実施例1と同様にして但し非磁性金属3としてニッケル
ー銅−燐合金t3001の厚さにめっきし空気中で25
0℃で3時間焼成して該非磁性金属30表面にニッケル
ー銅の酸化物1xooiの厚さに形成して、磁気ディス
クを作った。(試料5)実施例2と同様にして但し非磁
性金属3として銀1800Xの厚さにめりきし、オゾン
を含む空気中で300℃で1時間焼成して該非磁性金属
30表面に銀酸化物txooXの厚さに形成して磁気デ
ィスクを作った。(試料6) 実施例2と同様にして但し非磁性金属3としてニッケル
ークロム−燐合金を500Xの厚さにめっ゛きし、空気
中で280℃+2時間焼成して、該非磁性金属30表面
にニッケルークロムの酸化物を300Xの厚さに形成し
て磁気ディスクを作った。
p=200. q=20 In the same manner as in Example 1, except that the non-magnetic metal 3 was plated to a thickness of nickel-copper-phosphorus alloy T3001 and plated in air at 25%.
A magnetic disk was produced by firing at 0° C. for 3 hours to form a nickel-copper oxide layer on the surface of the non-magnetic metal 30 to a thickness of 1 x oi. (Sample 5) In the same manner as in Example 2, except that the non-magnetic metal 3 was plated to a thickness of 1800× silver and baked at 300°C for 1 hour in air containing ozone to form silver oxide on the surface of the non-magnetic metal 30. A magnetic disk was manufactured by forming the magnetic disk to a thickness of txooX. (Sample 6) A nickel-chromium-phosphorus alloy was plated to a thickness of 500X as the non-magnetic metal 3 in the same manner as in Example 2, and fired in air at 280°C for 2 hours to obtain the non-magnetic metal 30. A magnetic disk was made by forming nickel-chromium oxide on the surface to a thickness of 300X.

(試料7) 実施例2と同様にして但し非磁性金属3としてニッケル
ーモリブデン−燐合金t−5oolの厚さにめっきし、
純酸素中で260℃で6時間焼成して。
(Sample 7) Same as Example 2, except that the non-magnetic metal 3 was plated with nickel-molybdenum-phosphorus alloy t-5ool,
Sintered in pure oxygen at 260°C for 6 hours.

該非磁性金属3の表面にニッケルーモリブデンの酸化物
t−4ooXの厚さに形成して磁気ディスクを作った。
A magnetic disk was fabricated by forming nickel-molybdenum oxide to a thickness of t-4ooX on the surface of the non-magnetic metal 3.

(試料8) 実施例2と同様にして但し非磁性金属3としてニッケル
ーインジウム−燐合金を600裏の厚さにめっきし、空
気中で230℃で10時間焼成して該非磁性金属3の表
面にニッケルーインジウムの酸化物を300裏の厚さに
形成して磁気ディスク管作りた。(試料9) 実施例2と同様にして但し非磁性金属3としてニッケル
ータングステン−燐合金を2001の厚さにめっきし、
空気中で280℃で2時間焼成して該非磁性金属3の表
面にニッケルータングステンの酸化物を100Xの厚さ
に形成して磁気ディスクを作り木0(試料10) 実施例2と同様にして但し非磁性金属3としてニッケル
ーバナジウム−燐’17001の厚さにめっきし、空気
中で270℃で3時間焼成して該非磁性金属3の表面に
ニッケルーバナジウムの酸化物を300Xの厚さに形成
して磁気ディスクを作ったO(試料11) 実施例2と同様にして但し非磁性金属3としてカドミウ
ムを200Xの厚さにめ−)!シ、空気中で290Cで
2時間焼成して該非磁性金属30表面に酸化カドミウム
を100炉厚さに形成して磁気ディスクを作った◎(試
料12) (比較例) 実施例1で示した磁性媒体の上にコバルト−燐合金を5
00Xの厚さにめっきし、1チ硝酸水溶液中に5分浸漬
した後、水洗、乾燥後、空気中で260℃で4時間焼成
し、コバルト酸化物の層を形成させ丸後ジメチルシリコ
ーンオイルを50Xの厚さに被覆し磁気ディスクを作り
た。(比較試料l)実施例1で示した磁性媒体の上にニ
ッケルー燐合金t−400iの厚さにめっきし、その上
にコバルト−燐合金1400Xの厚さにめっきし、1%
硝酸水溶液中に5分浸漬した後、水洗、乾燥後空気中で
260℃で4時間焼成し、ニッケルー燐合金の上にコバ
fix )酸化物の層を形成させて磁気ディスクを作り
た0(比較試料2) 実施例1で示した磁性媒体の上にニッケル燐合金を50
0Xの厚さにめっきし、1%硫酸溶液中で陽極酸化を行
ない表面を100X酸化させて磁気ディスクを作った。
(Sample 8) A nickel-indium-phosphorus alloy was plated as the non-magnetic metal 3 to a thickness of 600 mm in the same manner as in Example 2, and the surface of the non-magnetic metal 3 was baked at 230°C for 10 hours in air. A magnetic disk tube was made by forming nickel-indium oxide to a thickness of 300 mm. (Sample 9) Same as Example 2, except that a nickel-tungsten-phosphorus alloy was plated to a thickness of 2001 as the non-magnetic metal 3,
A magnetic disk was made by baking at 280°C in air for 2 hours to form a 100X thick nickel-tungsten oxide on the surface of the non-magnetic metal 3. Wood 0 (sample 10) was prepared in the same manner as in Example 2. However, the non-magnetic metal 3 is plated to a thickness of nickel-vanadium-phosphorus '17001, and fired in air at 270°C for 3 hours to form a nickel-vanadium oxide on the surface of the non-magnetic metal 3 to a thickness of 300X. O (Sample 11) A magnetic disk was made by forming O (sample 11) in the same manner as in Example 2, except that cadmium was used as the non-magnetic metal 3 to a thickness of 200X. A magnetic disk was made by baking at 290C in air for 2 hours to form cadmium oxide on the surface of the non-magnetic metal 30 to a thickness of 100 mm (Sample 12) (Comparative example) Magnetic properties shown in Example 1 Cobalt-phosphorus alloy on top of the medium
After plating to a thickness of 00X, immersing it in a dimethyl nitric acid aqueous solution for 5 minutes, washing with water, drying, and baking at 260°C in air for 4 hours to form a layer of cobalt oxide, dimethyl silicone oil was applied. A magnetic disk was made by coating it to a thickness of 50X. (Comparative sample 1) The magnetic medium shown in Example 1 was plated to a thickness of nickel-phosphorus alloy T-400i, and on top of that was plated to a thickness of cobalt-phosphorus alloy 1400X, and 1%
After immersing in a nitric acid aqueous solution for 5 minutes, washing with water, drying, and baking at 260°C for 4 hours in the air, a layer of oxide was formed on the nickel-phosphorus alloy to create a magnetic disk. Sample 2) 50% of nickel phosphorus alloy was placed on the magnetic medium shown in Example 1.
A magnetic disk was produced by plating to a thickness of 0X and anodizing in a 1% sulfuric acid solution to oxidize the surface to 100X.

(比較試料3) 実施例および比較例で示した磁気ディスクと荷重15 
Ji’ p AbOs・TiC焼結体からなるスライダ
を有する磁気ヘッドを用いて2万回のC88試験を行な
ったところ実施例の磁気ディスクはディスク、ヘッド共
表面に傷は全く認められなかった。
(Comparative sample 3) Magnetic disk and load 15 shown in the example and comparative example
When a C88 test was conducted 20,000 times using a magnetic head having a slider made of Ji' p AbOs.TiC sintered body, no scratches were observed on the surfaces of either the disk or the head of the magnetic disk of the example.

さらに10万回のC88試験後、試料1および5の磁気
ディスクは摩耗粉がわずかに発生したが試料2〜3およ
び6〜12の磁気ディスクは表面の変化は全く認められ
なかった。しかし比較試料の磁気ディスクは5000回
でディスク表面が摩耗し、多量の摩耗粉が発生した口比
較例の磁気ディスクの表面を観察すると無数の欠陥が見
られ、とれが耐摩耗性を劣化させていることが分りたO
また実施例における試料1〜12および比較例の比較試
料1〜3の磁気ディスクについてエラー数を測定したと
ころ、表に示す結果となった。
Furthermore, after 100,000 cycles of the C88 test, the magnetic disks of Samples 1 and 5 had a slight amount of abrasion powder, but the magnetic disks of Samples 2 to 3 and 6 to 12 showed no change in the surface at all. However, the surface of the comparative sample magnetic disk was worn out after 5,000 cycles, and a large amount of abrasion powder was generated. When the surface of the comparative sample magnetic disk was observed, it was found that there were countless defects, and the cracks deteriorated the wear resistance. I found out that there is O
Furthermore, when the number of errors was measured for the magnetic disks of Samples 1 to 12 in Examples and Comparative Samples 1 to 3 of Comparative Examples, the results are shown in the table.

以上の様に酸素を含む雰囲中で表面に酸化膜を形成させ
た非磁性合金管保護膜として有する磁気ディスクは耐久
性に優れ、エラー数も非常に少ないことが分った。
As described above, it has been found that a magnetic disk having an oxide film formed on the surface as a non-magnetic alloy tube protective film in an oxygen-containing atmosphere has excellent durability and has a very small number of errors.

表 (発明の効果) 以上述べたように本発明によれば良好な耐久性を有する
磁気記憶体得られ、また製作工程が簡素化でき高品質、
安価な磁気記憶体を作成する製造方法が得られる。
Table (Effects of the Invention) As described above, according to the present invention, a magnetic memory with good durability can be obtained, and the manufacturing process can be simplified, resulting in high quality and
A manufacturing method for producing an inexpensive magnetic storage body is obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図線本発明の磁気記憶体の部分断面図で
ある。 第1図、第2図において1は下地体、2は磁性媒体、3
は非磁性金属、4は非磁性金属3の酸化物、5は潤滑剤
である口 第3図及び第4図は比較例の磁気記憶体の部分断面図で
ある。 第3図、第4図においてlは下地体、2は磁性媒体、3
はコバルト酸化物、4は潤滑剤、5は非磁性金属である
。 磐 l 図 第 21り 第 3 図 上 ・−2−λ1々;辷/ト5ヒく?メニづ)へを−lr:
玲4不 −l″″F劾体
FIG. 1 and FIG. 2 are partial cross-sectional views of the magnetic storage body of the present invention. In Figures 1 and 2, 1 is the base body, 2 is the magnetic medium, and 3
3 is a non-magnetic metal, 4 is an oxide of a non-magnetic metal 3, and 5 is a lubricant. FIGS. 3 and 4 are partial cross-sectional views of a magnetic storage body of a comparative example. In Figures 3 and 4, l is the base body, 2 is the magnetic medium, and 3
is cobalt oxide, 4 is a lubricant, and 5 is a nonmagnetic metal. Iwa l Figure No. 21 ri No. 3 Figure top - -2-λ1; Meniz) to -lr:
Rei 4 Fu-l″″F Gaitai

Claims (7)

【特許請求の範囲】[Claims] (1)下地体の上に磁性媒体、非磁性金属、該非磁性金
属の酸化物が、この順に形成されていることを特徴とす
る磁気記憶体。
(1) A magnetic storage body characterized in that a magnetic medium, a nonmagnetic metal, and an oxide of the nonmagnetic metal are formed in this order on a base.
(2)非磁性金属がW、Cr、Mo、Ni、Cu、Ag
、Pe、Ru、Os、Pd、Rh、Ir、Mn、Zn、
Snから選ばれる一又は二以上の元素からなる金属、又
は当該金属にB、Pのうちの少なくとも一の元素が添加
されたものである特許請求の範囲第1項記載の磁気記憶
体。
(2) Non-magnetic metal is W, Cr, Mo, Ni, Cu, Ag
, Pe, Ru, Os, Pd, Rh, Ir, Mn, Zn,
2. The magnetic memory according to claim 1, which is a metal made of one or more elements selected from Sn, or a metal to which at least one element of B and P is added.
(3)下地体の上に磁性媒体、非磁性金属、該非磁性金
属の酸化物、潤滑剤が、この順に形成されていることを
特徴とする磁気記憶体。
(3) A magnetic storage body characterized in that a magnetic medium, a nonmagnetic metal, an oxide of the nonmagnetic metal, and a lubricant are formed in this order on a base.
(4)非磁性金属がW、Cr、Mo、Ni、Cu、Ag
、Re、Bu、Os、Pd、Rh、Ir、Mn、Zn、
Snから選ばれる一又は二以上の元素からなる金属、又
は当該金属にB、Pのうちの少なくとも一の元素が添加
されたものである特許請求の範囲第3項記載の磁気記憶
体。
(4) Non-magnetic metal is W, Cr, Mo, Ni, Cu, Ag
, Re, Bu, Os, Pd, Rh, Ir, Mn, Zn,
4. The magnetic memory according to claim 3, which is a metal made of one or more elements selected from Sn, or a metal to which at least one element of B and P is added.
(5)潤滑剤が直鎖パーフロロアルキルポリエーテル又
は官能基を有する直鎖パーフロロアルキルポリエーテル
である特許請求の範囲第3項又は第4項記載の磁気記憶
体。
(5) The magnetic memory according to claim 3 or 4, wherein the lubricant is a linear perfluoroalkyl polyether or a linear perfluoroalkyl polyether having a functional group.
(6)下地体の上に磁性媒体を被覆し、さらに該媒体上
に非磁性金属を被覆した後、酸素を含む雰囲気中で熱処
理することにより表面に該非磁性金属の酸化物被膜を形
成させることを特徴とする磁気記憶体の製造方法。
(6) After coating a magnetic medium on a base body and further coating a non-magnetic metal on the medium, forming an oxide film of the non-magnetic metal on the surface by heat-treating in an atmosphere containing oxygen. A method for manufacturing a magnetic memory body characterized by:
(7)非磁性金属がW、CrMo、Ni、Cu、Ag、
Re、Ru、Os、Pd、Rh、Ir、Mn、Zn、S
nから選ばれる一又は二以上の元素からなる金属、又は
当該金属にB、Pのうちの少なくとも一の元素が添加さ
れたものである特許請求の範囲第6項記載の磁気記憶体
の製造方法。
(7) Non-magnetic metal is W, CrMo, Ni, Cu, Ag,
Re, Ru, Os, Pd, Rh, Ir, Mn, Zn, S
The method for manufacturing a magnetic memory body according to claim 6, which is a metal made of one or more elements selected from n, or a metal to which at least one element of B and P is added. .
JP13433684A 1984-06-29 1984-06-29 Magnetic recording medium and its production Pending JPS6113425A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13433684A JPS6113425A (en) 1984-06-29 1984-06-29 Magnetic recording medium and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13433684A JPS6113425A (en) 1984-06-29 1984-06-29 Magnetic recording medium and its production

Publications (1)

Publication Number Publication Date
JPS6113425A true JPS6113425A (en) 1986-01-21

Family

ID=15125960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13433684A Pending JPS6113425A (en) 1984-06-29 1984-06-29 Magnetic recording medium and its production

Country Status (1)

Country Link
JP (1) JPS6113425A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6369020A (en) * 1986-09-10 1988-03-29 Hitachi Ltd Magnetic recording medium

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51123604A (en) * 1975-04-21 1976-10-28 Nec Corp A magnetic storage medium construction
JPS5525821A (en) * 1978-08-08 1980-02-23 Nec Corp Magnetic memory substance
JPS56143538A (en) * 1980-04-09 1981-11-09 Nec Corp Manufacture of magnetic storage body
JPS59107428A (en) * 1982-12-10 1984-06-21 Seiko Epson Corp Formation of lubricating layer for magnetic recording medium

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51123604A (en) * 1975-04-21 1976-10-28 Nec Corp A magnetic storage medium construction
JPS5525821A (en) * 1978-08-08 1980-02-23 Nec Corp Magnetic memory substance
JPS56143538A (en) * 1980-04-09 1981-11-09 Nec Corp Manufacture of magnetic storage body
JPS59107428A (en) * 1982-12-10 1984-06-21 Seiko Epson Corp Formation of lubricating layer for magnetic recording medium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6369020A (en) * 1986-09-10 1988-03-29 Hitachi Ltd Magnetic recording medium

Similar Documents

Publication Publication Date Title
US4029541A (en) Magnetic recording disc of improved durability having tin-nickel undercoating
JPS6113425A (en) Magnetic recording medium and its production
KR910006018B1 (en) Coating alloy
JPH0421930B2 (en)
JPH0719372B2 (en) Method of manufacturing magnetic recording medium
JPH09147357A (en) Production of magnetic recording medium
JPS6199925A (en) Magnetic storage medium and its production
JPS59142735A (en) Magnetic recording medium
JP3024769B2 (en) Magnetic hard disk
JPH0451885B2 (en)
JPS6342021A (en) Magnetic recording medium
JPH01165023A (en) Magnetic recording medium
JPS6224424A (en) Magnetic recording medium and its production
JPS6085433A (en) Magnetic recording material
JPS62120630A (en) Magnetic memory medium and its production
JPS63104214A (en) Magnetic memory body and its production
JPS6218624A (en) Magnetic recording medium
JPS6243832A (en) Magnetic recording medium
JPS63117311A (en) Magnetic disk
JPS5857628A (en) Flexible magnetic recording medium
JPS61214208A (en) Protective film for magnetic recording medium
JPH0388123A (en) Production of magnetic recording medium
JPS6364623A (en) Magnetic recording medium
JPS6292112A (en) Magnetic disk
JPS62112211A (en) Magnetic recording medium