JPH0215567A - Nonaqueous type electrolyte battery - Google Patents

Nonaqueous type electrolyte battery

Info

Publication number
JPH0215567A
JPH0215567A JP16572588A JP16572588A JPH0215567A JP H0215567 A JPH0215567 A JP H0215567A JP 16572588 A JP16572588 A JP 16572588A JP 16572588 A JP16572588 A JP 16572588A JP H0215567 A JPH0215567 A JP H0215567A
Authority
JP
Japan
Prior art keywords
battery
temperature discharge
low
electrolyte
discharge characteristics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16572588A
Other languages
Japanese (ja)
Other versions
JPH0715821B2 (en
Inventor
Sanehiro Furukawa
古川 修弘
Seiji Yoshimura
精司 吉村
Masatoshi Takahashi
昌利 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP63165725A priority Critical patent/JPH0715821B2/en
Priority to CA000582548A priority patent/CA1308778C/en
Priority to DE3855872T priority patent/DE3855872T2/en
Priority to EP88119035A priority patent/EP0349675B1/en
Publication of JPH0215567A publication Critical patent/JPH0215567A/en
Priority to US07/492,267 priority patent/US5112704A/en
Priority to CA000616388A priority patent/CA1317631C/en
Priority to CA000616389A priority patent/CA1317632C/en
Priority to CA000616390A priority patent/CA1317633C/en
Publication of JPH0715821B2 publication Critical patent/JPH0715821B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • H01M6/162Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • H01M6/162Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte
    • H01M6/168Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte by additives

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Primary Cells (AREA)

Abstract

PURPOSE:To prevent corrosion of battery can materials and enhance its low- temperature discharge property after it is preserved, by adding reaction stopping agents for stopping reaction of its battery can and electrolyte on each other into the electrolyte using trifluoromethane sulfonic acid lithium as solute thereof. CONSTITUTION:Reaction stopping agents for stopping reaction of battery cans 4, 5 and electrolyte on each other are added into the electrolyte having trifluoromethane sulfonic acid lithium used as solute thereof. Thus, even when trifluoromethane sulfonic acid lithium is used as solute thereof, corrosion of the battery cans 4, 5 can be controlled while a battery is preserved; therefore, not only can be enhanced its initial low-temperature discharge property but also its low-temperature discharge property after the battery is preserved.

Description

【発明の詳細な説明】 庄mυ旧1走吐 本発明は、電池缶内に、正極と負極と溶質及び有機溶媒
から成る電解液とを備え、上記溶質としてトリフルオロ
メタンスルホン酸リチウムが用いられた非水系電解液電
池に関し、特に電解液の改良に関するものである。
[Detailed Description of the Invention] The present invention comprises a battery can including a positive electrode, a negative electrode, and an electrolytic solution consisting of a solute and an organic solvent, and lithium trifluoromethanesulfonate is used as the solute. This invention relates to non-aqueous electrolyte batteries, and particularly to improvements in electrolytes.

災米■肢血 リチウム、ナトリウム、或いはこれらの合金を活物質と
する負極を用いた非水系電解液電池では、高エネルギー
密度で且つ自己放電率が低いという利点を有しているが
、低温放電特性に劣るという課題を有している。
Nonaqueous electrolyte batteries using negative electrodes containing lithium, sodium, or their alloys as active materials have the advantages of high energy density and low self-discharge rate, but low-temperature discharge It has the problem of inferior characteristics.

そこで、電解液の溶質として、非水系溶媒に対する溶解
度が高く、低温放電時に負極上にリチウムが析出するこ
とのないトリフルオロメタンスルホン酸リチウム(Li
CFflSO,)を用いて、リチウム電池の低温放電特
性を改良す・るようなものが提案されている。しかし、
上記LiChS(hを溶質として用いた場合には、電池
を長期間保存した場合に、電池缶、集電体等の金属材料
が腐食して電解液中に溶解する。更に、この金属材料が
負極表面に再析出する結果、保存後の低温放電特性が劣
化する。
Therefore, as a solute in the electrolyte solution, lithium trifluoromethanesulfonate (Li
It has been proposed to use CFflSO, ) to improve the low-temperature discharge characteristics of lithium batteries. but,
When LiChS (h) is used as a solute, metal materials such as the battery can and current collector corrode and dissolve in the electrolyte when the battery is stored for a long time. As a result of redeposition on the surface, the low temperature discharge characteristics after storage deteriorate.

そこで、電池缶材料としてステンレス鋼、特にニッケル
をほとんど含まないフェライト系ステンレス鋼が用いら
れている。
Therefore, stainless steel, particularly ferritic stainless steel containing almost no nickel, is used as a battery can material.

しよ゛と る しかしながら、このようなものを電池缶材料として用い
た場合であっても金属材料の腐食という課題を十分に解
決することができなかった。この結果、保存後の低温放
電特性を未だ十分に改良することができないという課題
を有していた。
However, even when such materials were used as battery can materials, the problem of corrosion of metal materials could not be satisfactorily solved. As a result, there has been a problem that the low temperature discharge characteristics after storage cannot be sufficiently improved.

そこで本発明は、電池缶材料の腐食を十分に防止するこ
とにより、保存後の低温放電特性に優れた非水系電解液
電池の提供を目的とするものである。
Therefore, an object of the present invention is to provide a non-aqueous electrolyte battery that has excellent low-temperature discharge characteristics after storage by sufficiently preventing corrosion of the battery can material.

i 、を”ン るための 本発明は上記目的を達成するために、電池缶内に、正極
と負極と溶質及び有機溶媒から成る電解液とを備え、上
記溶質としてトリフルオロメタンスルホン酸リチウムが
用いられた非水系電解液電池において、前記電解液中に
、前記電池缶と電解液との反応を阻止する反応阻止剤を
添加したことを特徴とする。
In order to achieve the above object, the present invention includes a positive electrode, a negative electrode, an electrolytic solution consisting of a solute and an organic solvent in a battery can, and uses lithium trifluoromethanesulfonate as the solute. The non-aqueous electrolyte battery is characterized in that a reaction inhibitor is added to the electrolyte to prevent the reaction between the battery can and the electrolyte.

作−一一一月一 上記構成の如く、電解液中に、電池缶と電解液との反応
を阻止する反応阻止剤(具体的にはリン含有化合物又は
チッ素含有化合物)を添加すれば、トリフルオロメタン
スルホン酸リチウムを溶質として用いた場合であっても
、電池の保存中に電池缶が腐食するのを抑制することが
できる。したがって、初期の低温放電特性のみならず保
存後の低温放電特性も優れることになる。
By adding a reaction inhibitor (specifically a phosphorus-containing compound or a nitrogen-containing compound) to the electrolytic solution to prevent the reaction between the battery can and the electrolytic solution, as in the above configuration, Even when lithium trifluoromethanesulfonate is used as a solute, corrosion of the battery can during storage of the battery can be suppressed. Therefore, not only the initial low temperature discharge characteristics but also the low temperature discharge characteristics after storage are excellent.

策上実庭± (実施例I) 本発明の実施例1を、第1図に示す扁平型非水系電解液
電池に基づいて、以下に説明する。
Practical Example (Example I) Example 1 of the present invention will be described below based on a flat non-aqueous electrolyte battery shown in FIG.

リチウム金属から成る負極2は負極集電体7の内面に圧
着されており、この負極集電体7はフェライト系ステン
レス鋼(SUS430)から成る断面略コ字状の負極缶
5の内底面に固着されている。上記負極缶5の周端はポ
リプロピレン製の絶縁バンキング8の内部に固定されて
おり、絶縁バッキング8の外周にはステンレスから成り
上記負極缶5とは反対方向に断面略コ字状を成す正極缶
4が固定されている。この正極缶4の内底面には正極集
電体6が固定されており、この正極集電体6の内面には
正極1が固定されている。この正極lと前記負極2との
間には、電解液が含浸されたセパレータ3が介装されて
いる。
A negative electrode 2 made of lithium metal is crimped to the inner surface of a negative electrode current collector 7, and this negative electrode current collector 7 is fixed to the inner bottom surface of a negative electrode can 5 made of ferritic stainless steel (SUS430) and having a substantially U-shaped cross section. has been done. The peripheral end of the negative electrode can 5 is fixed inside an insulating banking 8 made of polypropylene, and the outer periphery of the insulating backing 8 is a positive electrode can made of stainless steel and having a substantially U-shaped cross section in the opposite direction to the negative electrode can 5. 4 is fixed. A positive electrode current collector 6 is fixed to the inner bottom surface of the positive electrode can 4, and a positive electrode 1 is fixed to the inner surface of this positive electrode current collector 6. A separator 3 impregnated with an electrolyte is interposed between the positive electrode 1 and the negative electrode 2.

ところで、前記正極lは、350〜430℃の温度範囲
で熱処理した二酸化マンガンを活物質として用い、この
二酸化マンガンと、導電剤としてのカーボン粉末と、結
着剤としてのフッ素樹脂粉末とを85:10:5の重量
比で混合する。次に、この混合物を加圧形成した後、2
50〜350℃で熱処理して作製した。一方、前記負極
2はリチウム圧延板を所定寸法に打抜くことにより作製
した。また、電解液としては、PC(プロピレンカーボ
ネート)とDME (1,2−ジメトキシエタン)とを
4:6の割合で混合した混合溶媒に、トリフルオロメタ
ンスルホン酸リチウム(LiChS03)を1モル/β
溶解させ、更に添加剤としてLiNo:+(硝酸リチウ
ム)を1 g/I!溶解させたものを用いた。尚、電池
径は20龍、電池厚は2・5fl、電池容量は130m
AHである。
By the way, the positive electrode 1 uses manganese dioxide heat-treated in a temperature range of 350 to 430°C as an active material, and this manganese dioxide, carbon powder as a conductive agent, and fluororesin powder as a binder are mixed in a 85% ratio. Mix at a weight ratio of 10:5. Next, after forming this mixture under pressure, 2
It was produced by heat treatment at 50 to 350°C. On the other hand, the negative electrode 2 was produced by punching a lithium rolled plate into a predetermined size. In addition, as an electrolytic solution, 1 mol/β of lithium trifluoromethanesulfonate (LiChS03) is added to a mixed solvent of PC (propylene carbonate) and DME (1,2-dimethoxyethane) in a ratio of 4:6.
Dissolve and add 1 g/I of LiNo:+ (lithium nitrate) as an additive! The dissolved one was used. In addition, the battery diameter is 20 dragons, the battery thickness is 2.5 fl, and the battery capacity is 130 m.
It is AH.

このようにして作製した電池を、以下(A1)電池と称
する。
The battery thus produced is hereinafter referred to as (A1) battery.

(実施例■) 電解液の添加剤として、亜リン酸トリエチルを用い、こ
れを0.1g/I!溶解させた他は、上記実施例Iと同
様にして電池を作製した。
(Example ■) Triethyl phosphite was used as an additive for the electrolytic solution at a concentration of 0.1 g/I! A battery was produced in the same manner as in Example I above, except that the solution was dissolved.

このようにして作製した電池を、以下(A2)電池と称
する。
The battery thus produced is hereinafter referred to as (A2) battery.

(実施例■) 電解液の添加剤として、亜リン酸トリーn−ブチルを用
い、これを0.1g/j!溶解させた他は、上記実施例
1と同様にして電池を作製した。
(Example ■) Tri-n-butyl phosphite was used as an additive for the electrolytic solution, and the amount was 0.1 g/j! A battery was produced in the same manner as in Example 1 above, except that it was dissolved.

このようにして作製した電池を、以下(A3)電池と称
する。
The battery thus produced is hereinafter referred to as (A3) battery.

(比較例) 電解液に添加剤を添加しない他は、上記実施例■と同様
にして電池を作製した。
(Comparative Example) A battery was produced in the same manner as in Example 2 above, except that no additive was added to the electrolytic solution.

このようにして作製した電池を、以下(Z)電池と称す
る。
The battery thus produced is hereinafter referred to as a (Z) battery.

ここで、上記本発明の(A、)電池〜(A3)電池及び
比較例の(Z)電池の各部の構成を、下記第1表に示す
Here, the configurations of each part of the batteries (A,) to (A3) of the present invention and the battery (Z) of the comparative example are shown in Table 1 below.

第1表 (実験I) 上記本発明の(A、)電池〜(A、)電池及び比較例の
(Z)電池において、初期の低温放電特性と保存後の低
温放電特性とを調べたので、その結果を第2図及び第3
図に示す。尚、第2図は電池組立後直ちに温度−20℃
、負荷3にΩで放電したときの低温放電特性であり、第
3図は電池組立後直度60℃で3ケ月保存(室温で4.
5年間保存した場合に相当)したのち、温度−20℃。
Table 1 (Experiment I) The initial low-temperature discharge characteristics and the low-temperature discharge characteristics after storage were investigated for the above-mentioned batteries (A,) to (A,) of the present invention and the comparative example (Z). The results are shown in Figures 2 and 3.
As shown in the figure. In addition, Figure 2 shows the temperature at -20℃ immediately after battery assembly.
Figure 3 shows the low-temperature discharge characteristics when the battery is discharged at Ω to a load of 3. Figure 3 shows the battery stored at 60°C for 3 months immediately after assembly (4.5% at room temperature).
(equivalent to when stored for 5 years), then the temperature is -20℃.

負荷3にΩで放電したときの低温放電特性である。This is the low temperature discharge characteristic when discharging at Ω to load 3.

第2図及び第3図から明らかなように、本発明の(AI
)電池〜(A3)電池と比較例の(Z)電池とは初期の
低温放電特性では同等の値を示しているが、保存後の低
温放電特性では(AI )電池〜(A3)電池は(Z)
電池より優れており、特に、(A1)電池が優れている
ことが認められる。
As is clear from FIGS. 2 and 3, the (AI
) battery ~ (A3) battery and the comparative example (Z) battery show similar values in initial low temperature discharge characteristics, but in terms of low temperature discharge characteristics after storage, (AI) battery ~ (A3) battery ( Z)
It is recognized that the battery (A1) is particularly superior.

(実験■) 高温保存後の電池の内部インピーダンスをlKH2の周
波数で測定したので、その結果を下記第2表に示す。
(Experiment ■) The internal impedance of the battery after high temperature storage was measured at a frequency of lKH2, and the results are shown in Table 2 below.

上記第2表より、比較例の(Z)電池は保存後に内部イ
ンピーダンスが著しく増大しているのに比べて、本発明
の(A1)電池〜(A3)電池は保存後でも内部インピ
ーダンスは若干増大するのみである。
From Table 2 above, the internal impedance of the comparative example battery (Z) increases significantly after storage, while the internal impedance of batteries (A1) to (A3) of the present invention increases slightly even after storage. only.

また、保存後の電池を分解してみたことろ、(Z)電池
では負極リチウム表面が黒く変色していたのに対し、(
A、)電池〜(A3)電池ではそのような現象は見られ
なかった。
In addition, when we disassembled the battery after storage, we found that the negative electrode lithium surface of the (Z) battery had turned black, whereas (
No such phenomenon was observed in batteries A,) to (A3).

更に、保存後の電池缶を金属顕微鏡で観察したところ、
(Z)電池ではかなり孔食がみられるのに対して、(A
I)電池〜(A3)電池の電池缶は腐食されていないこ
とが認められた。
Furthermore, when we observed the battery cans after storage using a metallurgical microscope, we found that
(Z) batteries show considerable pitting corrosion, while (A
I) Battery - (A3) It was observed that the battery can of the battery was not corroded.

これらの結果より、比較例の(Z)電池では保存中に電
池缶が腐食して負極表面に再析出し、この結果、保存後
の低温放電特性が低下したものと考えられる。一方、本
発明の(A1)電池〜(A、)電池のように電解液中に
硝酸リチウム、亜リン酸トリエチル、或いは亜リン酸ト
リーn−ブチルを加えると、電池缶の腐食が抑制され、
この結果、保存後の低温放電特性の低下を防止できるも
のと考えられる。
From these results, it is considered that in the (Z) battery of Comparative Example, the battery can corroded during storage and redeposited on the negative electrode surface, resulting in a decrease in low-temperature discharge characteristics after storage. On the other hand, when lithium nitrate, triethyl phosphite, or tri-n-butyl phosphite is added to the electrolyte as in the batteries (A1) to (A,) of the present invention, corrosion of the battery can is suppressed,
As a result, it is considered that deterioration of low temperature discharge characteristics after storage can be prevented.

第m医 負極2としてリチウム−アルミニウム合金(A1:2重
量%)を用いる他は、上記第1実施例の実施例■と同様
にして電池を作製した。
A battery was produced in the same manner as in Example 2 of the first example, except that a lithium-aluminum alloy (A1: 2% by weight) was used as the m-th medical and negative electrode 2.

このようにして作製した電池を、以下(B)電池と称す
る。
The battery thus produced is hereinafter referred to as the (B) battery.

(実験) 上記(B)電池及び前記(A、)電池の初期の低温放電
特性と保存後の低温放電特性とを前記第1実施例の実験
Iと同様にして調べたので、その結果をそれぞれ第4図
及び第5図に示す。
(Experiment) The initial low-temperature discharge characteristics and the low-temperature discharge characteristics after storage of the battery (B) and the battery (A,) above were investigated in the same manner as in Experiment I of the first example, and the results are shown for each. It is shown in FIGS. 4 and 5.

第4図及び第5図より明らかなように、初期の低温放電
特性は両電池とも同等であるが、保存後の低温放電特性
は(A、)電池より(B)電池の方が更に向上している
ことが認められる。
As is clear from Figures 4 and 5, the initial low-temperature discharge characteristics are the same for both batteries, but the low-temperature discharge characteristics after storage are more improved in battery (B) than in battery (A). It is recognized that

これは、負極としてリチウム−アルミニウム合金を用い
れば、該合金はリチウム単独の場合と比べて活性度が低
いため、保存中にLiCF+SO3のフッ素イオンとリ
チウム−アルミニウム合金のリチウムとの反応が生じ難
くなる。この結果、負極表面における不動態被膜の生成
が抑制されるということに起因する。
This is because if a lithium-aluminum alloy is used as the negative electrode, the activity of the alloy is lower than that of lithium alone, so it becomes difficult for the fluorine ions of LiCF+SO3 to react with the lithium of the lithium-aluminum alloy during storage. . As a result, the formation of a passive film on the surface of the negative electrode is suppressed.

第」JuF桝 負極2としてリチウム−アルミニウム合金(A1:2重
量%)を用い、更に電解液の溶媒としてEC(エチレン
カーボネート)とBC(ブチレンカーボネート)とDM
E (1,2−ジメトキシエタン)との混合有機溶媒を
用いた他は、上記第1実施例の実施例Iと同様にして電
池を作製した。
A lithium-aluminum alloy (A1: 2% by weight) was used as the JuF cell negative electrode 2, and EC (ethylene carbonate), BC (butylene carbonate) and DM were used as the electrolyte solvent.
A battery was produced in the same manner as in Example I of the first example above, except that a mixed organic solvent with E (1,2-dimethoxyethane) was used.

このようにして作製した電池を、以下(C)電池と称す
る。
The battery thus produced is hereinafter referred to as the (C) battery.

(実験) 上記(C)電池及び前記(B)電池の初期の低温放電特
性と保存後の低温放電特性とを前記第1実施例の実験■
と同様にして調べたので、その結果をそれぞれ第6図及
び第7図に示す。
(Experiment) The initial low-temperature discharge characteristics and the low-temperature discharge characteristics after storage of the above (C) battery and the above (B) battery were measured in the experiment of the first example.
The results were shown in FIGS. 6 and 7, respectively.

第6図及び第7図より明らかなように、初期の低温放電
特性及び保存後の低温放電特性において、(B)電池よ
り(C)電池の方が更に向上していることが認められる
As is clear from FIGS. 6 and 7, it is recognized that the (C) battery is further improved than the (B) battery in the initial low-temperature discharge characteristics and the low-temperature discharge characteristics after storage.

これは、環状炭酸エステル(EC,BC)を2つ含んだ
電解液の場合には、電解液の電導度、粘度を低温放電特
性に一層適した値となるように設定しうろことに起因す
る。
This is due to the fact that in the case of an electrolytic solution containing two cyclic carbonate esters (EC, BC), the conductivity and viscosity of the electrolytic solution should be set to values that are more suitable for low-temperature discharge characteristics. .

尚、上記第1実施例〜第3実施例では添加剤として、硝
酸リチウム、亜リン酸トリエチル、亜リン酸トリーn−
ブチルを用いたが、このようなものに限定されるもので
はなく、他のチッ素含有化合物(NNN’ N’  −
テトラメチルエチレンジアミン、l、2−ジフェニルエ
チレンジアミン、ジエチルジチオカルバミン)、或いは
他のリン含有化合物(リン酸トリエチル、次亜リン酸ア
ンモニウム、オルトリン酸尿素)であっても上記と同様
の効果を奏する。
In addition, in the above-mentioned first to third examples, lithium nitrate, triethyl phosphite, tri-phosphite n-
Although butyl was used, the present invention is not limited to this, and other nitrogen-containing compounds (NNN'N' -
The same effects as described above can be obtained even when using tetramethylethylenediamine, 1,2-diphenylethylenediamine, diethyldithiocarbamine) or other phosphorus-containing compounds (triethyl phosphate, ammonium hypophosphite, urea orthophosphate).

また、正極はMnO,に限定されるものではなく、その
他の酸化物〔改質M n Ot 、重質化MnO2、L
i含有MnO,、MOO:l 、CuO: Cr01C
ry、、、Vz Os等〕、硫化物(FeS、Ti5z
、MoSに等)、ハロゲン化物((CF)7等〕を用い
ても同様の効果を奏する。
In addition, the positive electrode is not limited to MnO, but may also be made of other oxides [modified MnOt, heavy MnO2, L
i-containing MnO,, MOO: l, CuO: Cr01C
ry, , Vz Os, etc.], sulfides (FeS, Ti5z
, MoS, etc.) or halides ((CF)7, etc.) can produce similar effects.

4゜ 発」序と九果 以上説明したように本発明によれば、電池の保存中に電
池缶が腐食するのを抑制することができるので、初期の
低温放電特性のみならず保存後の低温放電特性も優れる
。この結果、非水系電解液電池の性能を飛曜的に向上さ
せることができるという効果を奏する。
As explained above, according to the present invention, corrosion of the battery can during battery storage can be suppressed, so that not only initial low-temperature discharge characteristics but also low-temperature discharge characteristics after storage can be suppressed. It also has excellent discharge characteristics. As a result, the performance of the non-aqueous electrolyte battery can be dramatically improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の非水系電解液電池の断面図、第2図は
本発明の(A1)電池〜(Al )電池及び比較例の(
Z)電池における初期の低温放電特性を示すグラフ、第
3図は(A1)電池〜(A3)電池及び(Z)電池にお
ける保存後の低温放電特性を示すグラフ、第4図は本発
明の(A1)電池、(B)電池における初期の低温放電
特性を示すグラフ、第5図は(A1)電池、(B)電池
における保存後の低温放電特性を示すグラフ、第6図は
本発明の(B)電池、(C)電池における初期の低温放
電特性を示すグラフ、第7図は(B)電池、(C)電池
における保存後の低温放電特性を示すグラフ。 1・・・正極、2・・・負極、4・・・正極缶、5・・
・負極缶。
FIG. 1 is a cross-sectional view of a non-aqueous electrolyte battery of the present invention, and FIG. 2 is a cross-sectional view of a non-aqueous electrolyte battery of the present invention (A1) to (Al) battery of the present invention and a comparative example (
FIG. 3 is a graph showing the initial low-temperature discharge characteristics of batteries (A1) to (A3) and (Z) batteries, and FIG. A graph showing the initial low-temperature discharge characteristics of the battery (A1) and (B) the battery; FIG. 5 is a graph showing the low-temperature discharge characteristics of the battery (A1) and (B) after storage; FIG. B) A graph showing the initial low temperature discharge characteristics of the battery and (C) the battery. FIG. 7 is a graph showing the low temperature discharge characteristics of the (B) battery and the (C) battery after storage. 1... Positive electrode, 2... Negative electrode, 4... Positive electrode can, 5...
・Negative electrode can.

Claims (1)

【特許請求の範囲】[Claims] (1)電池缶内に、正極と負極と溶質及び有機溶媒から
成る電解液とを備え、上記溶質としてトリフルオロメタ
ンスルホン酸リチウムが用いられた非水系電解液電池に
おいて、 前記電解液中に、前記電池缶と電解液との反応を阻止す
る反応阻止剤を添加したことを特徴とする非水系電解液
電池。
(1) A nonaqueous electrolyte battery comprising a positive electrode, a negative electrode, and an electrolytic solution consisting of a solute and an organic solvent in a battery can, in which lithium trifluoromethanesulfonate is used as the solute, wherein the electrolyte contains the A non-aqueous electrolyte battery characterized in that a reaction inhibitor is added to prevent the reaction between the battery can and the electrolyte.
JP63165725A 1988-07-01 1988-07-01 Non-aqueous electrolyte battery Expired - Fee Related JPH0715821B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP63165725A JPH0715821B2 (en) 1988-07-01 1988-07-01 Non-aqueous electrolyte battery
CA000582548A CA1308778C (en) 1988-07-01 1988-11-08 Non-aqueous electrolyte cell
DE3855872T DE3855872T2 (en) 1988-07-01 1988-11-15 Non-aqueous electrolyte cell
EP88119035A EP0349675B1 (en) 1988-07-01 1988-11-15 Non-aqueous electrolyte cell
US07/492,267 US5112704A (en) 1988-07-01 1990-02-28 Non-aqueous electrolyte cell
CA000616388A CA1317631C (en) 1988-07-01 1992-05-26 Non-aqueous electrolyte cell
CA000616389A CA1317632C (en) 1988-07-01 1992-05-26 Non-aqueous electrolyte cell
CA000616390A CA1317633C (en) 1988-07-01 1992-05-26 Non-aqueous electrolyte cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63165725A JPH0715821B2 (en) 1988-07-01 1988-07-01 Non-aqueous electrolyte battery

Publications (2)

Publication Number Publication Date
JPH0215567A true JPH0215567A (en) 1990-01-19
JPH0715821B2 JPH0715821B2 (en) 1995-02-22

Family

ID=15817889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63165725A Expired - Fee Related JPH0715821B2 (en) 1988-07-01 1988-07-01 Non-aqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JPH0715821B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04282563A (en) * 1991-03-08 1992-10-07 Fuji Elelctrochem Co Ltd Nonaqueous electrolyte battery and manufacture thereof
WO2003046653A1 (en) * 2001-11-29 2003-06-05 Nippon Oil Corporation Electrolyte and electrochromic device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5422520A (en) * 1977-07-21 1979-02-20 Matsushita Electric Ind Co Ltd Battery
JPS63198260A (en) * 1987-02-12 1988-08-16 Sanyo Electric Co Ltd Nonaqueous electrolyte battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5422520A (en) * 1977-07-21 1979-02-20 Matsushita Electric Ind Co Ltd Battery
JPS63198260A (en) * 1987-02-12 1988-08-16 Sanyo Electric Co Ltd Nonaqueous electrolyte battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04282563A (en) * 1991-03-08 1992-10-07 Fuji Elelctrochem Co Ltd Nonaqueous electrolyte battery and manufacture thereof
WO2003046653A1 (en) * 2001-11-29 2003-06-05 Nippon Oil Corporation Electrolyte and electrochromic device

Also Published As

Publication number Publication date
JPH0715821B2 (en) 1995-02-22

Similar Documents

Publication Publication Date Title
JP3066126B2 (en) Non-aqueous electrolyte battery
US5112704A (en) Non-aqueous electrolyte cell
JP3291750B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JP2735842B2 (en) Non-aqueous electrolyte secondary battery
JPH09213348A (en) Non-aqueous electrolyte battery
JP3369947B2 (en) Non-aqueous electrolyte battery
JP3396990B2 (en) Organic electrolyte secondary battery
JP3451781B2 (en) Organic electrolyte secondary battery
JPH07230824A (en) Nonaqueous electrolyte battery
JP2771612B2 (en) Non-aqueous electrolyte battery
JP2924329B2 (en) Non-aqueous electrolyte secondary battery
JPH0210666A (en) Nonaqueous electrolyte secondary battery
JPH0215567A (en) Nonaqueous type electrolyte battery
JP3831547B2 (en) Non-aqueous electrolyte secondary battery
JPH0495362A (en) Nonaqueous electrolytic battery
JP2760584B2 (en) Non-aqueous electrolyte battery
JP2698103B2 (en) Non-aqueous electrolyte primary battery
JPH0462764A (en) Nonaqueous electrolyte cell
JPH09320634A (en) Organic electrolyte secondary battery
JPH1140197A (en) Polymer electrolyte battery
JPS61165961A (en) Organic electrolytic solution battery
US6291108B1 (en) Non-aqueous electrolyte cell
JPH0215566A (en) Nonaqueous type electrolyte battery
JP3423168B2 (en) Non-aqueous electrolyte secondary battery
JP2804591B2 (en) Non-aqueous electrolyte battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees