JP2760584B2 - Non-aqueous electrolyte battery - Google Patents

Non-aqueous electrolyte battery

Info

Publication number
JP2760584B2
JP2760584B2 JP1183383A JP18338389A JP2760584B2 JP 2760584 B2 JP2760584 B2 JP 2760584B2 JP 1183383 A JP1183383 A JP 1183383A JP 18338389 A JP18338389 A JP 18338389A JP 2760584 B2 JP2760584 B2 JP 2760584B2
Authority
JP
Japan
Prior art keywords
battery
low
temperature discharge
discharge characteristics
storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1183383A
Other languages
Japanese (ja)
Other versions
JPH0346771A (en
Inventor
修弘 古川
精司 吉村
昌利 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Denki Co Ltd
Original Assignee
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Denki Co Ltd filed Critical Sanyo Denki Co Ltd
Priority to JP1183383A priority Critical patent/JP2760584B2/en
Publication of JPH0346771A publication Critical patent/JPH0346771A/en
Application granted granted Critical
Publication of JP2760584B2 publication Critical patent/JP2760584B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Primary Cells (AREA)
  • Secondary Cells (AREA)

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は溶質としてフッ素を含むリチウム塩を用いた
非水系電解液電池に関し、特に電解液への添加剤に関す
るものである。
The present invention relates to a nonaqueous electrolyte battery using a lithium salt containing fluorine as a solute, and more particularly to an additive to an electrolyte.

(ロ)従来の技術 リチウム、ナトリウム或いはこれらの合金を活物質と
する負極を用いた非水系電解液電池は、高エネルギー密
度でかつ自己放電率が低いという利点を有しているが、
低温放電特性が十分に発揮できない。
(B) Conventional technology A non-aqueous electrolyte battery using a negative electrode containing lithium, sodium or an alloy thereof as an active material has the advantages of a high energy density and a low self-discharge rate.
Low temperature discharge characteristics cannot be fully exhibited.

そこで、電解液の溶質として、非水系溶媒に対する溶
解度が高く且つ低温放電時に負極上にリチウムが析出す
ることのないLiCF3SO3、LiPF6、LiBF4、LiAsF6等で表わ
されるフッ素を含むリチウム塩を用いて、リチウム電池
の低温放電特性を改良することが提案されている。しか
し、この種電池に二酸化マンガンからなる正極を使用
し、フッ素を含むリチウム塩を用いた場合には、電池を
長期間保存した場合に、正極に使用した二酸化マンガン
により、電池缶、集電体等の金属材料が腐食して、電解
液中に溶解する。更に、この溶解した金属材料が負極表
面に再析出する結果、保存後の低温放電特性が劣化す
る。そこで、電池缶材料としてステンレス鋼が用いられ
ているが、金属材料の腐食という問題を十分に解決する
ことができなかった。
Therefore, as a solute of the electrolytic solution, lithium containing fluorine represented by LiCF 3 SO 3 , LiPF 6 , LiBF 4 , LiAsF 6 or the like, which has a high solubility in a non-aqueous solvent and does not deposit lithium on the negative electrode during low-temperature discharge. It has been proposed to use salts to improve the low temperature discharge characteristics of lithium batteries. However, when a positive electrode made of manganese dioxide is used for this type of battery and a lithium salt containing fluorine is used, the battery can, current collector, and And other metal materials corrode and dissolve in the electrolyte. Further, as a result of re-precipitation of the dissolved metal material on the negative electrode surface, low-temperature discharge characteristics after storage are deteriorated. Therefore, stainless steel is used as a material for the battery can, but the problem of corrosion of the metal material cannot be sufficiently solved.

(ハ)発明が解決しようとする課題 本発明は前記問題点に鑑みてなされたものであって、
フッ素を含むリチウム塩を溶質として使用し二酸化マン
ガンを正極材料として用いた場合であっても、電池缶材
料の腐食を十分に抑制することにより、保存後の低温放
電特性に優れた非水系電解液電池を提供しようとするも
のである。
(C) Problems to be solved by the invention The present invention has been made in view of the above problems,
Even when lithium salt containing fluorine is used as a solute and manganese dioxide is used as a positive electrode material, a non-aqueous electrolyte having excellent low-temperature discharge characteristics after storage by sufficiently suppressing corrosion of the battery can material. It is intended to provide a battery.

(ニ)課題を解決するための手段 本発明の非水系電解液電池は、二酸化マンガンからな
る正極と、負極と、溶質としてのフッ素を含むリチウム
塩及び有機溶媒からなる電解液とを有し、前記電解液が
チッ素含有不飽和環状化合物を含有することを特徴とす
るものである。
(D) Means for Solving the Problems The non-aqueous electrolyte battery of the present invention has a positive electrode composed of manganese dioxide, a negative electrode, and an electrolyte composed of a lithium salt containing fluorine as a solute and an organic solvent, The electrolyte solution contains a nitrogen-containing unsaturated cyclic compound.

ここで、前記チッ素含有不飽和環状化合物としては、
ピリジン、ピロリン、ジメチルピリジンのうちから選択
された少なくとも1つを用いることができる。
Here, as the nitrogen-containing unsaturated cyclic compound,
At least one selected from pyridine, pyrroline, and dimethylpyridine can be used.

そして前記電解液中の前記チッ素含有不飽和環状化合
物の濃度は、1〜5000ppmとするのが望ましく、更に100
0ppm以下とすることにより、その添加効果が顕著とな
る。
The concentration of the nitrogen-containing unsaturated cyclic compound in the electrolyte is preferably 1 to 5000 ppm, and more preferably 100 to 5000 ppm.
When the content is 0 ppm or less, the effect of the addition becomes remarkable.

(ホ)作用 本発明の如く、チッ素含有不飽和環状化合物を含有さ
せる電解液を用いると、フッ素を含むリチウム塩を溶質
として使用し、二酸化マンガンを正極に用いた場合であ
っても、電池の保存中に電池缶が腐食するのを抑制する
ことができる。従って、初期の低温放電特性にのみなら
ず、保存後の低温放電特性を改善することができる。こ
れは次の理由に基づくと考えられる。即ち、チッ素含有
不飽和化合物は、分子内の電子を金属表面に与え、電池
缶等の金属に吸着しやすいため、腐食抑制剤として用い
ることができる。しかし一般にチッ素含有不飽和化合物
は負極のリチウムを反応し易いため、この種非水系電解
液電池の添加剤としては好ましいとは言えない。ところ
が、本発明に係るチッ素含有不飽和環状化合物は、環状
であるため非水系電解液中で安定しており、リチウムと
の反応性が小さく添加剤として特に好ましい。
(E) Function As in the present invention, when an electrolytic solution containing a nitrogen-containing unsaturated cyclic compound is used, even when a lithium salt containing fluorine is used as a solute and manganese dioxide is used for a positive electrode, a battery can be used. Corrosion of the battery can during storage of the battery can be suppressed. Therefore, not only the initial low-temperature discharge characteristics but also the low-temperature discharge characteristics after storage can be improved. This is considered to be based on the following reasons. That is, the nitrogen-containing unsaturated compound gives electrons in the molecule to the metal surface, and is easily adsorbed to a metal such as a battery can, and thus can be used as a corrosion inhibitor. However, generally, a nitrogen-containing unsaturated compound easily reacts with lithium of the negative electrode, and is therefore not preferable as an additive for this type of nonaqueous electrolyte battery. However, since the nitrogen-containing unsaturated cyclic compound according to the present invention is cyclic, it is stable in a non-aqueous electrolytic solution, has low reactivity with lithium, and is particularly preferable as an additive.

そして前記チッ素含有不飽和環状化合物としては、ピ
リジン、ピロリン、ジメチルビリジン等が使用しうる。
As the nitrogen-containing unsaturated cyclic compound, pyridine, pyrroline, dimethyl pyridine, and the like can be used.

その添加量としては、前記電解液中のチッ素含有環状
化合物の濃度が、1〜5000ppmとなようにするのが好ま
しく、更に1000ppm以下とすることにより前記チッ素含
有不飽和環状化合物の添加効果が顕著となる。
As the addition amount, the concentration of the nitrogen-containing cyclic compound in the electrolytic solution is preferably set to 1 to 5000 ppm, and the addition effect of the nitrogen-containing unsaturated cyclic compound is further reduced to 1000 ppm or less. Is remarkable.

(ヘ)実施例 ◎第1実験例 〈実施例1〉 本発明の実施例Iを、第1図に示す扁平型非水系電解
液電池に基づいて、以下に説明する。
(F) Example ◎ First Experimental Example <Example 1> Example I of the present invention will be described below based on the flat type nonaqueous electrolyte battery shown in FIG.

リチウム金属から成る負極2は負極集電体7の内面に
圧着されており、この負極集電体7はフェライト系ステ
ンレス鋼(SUS430)から成る断面略コ字状の負極缶5の
内底面に固着されている。上記負極缶5の周端はポリプ
ロピレン製の絶縁パッキング8の内部に固定されてお
り、絶縁パッキング8の外周にはステンレスから成り上
記負極缶5とは反対方向に断面略コ字状を成す正極缶4
が固定されている。この正極缶4の内底面には正極集電
体6が固定されており、この正極集電体6の内面には正
極1が固定されている。この正極1と前記負極2との間
には、電解液が含浸されたセパレータ3が介挿されてい
る。
The negative electrode 2 made of lithium metal is pressed on the inner surface of a negative electrode current collector 7, and the negative electrode current collector 7 is fixed to the inner bottom surface of a negative can 5 made of ferritic stainless steel (SUS430) and having a substantially U-shaped cross section. Have been. The peripheral end of the negative electrode can 5 is fixed inside a polypropylene insulating packing 8, and the outer periphery of the insulating packing 8 is made of stainless steel and has a substantially U-shaped cross section in a direction opposite to the negative electrode can 5. 4
Has been fixed. A positive electrode current collector 6 is fixed to the inner bottom surface of the positive electrode can 4, and the positive electrode 1 is fixed to the inner surface of the positive electrode current collector 6. A separator 3 impregnated with an electrolytic solution is interposed between the positive electrode 1 and the negative electrode 2.

ところで、前記正極1は、350〜430℃の温度範囲で熱
処理した二酸化マンガンを活物質として用い、この二酸
化マンガンと、導電剤としてのカーボン粉末と、結着剤
としてのフッ素樹脂粉末とをそれぞれ85:10:5の重量比
で混合する。次に、この混合物を加圧成形した後、250
〜350℃で熱処理して作製したものである。一方、前記
負極2はリチウム圧延板を所定寸法に打抜くことにより
作製した。また、電解液としては、PC(プロピレンカー
ボネート)とDME(1,2−ジメトキシエタン)とを4:6の
割合で混合した混合溶媒に、トリフルオロメタンスルホ
ン酸リチウム(LiCF3SO3:フッ素を含むリチウム塩)を
1モル/l溶解させ、更に添加剤としてピリジン(チッ素
含有不飽和環状化合物)を1000ppm溶解させたものを用
いた。尚、電池径は20mm、電池厚は2.5mm、電池容量は1
30mAHである。
By the way, the positive electrode 1 uses manganese dioxide heat-treated in a temperature range of 350 to 430 ° C. as an active material, and the manganese dioxide, carbon powder as a conductive agent, and fluororesin powder as a binder are each 85%. Mix at a weight ratio of 10: 5. Next, after the mixture was pressure-molded, 250
It was prepared by heat treatment at ~ 350 ° C. On the other hand, the negative electrode 2 was manufactured by stamping a rolled lithium plate into a predetermined size. As the electrolytic solution, lithium trifluoromethanesulfonate (LiCF 3 SO 3 : fluorine) is contained in a mixed solvent in which PC (propylene carbonate) and DME (1,2-dimethoxyethane) are mixed at a ratio of 4: 6. 1 mol / l of lithium salt) and 1000 ppm of pyridine (nitrogen-containing unsaturated cyclic compound) as an additive were used. The battery diameter is 20mm, battery thickness is 2.5mm, battery capacity is 1
30 mAH.

このようにして作製した電池を、以下本発明電池A電
池と称する。
The battery fabricated in this manner is hereinafter referred to as Battery A of the invention.

〈比較例1〉 電解液に添加剤を添加しない他は、上記実施例と同様
にして電池を作製した。
<Comparative Example 1> A battery was fabricated in the same manner as in the above example, except that no additive was added to the electrolytic solution.

このようにして作製した電池を、以下比較電池Xと称
する。
The battery fabricated in this manner is hereinafter referred to as Comparative Battery X.

上記本発明電池Aと比較電池Xにおいて、初期の低温
放電特性と保存後の低温放電特性とを調べた。その結果
を、第2図及び第3図に示す。尚、第2図は電池組立て
後直ちに温度−20℃、負荷3KΩで放電したときの低温放
電特性であり、第3図は電池組立て後温度60℃で3ケ月
間保存(室温で4、5年間保存した場合に相当)したの
ち、温度−20℃、負荷3KΩで放電したときの低温放電特
性である。
For the battery A of the present invention and the comparative battery X, the initial low-temperature discharge characteristics and the low-temperature discharge characteristics after storage were examined. The results are shown in FIGS. 2 and 3. FIG. 2 shows the low-temperature discharge characteristics when the battery was discharged at a temperature of −20 ° C. and a load of 3 KΩ immediately after assembling the battery, and FIG. This is a low-temperature discharge characteristic when the battery is discharged at a temperature of -20 ° C and a load of 3 KΩ after storage.

第2図及び第3図から明らかなように、本発明電池A
と比較電池Xとは初期の低温放電特性では同等の値を示
している。しかしながら保存後の低温放電特性では、本
発明電池Aは、比較電池Xより優れており、保存後でも
内部インピーダンスの増加が抑制されている。
As is clear from FIGS. 2 and 3, the battery A of the present invention was used.
And the comparative battery X show the same value in the initial low-temperature discharge characteristics. However, in the low-temperature discharge characteristics after storage, the battery A of the present invention is superior to the comparative battery X, and the increase in internal impedance is suppressed even after storage.

また、保存後の電池を分解したところ、比較電池Xで
は負極リチウム表面が黒く変色していたのに対し、本発
明電池Aではそのような現象は見られなかった。
In addition, when the battery after storage was disassembled, the lithium battery surface of the comparative battery X was discolored black, whereas the battery A of the present invention did not show such a phenomenon.

更に、保存後の電池缶を金属顕微鏡で観察したとこ
ろ、比較電池Xではかなり孔食がみられるのに対して、
本発明電池Aの電池缶は腐食されていないことが確認さ
れた。
Furthermore, when the battery can after storage was observed with a metallographic microscope, the comparative battery X showed considerable pitting corrosion,
It was confirmed that the battery can of the battery A of the present invention was not corroded.

これらの結果より、比較電池Xでは保存中に電池缶が
腐食して負極表面に再析出し、この結果、保存後の低温
放電特性が低下したものと考えられる。一方、本発明電
池Aのように電解液中にチッ素含有不飽和環状化合物で
あるピリジンを加えると、電池缶の腐食が抑制され、こ
の結果、保存後の低温放電特性の低下を防止できるもの
と考えられる。
From these results, it is considered that in the comparative battery X, the battery can corroded during storage and reprecipitated on the negative electrode surface, and as a result, the low-temperature discharge characteristics after storage were reduced. On the other hand, when pyridine, which is a nitrogen-containing unsaturated cyclic compound, is added to the electrolytic solution as in the battery A of the present invention, corrosion of the battery can is suppressed, and as a result, deterioration in low-temperature discharge characteristics after storage can be prevented. it is conceivable that.

◎第2実験例 腐食抑制剤としてのチッ素含有不飽和環状化合物であ
るピリジンの添加量について検討した。第4図は、ピリ
ジンの添加量と、保存後の低温放電容量の関係を示す。
第4図から明らかなように、ピリジンを10000ppm以上加
えると、逆に保存後の低温放電容量の低下が見られる。
これはピリジンと負極リチウムとの反応によるものと考
えられる。従って添加するピリジンの量は、1〜5000pp
mが適していると言える。この範囲内でも、1000ppm以下
とすれば、その添加効果が顕著となる。尚、この添加範
囲に関する傾向は、ピリジン以外の他のチッ素含有不飽
和環状化合物においても、同様に観察された。
◎ Second Experimental Example The addition amount of pyridine which is a nitrogen-containing unsaturated cyclic compound as a corrosion inhibitor was examined. FIG. 4 shows the relationship between the amount of pyridine added and the low-temperature discharge capacity after storage.
As is apparent from FIG. 4, when pyridine is added in an amount of 10,000 ppm or more, the low-temperature discharge capacity after storage is reduced.
This is considered to be due to the reaction between pyridine and the negative electrode lithium. Therefore, the amount of pyridine to be added is 1-5000pp
m can be said to be suitable. Even within this range, if the content is 1000 ppm or less, the effect of the addition becomes remarkable. This tendency regarding the addition range was similarly observed in nitrogen-containing unsaturated cyclic compounds other than pyridine.

◎第3実験例 〈実施例2〉 電解液の溶質としてLiPF6を用い、添加剤としてピコ
リン(1000ppm)を用いた他は、上記実施例1と同様に
して電池を作製した。このようにして作製した電池を、
以下本発明電池Bと称する。
◎ Third Experimental Example <Example 2> A battery was fabricated in the same manner as in Example 1 except that LiPF 6 was used as a solute of the electrolytic solution and picoline (1000 ppm) was used as an additive. The battery fabricated in this way is
Hereinafter, this battery is referred to as Battery B of the invention.

〈比較例2〉 次に、電解液に添加剤を添加しない他は、上記実施例
と同様にして電池を作製した。このようにして作製した
電池を、以下比較電池Yと称する。
<Comparative Example 2> Next, a battery was fabricated in the same manner as in the above-described example except that no additive was added to the electrolytic solution. The battery fabricated in this manner is hereinafter referred to as Comparative Battery Y.

上記本発明電池B及び比較電池Yの初期の低温放電特
性と保存後の低温放電特性とを、前記実施例Iと同様に
して調べた。
The initial low-temperature discharge characteristics and the low-temperature discharge characteristics after storage of the battery B of the present invention and the comparative battery Y were examined in the same manner as in Example I.

その結果を、第5図及び第6図に示す。第5図及び第
6図より明らかなように、初期の低温放電特性は両電池
とも同等であるが、保存後の低温放電特性は比較電池Y
より、本発明電池Bの方が優れている。
The results are shown in FIGS. 5 and 6. As is clear from FIGS. 5 and 6, the initial low-temperature discharge characteristics are the same for both batteries, but the low-temperature discharge characteristics after storage are the same as those of the comparative battery Y.
Thus, the battery B of the present invention is more excellent.

(ト)発明の効果 以上説明したように本発明によれば、電池の保存中に
フッ素を含むリチウム塩を溶質として使用し正極材料に
二酸化マンガンを用いた場合であっても電池缶が腐食す
るのを抑制することができるので、初期の低温放電特性
のみならず、保存後の低温放電特性を改善することがで
きる。この結果、非水系電解液電池の性能を飛躍的に向
上させることができ、その工業的価値は極めて大きい。
(G) Effects of the Invention As described above, according to the present invention, the battery can is corroded even when the lithium salt containing fluorine is used as a solute during storage of the battery and manganese dioxide is used as the positive electrode material. Therefore, not only initial low-temperature discharge characteristics but also low-temperature discharge characteristics after storage can be improved. As a result, the performance of the non-aqueous electrolyte battery can be dramatically improved, and its industrial value is extremely large.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明電池の縦断面図、第2図は本発明電池A
及び比較電池Xにおける初期の低温放電特性を示す図、
第3図は本発明電池A及び比較電池Xにおける保存後の
低温放電特性を示す図、第4図はピリジン添加量と保存
後の低温放電容量の関係を示す図、第5図は本発明電池
B及び比較電池Yにおける初期の低温放電特性を示す
図、第6図は本発明電池B及び比較電池Yの保存後の低
温放電特性を示す図である。 A、B……本発明電池、X、Y……比較電池。
FIG. 1 is a longitudinal sectional view of the battery of the present invention, and FIG.
And a diagram showing initial low-temperature discharge characteristics in Comparative Battery X,
FIG. 3 is a diagram showing the low-temperature discharge characteristics of the battery A of the present invention and the comparative battery X after storage, FIG. 4 is a diagram showing the relationship between the amount of pyridine added and the low-temperature discharge capacity after storage, and FIG. FIG. 6 is a diagram showing initial low-temperature discharge characteristics of battery B and comparative battery Y. FIG. 6 is a diagram showing low-temperature discharge characteristics of battery B of the present invention and comparative battery Y after storage. A, B: battery of the present invention, X, Y: comparative battery.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) H01M 10/40 H01M 6/16──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int.Cl. 6 , DB name) H01M 10/40 H01M 6/16

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】二酸化マンガンからなる正極と、負極と、
溶質としてのフッ素を含むリチウム塩及び有機溶媒から
なる電解液とを有し、 前記電解液がチッ素含有不飽和環状化合物を含有するこ
とを特徴とする非水系電解液電池。
A positive electrode comprising manganese dioxide, a negative electrode,
A non-aqueous electrolyte battery comprising: a lithium salt containing fluorine as a solute; and an electrolyte comprising an organic solvent, wherein the electrolyte contains a nitrogen-containing unsaturated cyclic compound.
【請求項2】前記チッ素含有不飽和環状化合物が、ピリ
ジン、ピロリン、ジメチルピリジンのうちから選択され
た少なくとも1つであることを特徴とする請求項(1)
記載の非水系電解液電池。
2. The method according to claim 1, wherein the nitrogen-containing unsaturated cyclic compound is at least one selected from pyridine, pyrroline, and dimethylpyridine.
The non-aqueous electrolyte battery according to claim 1.
JP1183383A 1989-07-14 1989-07-14 Non-aqueous electrolyte battery Expired - Fee Related JP2760584B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1183383A JP2760584B2 (en) 1989-07-14 1989-07-14 Non-aqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1183383A JP2760584B2 (en) 1989-07-14 1989-07-14 Non-aqueous electrolyte battery

Publications (2)

Publication Number Publication Date
JPH0346771A JPH0346771A (en) 1991-02-28
JP2760584B2 true JP2760584B2 (en) 1998-06-04

Family

ID=16134811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1183383A Expired - Fee Related JP2760584B2 (en) 1989-07-14 1989-07-14 Non-aqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JP2760584B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5594996B2 (en) 2009-09-14 2014-09-24 三菱重工業株式会社 Aircraft control system
WO2014188503A1 (en) * 2013-05-21 2014-11-27 株式会社日立製作所 Electricity storage device and method for manufacturing same
CN108321433A (en) * 2017-12-14 2018-07-24 合肥国轩高科动力能源有限公司 Electrolyte additive for improving low-temperature performance of lithium ion battery and electrolyte

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5218378B2 (en) * 1973-02-20 1977-05-21

Also Published As

Publication number Publication date
JPH0346771A (en) 1991-02-28

Similar Documents

Publication Publication Date Title
JP2962782B2 (en) Non-aqueous electrolyte battery
US5112704A (en) Non-aqueous electrolyte cell
JPH08321312A (en) Nonaqueous electrolyte battery
JPH0750165A (en) Non-aqueous electrolyte battery
US4874680A (en) Lithium secondary battery
JPH08321311A (en) Nonaqueous electrolyte battery
JPH09213348A (en) Non-aqueous electrolyte battery
JP3369947B2 (en) Non-aqueous electrolyte battery
JP2735842B2 (en) Non-aqueous electrolyte secondary battery
JP2760584B2 (en) Non-aqueous electrolyte battery
JP3439083B2 (en) Non-aqueous electrolyte battery
JP3537165B2 (en) Organic electrolyte battery
JP2771612B2 (en) Non-aqueous electrolyte battery
JP2924329B2 (en) Non-aqueous electrolyte secondary battery
JP2950924B2 (en) Non-aqueous electrolyte battery
JP3439079B2 (en) Non-aqueous electrolyte battery
JPH1069915A (en) Non-aqueous electrolyte battery
JP2735891B2 (en) Non-aqueous electrolyte battery
JPH06105612B2 (en) Non-aqueous electrolyte primary battery
JP3378787B2 (en) Non-aqueous electrolyte battery
JPH0495362A (en) Nonaqueous electrolytic battery
JP3831547B2 (en) Non-aqueous electrolyte secondary battery
JP2925665B2 (en) Non-aqueous electrolyte battery
JP2804591B2 (en) Non-aqueous electrolyte battery
JPH1040928A (en) Nonaqueous electrolyte battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090320

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees