JPH0215620A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH0215620A
JPH0215620A JP16570788A JP16570788A JPH0215620A JP H0215620 A JPH0215620 A JP H0215620A JP 16570788 A JP16570788 A JP 16570788A JP 16570788 A JP16570788 A JP 16570788A JP H0215620 A JPH0215620 A JP H0215620A
Authority
JP
Japan
Prior art keywords
layer
film
forming
polycrystalline silicon
silicide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16570788A
Other languages
Japanese (ja)
Inventor
Seiichiro Mihara
三原 誠一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP16570788A priority Critical patent/JPH0215620A/en
Publication of JPH0215620A publication Critical patent/JPH0215620A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a stable contact resistance by a method wherein, after a poly Si layer is buried in contact holes, a Ti silicide layer is formed, the Ti silicide layer is nitrogenized and a thick Ti nitride layer is formed on the Ti nitride layer as a barrier metal layer. CONSTITUTION:A poly Si layer 16 is grown, contact holes are filled with the layer 16 and the layer 16 is turned into an N-type by diffusing phosphorus. The layer 16 is performed an anisotropic etching with SF6 gas to remove the layer 16 other than the layer 16 in the contact holes and to expose a PSG interlayer film 14 to flatten and after that, a Ti film 17 is adhered. Then, the film 17 and the layer 16 are made to react to each other by a nitrogen treatment and a Ti silicide layer 18 is formed. At this time, the film 17 on the film 14 does not react and remains as it. Therefore, the film 17 can be easily removed with a solution of N2O2+NH4OH. By performing an annealing in an NH3-containing atmosphere, the layer 18 is nitrogenized and a TiN film Ti silicide layer 19 is formed. After that, Al is deposited by a sputtering method and desired Al wiring parts 10 are formed by a photo-etching technique.

Description

【発明の詳細な説明】 口産業上の利用分野〕 本発明は半導体装置の製造方法に関し、特にコンタクト
孔でのバリヤ層の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION FIELD OF INDUSTRIAL APPLICATION The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for manufacturing a barrier layer in a contact hole.

〔従来の技術〕[Conventional technology]

従来技術について第3図を参照して説明する。 The prior art will be explained with reference to FIG.

P型S1基板33にイオン注入法により深さ1000人
程度0N+拡散層34を形成した後、基板33表面全面
に層間膜35を形成しN+拡散層34上の層間膜35を
エツチング除去して、第3図(a)のようにコンタクト
孔を開口する。その後、N+拡散層34に接触するよう
にTi膜36を第3図(b)のようにスパッタ法により
全面に形成する。
After forming an 0N+ diffusion layer 34 to a depth of about 1000 layers on a P-type S1 substrate 33 by ion implantation, an interlayer film 35 is formed on the entire surface of the substrate 33, and the interlayer film 35 on the N+ diffusion layer 34 is removed by etching. A contact hole is opened as shown in FIG. 3(a). Thereafter, a Ti film 36 is formed on the entire surface by sputtering, as shown in FIG. 3(b), so as to be in contact with the N+ diffusion layer 34.

これを熱処理することによりコンタクト孔底部にのみT
iシリザイF層37を形成する。このとき層間膜35に
隣接するTi膜36は反応しないのて、H、O□+N 
Hh OH溶液によって除去することができる。次にN
H3雰囲気中でアニールを行ってTiシリサイド層37
を窒化しバリヤメタルとなるTiナイトライド層38を
Tiシリサイド37上層に第3図(c)のように形成す
る。その後、全面に多結晶シリコン39をCVD法で成
長させて、コンタクト孔を埋込み、コンタクト孔にN型
不純物を拡散する。コンタクト孔以外の多結晶シリコン
を除去して平坦化した後、Aβを全面形成し所定の形状
にバターニングしてAu配線40を第3図(d)のよう
に形成していた。
By heat-treating this, T is formed only at the bottom of the contact hole.
An i-silicon F layer 37 is formed. At this time, since the Ti film 36 adjacent to the interlayer film 35 does not react, H, O□+N
It can be removed by Hh OH solution. Then N
Annealing is performed in an H3 atmosphere to form a Ti silicide layer 37.
A Ti nitride layer 38 which is nitrided to serve as a barrier metal is formed on the Ti silicide 37 as shown in FIG. 3(c). Thereafter, polycrystalline silicon 39 is grown over the entire surface by the CVD method to fill the contact hole, and an N-type impurity is diffused into the contact hole. After removing and planarizing the polycrystalline silicon other than the contact hole, Aβ was formed on the entire surface and patterned into a predetermined shape to form the Au wiring 40 as shown in FIG. 3(d).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来の技術において、拡散層上のコンタクトに
Tiシリサイド層を形成した後、窒化を行なう方法では
TiナイトライドTiN膜にバリヤ性をもたせる為に、
少なくとも1000人の膜厚を必要とする。したがって
1000Å以上のTiシリサイドを必要とする。この為
TiとSiの反応によりTiシリサイドを形成する時、
1000人程度0拡散層のSiが消費される。TiとS
iの反応は均一には生じず、部分的には厚い所ができる
。したがって拡散層が浅い接合(0,1μm〜0.4μ
mの接合)の場合、従来のコンタクト構造を用いると、
第4図のようにTiシリサイド層45形成時にシリコン
基板41と拡散層42間に形成された接合が破壊されて
しまう。この為拡散層上のTiシリサイド層を窒化し、
厚いTiナイトライド層を形成することは困難という欠
点がある。又、多結晶シリコンによるコンタクト孔の埋
込みではA!と多結晶シリコンの反応が起こり、Si析
出によるコンタクト抵抗の増大を生じてしまう。
In the conventional technique described above, in the method of forming a Ti silicide layer on the contact on the diffusion layer and then nitriding it, in order to give the Ti nitride TiN film barrier properties,
Requires a film thickness of at least 1000 people. Therefore, Ti silicide of 1000 Å or more is required. Therefore, when Ti silicide is formed by the reaction between Ti and Si,
Approximately 1000 Si in the 0 diffusion layer is consumed. Ti and S
The reaction of i does not occur uniformly, and some parts are thick. Therefore, the diffusion layer is shallow (0.1 μm to 0.4 μm).
m junction), using the conventional contact structure,
As shown in FIG. 4, the junction formed between the silicon substrate 41 and the diffusion layer 42 is destroyed when the Ti silicide layer 45 is formed. For this purpose, the Ti silicide layer on the diffusion layer is nitrided,
A drawback is that it is difficult to form a thick Ti nitride layer. Also, when contact holes are filled with polycrystalline silicon, A! A reaction occurs between polycrystalline silicon and contact resistance increases due to Si precipitation.

〔目的〕〔the purpose〕

本発明は、バリヤメタル形成時の拡散層の接合破壊を防
止し、コンタクト抵抗の小さい半導体装置の製造方法を
提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for manufacturing a semiconductor device with low contact resistance by preventing junction breakdown of a diffusion layer during formation of a barrier metal.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、各下層配線あるいは拡散層を形成後、層間膜
を成長させ、各配線層および拡散層上にコンタクト孔を
形成する工程と、多結晶シリコンを成長させて、コンタ
クト孔を埋込みコンタクト孔にのみ多結晶シリコンを残
す工程と、Tiを被着後シリサイド化し、コンタクト部
の多結晶シリコン上層にTiシリサイドを形成する工程
と、Tiシリサイド層を窒化することによりTiナイト
ライド層を形成する工程と、A4配線を形成する工程を
有している。
The present invention includes a process of growing an interlayer film after forming each lower interconnection or diffusion layer and forming a contact hole on each interconnection layer and diffusion layer, and growing polycrystalline silicon to fill the contact hole. A step in which polycrystalline silicon is left only in the contact area, a step in which Ti is deposited and then silicided to form Ti silicide on the polycrystalline silicon upper layer in the contact area, and a Ti nitride layer is formed by nitriding the Ti silicide layer. and a step of forming A4 wiring.

〔実施例〕〔Example〕

本発明について図面を参照して説明する。 The present invention will be explained with reference to the drawings.

第1図により本発明の一実施例について説明する。P型
シリコン基板11の所定の領域にのN+拡散層15及び
多結晶シリコン配線13を形成する。次にPSG層間膜
14をCVD法で成長後、拡散層上及び配線層上にコン
タクトを開孔する。
An embodiment of the present invention will be explained with reference to FIG. An N+ diffusion layer 15 and a polycrystalline silicon wiring 13 are formed in a predetermined region of a P-type silicon substrate 11. Next, after growing the PSG interlayer film 14 by the CVD method, contacts are formed on the diffusion layer and the wiring layer.

この時コンタクト孔はサイズがたとえば1μm口と規格
化する。第1図(a)に示すようにCVD法で多結晶シ
リコン層16をたとえば5000人成長させて、コンタ
クト孔を埋込み、リン拡散により多結晶シリコンをN型
化する。SF、系のガスにより多結晶シリコン層16を
異方性エツチングを行ないコンタクト孔以外の多結晶シ
リコン16を除去しPSG層間膜14を露出させて平坦
化した後、第1図(b)に示すようにTi膜17をスパ
ッタ法によりたとえば2000人被着0る。次に600
℃60分の窒素処理によりTi膜17と多結晶シリコン
16を反応させ、Tiシリサイド層18を2000人形
成させる。このときPSG層間膜14上のTi膜17は
反応せずTiのままの状態である為、H2O2+NH4
OHの溶液で第1図(c)のように容易に除去できる。
At this time, the size of the contact hole is standardized to be, for example, 1 μm. As shown in FIG. 1(a), for example, 5,000 polycrystalline silicon layers 16 are grown by the CVD method, contact holes are filled, and the polycrystalline silicon is made into N-type by phosphorus diffusion. After performing anisotropic etching on the polycrystalline silicon layer 16 using an SF gas, removing the polycrystalline silicon 16 other than the contact hole, and exposing and planarizing the PSG interlayer film 14, the polycrystalline silicon layer 16 is etched as shown in FIG. 1(b). For example, a Ti film 17 of 2,000 layers is deposited by sputtering. Next 600
The Ti film 17 and the polycrystalline silicon 16 are reacted by nitrogen treatment for 60 minutes at .degree. C. to form a 2000 Ti silicide layer 18. At this time, since the Ti film 17 on the PSG interlayer film 14 does not react and remains as Ti, H2O2+NH4
It can be easily removed with an OH solution as shown in FIG. 1(c).

NHs雰囲気中で900℃、90分のアニールを行なう
ことでTiシリサイド層18は窒化され約1500人の
TiN膜Tiシリサイド層19が形成される。その後ス
パッタ法でアルミニウムを堆積させ、フォトエツチング
技術で所望のAn配線lOを形成する。
By performing annealing at 900° C. for 90 minutes in an NHs atmosphere, the Ti silicide layer 18 is nitrided and a TiN film Ti silicide layer 19 of approximately 1500 layers is formed. Thereafter, aluminum is deposited by sputtering, and a desired An wiring IO is formed by photoetching.

第2図により本発明の実施例2について説明する。Nf
fシリコン基板21上にPウェル22を形成後N+拡散
層23.P+拡散層25を形成し、CVD法により5i
n2の層間膜26を形成後、拡散層23.25上にコン
タクト孔を開口する。
A second embodiment of the present invention will be explained with reference to FIG. Nf
f After forming the P well 22 on the silicon substrate 21, the N+ diffusion layer 23. A P+ diffusion layer 25 is formed, and 5i is formed by CVD method.
After forming the n2 interlayer film 26, a contact hole is opened above the diffusion layer 23.25.

その後多結晶シリコン層27を第2図(a)に示すよう
にコンタクト孔を埋め込むように形成する。
Thereafter, a polycrystalline silicon layer 27 is formed to fill the contact hole as shown in FIG. 2(a).

N+拡散層23上にはリンを、またP+拡散層25上に
はボロンをイオン注入法により添加後、第2図(b)の
ようにS F 6系ガスによりエツチングし、コンタク
ト孔のみ多結晶シリコン28.29を残し平坦化する。
After adding phosphorus onto the N+ diffusion layer 23 and boron onto the P+ diffusion layer 25 by ion implantation, etching is performed using SF6 gas as shown in FIG. 2(b), and only the contact hole is made of polycrystal. The silicon 28 and 29 are left and planarized.

実施例1と同様にTi膜膜着着後シリサイド化行ない、
未反応Tiを除去した後、Tiシリサイド層30を窒化
し、T1ナイトライド層31を形成しAA配線32を形
成する。この実施例ではCMOSデバイスにおいても多
結晶シリコン層に添加する不純物をイオン注入法により
分けることにより適用が可能である。
After depositing the Ti film, silicidation was performed in the same manner as in Example 1,
After removing unreacted Ti, the Ti silicide layer 30 is nitrided, a T1 nitride layer 31 is formed, and an AA wiring 32 is formed. This embodiment can also be applied to CMOS devices by separating the impurities added to the polycrystalline silicon layer by ion implantation.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明では、多結晶シリコンをコン
タクト孔に埋込んだ後、Tiとのシリサイド層を形成し
、Tiシリサイドを窒化して、Tiシリサイド層に厚い
Tiナイトライド層をバリヤメタルとして形成すること
によりコンタクトの平坦化及び埋込んだ多結晶シリコン
とAuの反応をTiナイトライド層でおさえることが可
能であり、安定したコンタクト抵抗を実現できる効果が
ある。
As explained above, in the present invention, after filling the contact hole with polycrystalline silicon, a silicide layer with Ti is formed, the Ti silicide is nitrided, and a thick Ti nitride layer is formed on the Ti silicide layer as a barrier metal. By doing so, it is possible to flatten the contact and suppress the reaction between the buried polycrystalline silicon and Au with the Ti nitride layer, which has the effect of realizing stable contact resistance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例を示す断面図、第2図は
本発明の第2の実施例を示す断面図、第3図は従来例を
示す断面図、第4図は従来の問題点を示す断面図である
。 11.33.41・・・・・・P型シリコン基板、12
゜24・・・・・・フィールドSiO2膜、13・・・
・・・多結晶シリコン配線、14.26,35.43・
・・・・・層間膜、15.23.34.42・・・・・
・N+拡散層、16゜28.39・・・・・N+型多結
晶シリコン層、17,36゜44・・・・・・チタン(
Ti)膜、18,30,37゜45・・・・・・チタン
シリサイド層、19,31.38・・チタンナイトライ
ド層、20,32.40・・・・・アルミニウム(Af
fl)配線、21・・・・・・N型シリコン基板、22
・・・・・・Pウェル、25・・・・・・P+拡散層、
27・・・・・・多結晶シリコン層、29・・団・P+
多結晶シリコン層。 代理人 弁理士  内 原   晋 (ロ)) CI)) (0L) 席 ! 閉 早 2  回 (の】 Cしフ (C) (d+ 茅 閃
Fig. 1 is a sectional view showing a first embodiment of the present invention, Fig. 2 is a sectional view showing a second embodiment of the invention, Fig. 3 is a sectional view showing a conventional example, and Fig. 4 is a sectional view showing a conventional example. FIG. 11.33.41...P-type silicon substrate, 12
゜24...Field SiO2 film, 13...
・・・Polycrystalline silicon wiring, 14.26, 35.43・
...Interlayer film, 15.23.34.42...
・N+ diffusion layer, 16°28.39...N+ type polycrystalline silicon layer, 17,36°44...Titanium (
Ti) film, 18,30,37°45...Titanium silicide layer, 19,31.38...Titanium nitride layer, 20,32.40...Aluminum (Af
fl) Wiring, 21...N-type silicon substrate, 22
...P well, 25...P+ diffusion layer,
27... Polycrystalline silicon layer, 29... Group P+
Polycrystalline silicon layer. Agent Patent Attorney Susumu Uchihara (Ro) CI)) (0L) Seat! Early closing 2 times (of) C Shifu (C)

Claims (1)

【特許請求の範囲】[Claims] 半導体基板に拡散層領域を形成する工程と、該半導体基
板上に絶縁膜を形成する工程と、前記拡散層上の前記絶
縁膜にコンタクト孔を開口する工程と、該コンタクト孔
を埋め込むように多結晶シリコン層を成長させる工程と
、前記拡散層と同導電型の不純物を該多結晶シリコン層
に添加する工程と、前記コンタクト孔以外の前記多結晶
シリコン膜を選択的に除去する工程と、該半導体基板表
面に金属膜を形成する工程と、前記コンタクト部の多結
晶シリコン層上層に前記金属硅化物層を形成する工程と
、前記コンタクト孔以外の前記金属膜を除去する工程と
、前記金属硅化物層の少なくとも上層に金属窒化物層を
形成する工程と、該金属窒化物層に接続するように所定
の金属配線を形成する工程とを有することを特徴とする
半導体装置の製造方法。
forming a diffusion layer region on a semiconductor substrate; forming an insulating film on the semiconductor substrate; forming a contact hole in the insulating film on the diffusion layer; a step of growing a crystalline silicon layer; a step of adding an impurity of the same conductivity type as the diffusion layer to the polycrystalline silicon layer; a step of selectively removing the polycrystalline silicon film other than the contact hole; a step of forming a metal film on the surface of the semiconductor substrate; a step of forming the metal silicide layer on the polycrystalline silicon layer of the contact portion; a step of removing the metal film other than the contact hole; 1. A method for manufacturing a semiconductor device, comprising the steps of: forming a metal nitride layer on at least an upper layer of a physical layer; and forming a predetermined metal wiring to be connected to the metal nitride layer.
JP16570788A 1988-07-01 1988-07-01 Manufacture of semiconductor device Pending JPH0215620A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16570788A JPH0215620A (en) 1988-07-01 1988-07-01 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16570788A JPH0215620A (en) 1988-07-01 1988-07-01 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH0215620A true JPH0215620A (en) 1990-01-19

Family

ID=15817528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16570788A Pending JPH0215620A (en) 1988-07-01 1988-07-01 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH0215620A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04167522A (en) * 1990-10-31 1992-06-15 Nec Corp Semiconductor device and manufacture thereof
JPH0594963A (en) * 1990-08-16 1993-04-16 Internatl Business Mach Corp <Ibm> Method for forming fire resisting metal silicide layers having various thicknesses for integrated circuit
US5312774A (en) * 1991-12-05 1994-05-17 Sharp Kabushiki Kaisha Method for manufacturing a semiconductor device comprising titanium
US5379718A (en) * 1992-12-25 1995-01-10 Sharp Kabushiki Kaisha Method for forming a titanium thin film
US5475240A (en) * 1991-03-15 1995-12-12 Mitsubishi Denki Kabushiki Kaisha Contact structure of an interconnection layer for a semiconductor device and a multilayer interconnection SRAM
US6177701B1 (en) 1996-01-04 2001-01-23 Nec Corporation Semiconductor device with resistor and fabrication method therof
US6298901B1 (en) 1998-07-03 2001-10-09 Mazda Motor Corporation Method and apparatus for semi-molten metal injection molding
US6414738B1 (en) 1997-03-31 2002-07-02 Seiko Epson Corporation Display
US6460596B1 (en) 1999-10-21 2002-10-08 The Japan Steel Works, Ltd. Method of coating powder lubricant in metallic injection molding machine and die used of metallic injection molding
US6619370B2 (en) 1998-07-03 2003-09-16 Mazda Motor Corporation Method and apparatus for semi-molten metal injection molding
KR100486874B1 (en) * 1998-06-30 2005-08-01 주식회사 하이닉스반도체 Bit line formation method of semiconductor device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0594963A (en) * 1990-08-16 1993-04-16 Internatl Business Mach Corp <Ibm> Method for forming fire resisting metal silicide layers having various thicknesses for integrated circuit
JPH04167522A (en) * 1990-10-31 1992-06-15 Nec Corp Semiconductor device and manufacture thereof
US5654239A (en) * 1991-03-15 1997-08-05 Mitsubishi Denki Kabushiki Kaisha Method of manufacturing a contact structure of an interconnection layer for a semiconductor device and a multilayer interconnection SRAM
US5475240A (en) * 1991-03-15 1995-12-12 Mitsubishi Denki Kabushiki Kaisha Contact structure of an interconnection layer for a semiconductor device and a multilayer interconnection SRAM
US5581093A (en) * 1991-03-15 1996-12-03 Mitsubishi Denki Kabushiki Kaisha Contact structure of an interconnection layer for a semiconductor device and a multilayer interconnection SRAM
US5312774A (en) * 1991-12-05 1994-05-17 Sharp Kabushiki Kaisha Method for manufacturing a semiconductor device comprising titanium
US5379718A (en) * 1992-12-25 1995-01-10 Sharp Kabushiki Kaisha Method for forming a titanium thin film
US6177701B1 (en) 1996-01-04 2001-01-23 Nec Corporation Semiconductor device with resistor and fabrication method therof
US6414738B1 (en) 1997-03-31 2002-07-02 Seiko Epson Corporation Display
KR100486874B1 (en) * 1998-06-30 2005-08-01 주식회사 하이닉스반도체 Bit line formation method of semiconductor device
US6298901B1 (en) 1998-07-03 2001-10-09 Mazda Motor Corporation Method and apparatus for semi-molten metal injection molding
US6470956B2 (en) 1998-07-03 2002-10-29 Mazda Motor Corporation Method and apparatus for semi-molten metal injection molding
US6619370B2 (en) 1998-07-03 2003-09-16 Mazda Motor Corporation Method and apparatus for semi-molten metal injection molding
US6460596B1 (en) 1999-10-21 2002-10-08 The Japan Steel Works, Ltd. Method of coating powder lubricant in metallic injection molding machine and die used of metallic injection molding

Similar Documents

Publication Publication Date Title
JPH08191054A (en) Semiconductor device and manufacture thereof
JPH0215620A (en) Manufacture of semiconductor device
JPH07211668A (en) Conductive layer of semiconductor device, mosfet and manufacture thereof
US6288430B1 (en) Semiconductor device having silicide layer with siliconrich region and method for making the same
JP2679579B2 (en) Method for manufacturing semiconductor device
JPH0794731A (en) Semiconductor device and its manufacturing method
JP2954263B2 (en) Method for manufacturing semiconductor device
JPH07142498A (en) Semiconductor device and fabrication thereof
US6225222B1 (en) Diffusion barrier enhancement for sub-micron aluminum-silicon contacts
JPH08288390A (en) Semiconductor device and manufacture thereof
JP2848333B2 (en) Method for manufacturing semiconductor device
JP3361971B2 (en) Metal nitride conversion method and semiconductor device manufacturing method
JP3457532B2 (en) Method for manufacturing semiconductor device
JP3185235B2 (en) Method for manufacturing semiconductor device
JPH0756866B2 (en) Method for manufacturing semiconductor integrated circuit device
JPH0773127B2 (en) Method for manufacturing semiconductor device
JPH06310458A (en) Semiconductor element and its manufacture
JPH05152449A (en) Manufacture of semiconductor device
JPH05175206A (en) Semiconductor device and its manufacture
JP3095452B2 (en) Method for manufacturing semiconductor device
JP2864624B2 (en) Contact embedded metal structure and method of manufacturing the same
JPS6344725A (en) Manufacture of semiconductor device
JP2720567B2 (en) Method for manufacturing semiconductor device
JPH0897212A (en) Manufacture of semiconductor device
JP2792094B2 (en) Method for manufacturing semiconductor device