JPH06310458A - Semiconductor element and its manufacture - Google Patents
Semiconductor element and its manufactureInfo
- Publication number
- JPH06310458A JPH06310458A JP9343793A JP9343793A JPH06310458A JP H06310458 A JPH06310458 A JP H06310458A JP 9343793 A JP9343793 A JP 9343793A JP 9343793 A JP9343793 A JP 9343793A JP H06310458 A JPH06310458 A JP H06310458A
- Authority
- JP
- Japan
- Prior art keywords
- polycrystalline silicon
- contact hole
- plug
- wiring
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Electrodes Of Semiconductors (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、半導体基体の所定の領
域に、あるいは下層配線に絶縁膜に開けられた接触孔内
でアルミニウムからなる配線を接続する半導体素子およ
びその製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor element in which a wiring made of aluminum is connected to a predetermined region of a semiconductor substrate or to a lower wiring in a contact hole formed in an insulating film, and a method of manufacturing the same.
【0002】[0002]
【従来の技術】従来、半導体素子における配線接続は、
図2に示すようにp形シリコン基板11の上の表面保護膜
としてのSiO2 膜2に接触孔 (コンタクトホール) 3を
開け、そのコンタクトホール内でn+ 拡散層4にAl配線
5を接触させることでn+ 領域4と配線5との接続を行
ってきた。同様にして図3に示すように層間絶縁膜6に
開けたコンタクトホール3で上層配線52と下層配線51と
の接続を行う。近年、半導体素子の微細化が著しく進展
し、それに伴ってコンタクトホールの径はますます小さ
くなるとともに形状も高アスペクト比になってきてい
る。アスペクト比が高くなると、図2、図3に示すよう
に配線5の表面に段差hが生じ、その上の層の段差被覆
性不良の不具合が発生しやすい。さらに、図4に示すよ
うにアスペクト比b/aが高くなると、配線5の段切れ
が発生する。このためコンタクトホールを穴埋めする技
術が必要となってきた。穴埋め技術としては、選択タン
グステン、ブランケットタングステンのように金属で埋
め込む方法、あるいは長友らが第49回応用物理学会講演
会 (秋) 、6p−A−13、14(1988)p.654 に報告している
多結晶シリコンを堆積後エッチバックしてプラグを完成
する方法、佐々木らが第32回応用物理学会講演会 (春)
、3p−P−12(1985)p.517 に報告している選択多結晶
シリコンを用いる方法がある。しかし、それぞれの技術
に一長一短があり、量産に耐えうるレベルに達していな
い。2. Description of the Related Art Conventionally, wiring connection in a semiconductor device has been
As shown in FIG. 2, a contact hole (contact hole) 3 is opened in the SiO 2 film 2 as a surface protective film on the p-type silicon substrate 11, and the Al wiring 5 is contacted with the n + diffusion layer 4 in the contact hole. By doing so, the n + region 4 and the wiring 5 have been connected. Similarly, as shown in FIG. 3, the upper layer wiring 52 and the lower layer wiring 51 are connected through the contact hole 3 formed in the interlayer insulating film 6. In recent years, the miniaturization of semiconductor devices has been remarkably advanced, and along with this, the diameter of contact holes has become smaller and smaller and the shape has also become a high aspect ratio. When the aspect ratio becomes high, a step h is formed on the surface of the wiring 5 as shown in FIGS. 2 and 3, and a step coverage defect of a layer thereabove tends to occur. Further, as shown in FIG. 4, when the aspect ratio b / a becomes high, disconnection of the wiring 5 occurs. For this reason, a technique for filling the contact hole has been required. As the hole filling technology, a method of filling with metal such as selective tungsten or blanket tungsten, or Nagatomo et al. Reported at the 49th Annual Meeting of the Applied Physics Society of Japan (Autumn), 6p-A-13, 14 (1988) p.654. The method of completing the plug by depositing the polycrystal silicon that has been deposited and then etching it back, Sasaki et al. 32nd Annual Meeting of the Applied Physics Society (Spring)
, 3p-P-12 (1985) p.517, there is a method using selective polycrystalline silicon. However, each technology has merits and demerits, and it has not reached a level capable of mass production.
【0003】最近、濱島らにより雑誌「セミコンダクタ
・ワールド」1989.12.p103に報告されているように、多
結晶シリコンプラグを用いた低抵抗コンタクト技術が開
発された。この技術は、(1) 下地拡散層の種類に応じて
コンタクトホールに堆積した多結晶シリコンプラグに
n、p別々の不純物をイオン注入する、(2) 拡散層の活
性化と多結晶シリコンプラグ中の不純物の活性化を同時
にかつ、例えば1000℃、10sec の短時間アニールで行
う、(3) イオン注入不純物の種類を、n形ではP+ 、p
形ではB+ のように選択する、などの方法を採用するこ
とにより、0.8μm厚、0.6μm径のコンタクトホール
でも、n形プラグで約60Ω、p形プラグで約120 Ωの低
コンタクト抵抗が得られたとの報告がある。Recently, a low resistance contact technique using a polycrystalline silicon plug has been developed as reported by Hamajima et al. In "Semiconductor World" 1989.12.p103. This technique consists of (1) ion implantation of n and p impurities into a polycrystalline silicon plug deposited in a contact hole according to the type of the underlying diffusion layer, (2) activation of the diffusion layer and the inside of the polycrystalline silicon plug. (3) The type of the ion-implanted impurities is P + , p for the n-type, and the impurities are activated at the same time by short-time annealing at 1000 ° C. for 10 seconds.
By adopting a method such as B + for the shape, a low contact of about 60 Ω for the n-type plug and about 120 Ω for the p-type plug even with a contact hole of 0.8 μm thickness and 0.6 μm diameter There is a report that resistance was obtained.
【0004】[0004]
【発明が解決しようとする課題】しかし、上述の多結晶
シリコンプラグを用いた低抵抗コンタクト技術も、下地
拡散層の種類に応じてn、p別々の不純物をイオン注入
することになるため、工程が増えることは避けられな
い。本発明の目的は、上述の欠点を除去し、高アスペク
ト比のコンタクトホールにおける多結晶シリコンプラグ
の低抵抗コンタクトを、工程数も増やすことなく形成す
る半導体素子およびその製造方法を提供することにあ
る。However, in the low resistance contact technique using the above-mentioned polycrystalline silicon plug, the n and p impurities are separately ion-implanted depending on the type of the underlying diffusion layer. It is unavoidable that the number increases. An object of the present invention is to eliminate the above-mentioned drawbacks, and to provide a semiconductor element and a manufacturing method thereof for forming a low resistance contact of a polycrystalline silicon plug in a contact hole having a high aspect ratio without increasing the number of steps. .
【0005】[0005]
【課題を解決するための手段】上記の目的を達成するた
めに、本発明の半導体素子は、絶縁膜に開けられた接触
孔がりんおよびアルミニウムを含有する多結晶シリコン
によって充填されたものとする。接触孔は、半導体基板
上の絶縁膜に開けられていても下層配線上の絶縁膜に開
けられてもよい。そして、そのような半導体素子の製造
方法は、接触孔をりんを添加した多結晶シリコンで充填
したのち、その接触孔を充填する多結晶シリコンにAl配
線を接触させ、さらにアニールするものとする。In order to achieve the above object, the semiconductor element of the present invention has contact holes formed in an insulating film filled with polycrystalline silicon containing phosphorus and aluminum. . The contact hole may be formed in the insulating film on the semiconductor substrate or in the insulating film on the lower wiring. In such a semiconductor element manufacturing method, after the contact holes are filled with polycrystalline silicon containing phosphorus, Al wiring is brought into contact with the polycrystalline silicon filling the contact holes and further annealed.
【0006】[0006]
【作用】接触孔に充填された多結晶シリコン、すなわち
多結晶シリコンには、りんとAlが含有されているため、
電気的には金属プラグとして働き、下地拡散層の種類に
関係なく低抵抗コンタクトとして使用できる。しかも、
このような多結晶シリコンプラグは、多結晶シリコン中
に予めりんをドープしておき、その上に接触させた配線
のAlをアニールによって拡散させることにより容易に得
られる。[Function] Since polycrystalline silicon with which the contact holes are filled, that is, polycrystalline silicon contains phosphorus and Al,
It electrically functions as a metal plug and can be used as a low resistance contact regardless of the type of the underlying diffusion layer. Moreover,
Such a polycrystalline silicon plug can be easily obtained by preliminarily doping phosphorus into polycrystalline silicon and diffusing Al of the wiring in contact therewith by annealing.
【0007】[0007]
【実施例】以下、図2と共通の部分に同一の符号を付し
た図1(a) 〜(d) を引用して本発明のCMOSにおける
実施例の多結晶シリコンプラグ形成工程について説明す
る。n形シリコン基板1には、PチャネルMOSFET
のp+ ソース・ドレイン領域41、NチャネルMOSFE
Tのpウエル42およびその表面層のn+ ソース・ドレイ
ン領域43が既に形成されており、その上の多結晶シリコ
ンからなるゲート電極7を含む0.8μmの厚さのSiO2
膜2に0.6μm径のコンタクトホール3を形成する〔図
1(a) 〕。次に、SiH4 を1.5l/mm、PH3 を0.25l
/min の流量で流し、真空度2.5mbar、堆積温度600 ℃
での減圧CVD法により、りん濃度7mol %のりんドー
プ多結晶シリコン膜80を、2.5Hの堆積時間で1μmの
厚さに形成し、表面を平坦にする〔図1(b) 〕。その
後、エッチバック法によりコンタクトホール3部のみに
多結晶シリコンプラグ8が残るまでエッチングして表面
全体を平坦にする〔図1(c) 〕。次に、通常の1μm厚
さのAl蒸着 (1μm厚) とフォトプロセスを経てAl配線
5が形成される〔図1(d) 〕。このあと、N2 雰囲気中
での450 ℃、30分のAlのアニールを行うことで一連のプ
ロセスは完了する。Alのアニールにより多結晶シリコン
中にAlが拡散するため、ポリシリコンプラグ8上のAl配
線5の膜厚は最終的に0.5μmと薄くなる。この時のプ
ラグ8のコンタクト抵抗は、Nチャネル、Pチャネルい
ずれにおいても約100 Ωで、低抵抗コンタクトが得られ
た。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A polycrystalline silicon plug forming process of an embodiment in a CMOS of the present invention will be described below with reference to FIGS. 1 (a) to 1 (d) in which parts common to those in FIG. The n-type silicon substrate 1 has a P-channel MOSFET.
P + source / drain region 41, N-channel MOSFE
The p well 42 of T and the n + source / drain region 43 of the surface layer thereof are already formed, and the SiO 2 having a thickness of 0.8 μm including the gate electrode 7 made of polycrystalline silicon thereon is formed.
A contact hole 3 having a diameter of 0.6 μm is formed in the film 2 [FIG. 1 (a)]. Next, SiH 4 is 1.5 l / mm and PH 3 is 0.25 l
/ Min flow rate, vacuum degree 2.5 mbar, deposition temperature 600 ℃
Then, a phosphorus-doped polycrystalline silicon film 80 having a phosphorus concentration of 7 mol% is formed to a thickness of 1 .mu.m by a deposition time of 2.5 H by the low pressure CVD method in FIG. 1 and the surface is made flat [FIG. After that, the entire surface is flattened by etching back until the polycrystalline silicon plug 8 remains only in the contact hole 3 portion [FIG. 1 (c)]. Next, the Al wiring 5 is formed through a normal 1 .mu.m thick Al vapor deposition (1 .mu.m thick) and a photo process [FIG. 1 (d)]. After that, a series of processes is completed by annealing Al at 450 ° C. for 30 minutes in an N 2 atmosphere. Since the Al is diffused into the polycrystalline silicon by the annealing of Al, the film thickness of the Al wiring 5 on the polysilicon plug 8 is finally reduced to 0.5 μm. At this time, the contact resistance of the plug 8 was about 100 Ω in both N channel and P channel, and a low resistance contact was obtained.
【0008】同様な方法で層間絶縁膜に開けたコンタク
トホールを埋める多結晶シリコンプラグを形成すること
により、下層Al配線と上層Al配線の間の接続の低抵抗コ
ンタクト化を達成できた。By forming a polycrystalline silicon plug that fills the contact hole formed in the interlayer insulating film by a similar method, it was possible to achieve a low resistance contact for the connection between the lower layer Al wiring and the upper layer Al wiring.
【0009】[0009]
【発明の効果】本発明によれば、コンタクトホールを埋
めて平坦化する多結晶シリコンプラグにりんおよびAlを
含有させて金属化することにより、下地拡散層の種類に
関係なく安定な低抵抗コンタクト形成可能となり、しか
もAl配線のアニールを利用することで余分な工程を増や
す必要もない。これにより半導体素子の微細化に対応す
ることができる。According to the present invention, a polycrystalline silicon plug which fills a contact hole and is flattened is metallized by containing phosphorus and Al, so that a stable low resistance contact can be obtained regardless of the type of the underlying diffusion layer. It can be formed, and there is no need to increase extra steps by utilizing the annealing of Al wiring. This makes it possible to cope with the miniaturization of semiconductor elements.
【図1】本発明の一実施例における多結晶シリコンプラ
グ形成工程を(a) ないし(d) の順に示す断面図FIG. 1 is a cross-sectional view showing the steps of forming a polycrystalline silicon plug according to an embodiment of the present invention in the order of (a) to (d).
【図2】従来の一層配線の接続部分の断面図FIG. 2 is a sectional view of a connection portion of a conventional single-layer wiring.
【図3】従来の二層配線の接続部分の断面図FIG. 3 is a sectional view of a connection portion of a conventional two-layer wiring.
【図4】高アスペクト比のコンタクトホールに生ずる欠
陥の断面図FIG. 4 is a cross-sectional view of a defect generated in a high aspect ratio contact hole.
1 n形シリコン基板 2 SiO2 膜 3 コンタクトホール 41、43 ソース・ドレイン領域 42 pウエル 5 Al配線 7 ゲート電極 8 多結晶シリコンプラグ 80 多結晶シリコン膜1 n-type silicon substrate 2 SiO 2 film 3 contact hole 41, 43 source / drain region 42 p well 5 Al wiring 7 gate electrode 8 polycrystalline silicon plug 80 polycrystalline silicon film
Claims (4)
ルミニウムを含有する多結晶シリコンによって充填され
たことを特徴とする半導体素子。1. A semiconductor device characterized in that a contact hole formed in an insulating film is filled with polycrystalline silicon containing phosphorus and aluminum.
たことを特徴とする請求項1記載の半導体素子。2. The semiconductor device according to claim 1, wherein the contact hole is formed in the insulating film on the semiconductor substrate.
ことを特徴とする請求項1記載の半導体素子。3. The semiconductor device according to claim 1, wherein the contact hole is formed in the insulating film on the lower wiring.
充填したのち、その接触孔を充填する多結晶シリコンに
アルミニウム配線を接触させ、さらにアニールすること
を特徴とする1、2あるいは3のいずれかに記載の半導
体素子の製造方法。4. A contact hole is filled with polycrystalline silicon having phosphorus added thereto, and then aluminum wiring is brought into contact with the polycrystalline silicon filling the contact hole, followed by annealing. A method of manufacturing a semiconductor device according to any one of the above.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9343793A JPH06310458A (en) | 1993-04-21 | 1993-04-21 | Semiconductor element and its manufacture |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9343793A JPH06310458A (en) | 1993-04-21 | 1993-04-21 | Semiconductor element and its manufacture |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06310458A true JPH06310458A (en) | 1994-11-04 |
Family
ID=14082300
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9343793A Pending JPH06310458A (en) | 1993-04-21 | 1993-04-21 | Semiconductor element and its manufacture |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06310458A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100366634B1 (en) * | 2000-10-27 | 2003-01-09 | 삼성전자 주식회사 | Method for manufacturing semiconductor device |
KR100376977B1 (en) * | 2000-06-30 | 2003-03-26 | 주식회사 하이닉스반도체 | A manufacturing method of semiconductor device |
JP2006005125A (en) * | 2004-06-17 | 2006-01-05 | Elpida Memory Inc | Method for manufacturing semiconductor device |
KR100583099B1 (en) * | 1999-12-24 | 2006-05-24 | 주식회사 하이닉스반도체 | A method for forming a metal line of a semiconductor device |
-
1993
- 1993-04-21 JP JP9343793A patent/JPH06310458A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100583099B1 (en) * | 1999-12-24 | 2006-05-24 | 주식회사 하이닉스반도체 | A method for forming a metal line of a semiconductor device |
KR100376977B1 (en) * | 2000-06-30 | 2003-03-26 | 주식회사 하이닉스반도체 | A manufacturing method of semiconductor device |
KR100366634B1 (en) * | 2000-10-27 | 2003-01-09 | 삼성전자 주식회사 | Method for manufacturing semiconductor device |
JP2006005125A (en) * | 2004-06-17 | 2006-01-05 | Elpida Memory Inc | Method for manufacturing semiconductor device |
US7700431B2 (en) | 2004-06-17 | 2010-04-20 | Elpida Memory, Inc. | Method for manufacturing a semiconductor device having polysilicon plugs |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3020543B2 (en) | Method of manufacturing tungsten contact and semiconductor device | |
EP0225920B1 (en) | Process for forming contacts and interconnects for integrated circuits | |
US5994749A (en) | Semiconductor device having a gate electrode film containing nitrogen | |
KR100768642B1 (en) | Semiconductor device and method for producing the same | |
US5103272A (en) | Semiconductor device and a method for manufacturing the same | |
US5346860A (en) | Method for fabricating an interconnect structure in an integrated circuit | |
US5518961A (en) | Semiconductor integrated circuit device with wiring microstructure formed on gates and method of manufacturing the same | |
US20030157757A1 (en) | Method of manufacturing a semiconductor integrated circuit device | |
US6200871B1 (en) | High performance self-aligned silicide process for sub-half-micron semiconductor technologies | |
US6166395A (en) | Amorphous silicon interconnect with multiple silicon layers | |
US5192713A (en) | Method of manufacturing semiconductor devices having multi-layered structure | |
JPH0215620A (en) | Manufacture of semiconductor device | |
JPH06310458A (en) | Semiconductor element and its manufacture | |
JP3282172B2 (en) | Method for manufacturing BiMOS semiconductor device | |
US6225222B1 (en) | Diffusion barrier enhancement for sub-micron aluminum-silicon contacts | |
JPH098135A (en) | Manufacture of semiconductor device | |
KR0140720B1 (en) | Semiconductor contact and manufacturing method thereof | |
US5234863A (en) | Method of manufacturing doped contacts to semiconductor devices | |
JP2880892B2 (en) | Method for manufacturing semiconductor device | |
JPS6344725A (en) | Manufacture of semiconductor device | |
JP2773938B2 (en) | Method for manufacturing semiconductor device | |
JPH05109648A (en) | Manufacture of semiconductor device | |
KR100296960B1 (en) | Method for forming polysilicon layer of semiconductor device | |
JPH02281654A (en) | Semiconductor memory device | |
JPH05166943A (en) | Manufacture of semiconductor device |