WO2003046653A1 - Electrolyte and electrochromic device - Google Patents

Electrolyte and electrochromic device Download PDF

Info

Publication number
WO2003046653A1
WO2003046653A1 PCT/JP2002/012444 JP0212444W WO03046653A1 WO 2003046653 A1 WO2003046653 A1 WO 2003046653A1 JP 0212444 W JP0212444 W JP 0212444W WO 03046653 A1 WO03046653 A1 WO 03046653A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolyte
electrochromic
mass
compound
film
Prior art date
Application number
PCT/JP2002/012444
Other languages
French (fr)
Japanese (ja)
Inventor
Shinji Ohshima
Masaki Minami
Junichiro Tanimoto
Takaya Kubo
Yoshinori Nishikitani
Original Assignee
Nippon Oil Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2001364378A external-priority patent/JP2003161963A/en
Priority claimed from JP2002080693A external-priority patent/JP4295466B2/en
Application filed by Nippon Oil Corporation filed Critical Nippon Oil Corporation
Publication of WO2003046653A1 publication Critical patent/WO2003046653A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/1514Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material
    • G02F1/1523Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising inorganic material
    • G02F1/1525Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising inorganic material characterised by a particular ion transporting layer, e.g. electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/18Cells with non-aqueous electrolyte with solid electrolyte
    • H01M6/181Cells with non-aqueous electrolyte with solid electrolyte with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an electrolyte applicable to various electrochemical devices such as all-solid-state secondary batteries, wet-type solar cells, electric double-layer capacitors, electrolytic capacitors, and electrochromic devices at the electoral port.
  • the present invention relates to an electric-port chromic element useful for various uses such as a display element and light control glass.
  • Solid electrolytes such as a solid polymer electrolyte have been proposed as means for improving these disadvantages.
  • a solid polymer electrolyte using polyvinylidene fluoride has been proposed.
  • Japanese Unexamined Patent Publication (Kokai) No. Hei 8-5507407 discloses a lithium salt solution comprising a polyvinylidene fluoride-hexafluoropropylene copolymer and comprising a medium boiling point solvent in the film.
  • a solid electrolyte for a lithium-ion battery containing the same uniformly.
  • the polyvinylidene fluoride-hexafluoropropylene copolymer may contain a small amount of hydrogen fluoride depending on the production conditions, and this may cause a problem in the durability of the electrochemical element. Sometimes occurred.
  • a method for removing hydrogen fluoride contained in the copolymer polyvinylidene fluoride-hexafluoropropylene copolymer is dissolved in a good solvent such as DMF or acetone, and reprecipitated in a solvent such as water or alcohol.
  • a good solvent such as DMF or acetone
  • the solvent When applied to devices without removing a trace amount of hydrogen fluoride contained in the copolymer, the durability of various secondary batteries, wet solar cells, electric double-layer capacitors, electrolytic capacitors, electrochromic devices, etc. In an electrochemical device that requires, the solvent may be hydrolyzed, and it may be difficult to maintain the initial performance.
  • the present invention has been made in view of such circumstances, and has as its object to manufacture an electrochemical element by a simple method, to have high ionic conductivity, and to improve the durability of the element. To provide electrolytes that can be deployed in many applications.
  • electrochromic devices applied to various dimming devices and display devices.
  • a transparent conductive substrate an electoric chromic layer, an electrolyte, and a transparent conductive substrate (counter electrode) are sequentially arranged.
  • the configuration provided is a typical one.
  • the basic device performance is largely affected by the film physical properties of the electrochromic layer.
  • the elect port chromic layer the reduction coloring type elect port chromic case substances are used, oxidation evening tungsten (wo 3)
  • the film is typically deposited decoloring response of the elements, photochromic click properties , affected by the W 0 3 of film properties for performance such as durability.
  • W_ ⁇ 3 film a problem usually, a sputtering method, that can be produced by a vacuum deposition method such as electron beam vacuum deposition number, changes in membrane material properties by differences in environment and conditions at the time of vacuum deposition occurs There was a point.
  • the wo 3 film has a solid acid catalyzing ability. Therefore, there is a disadvantage that the constituent members of the electrolyte layer are deteriorated depending on the use conditions and the type of the electrolyte layer.
  • the present invention does not depend on the film physical properties of an electrochromic film by adding a specific basic substance to an electrolyte in an electrochromic element having an opening.
  • Ku thereby improving the device performance such as Chakushoiro response and durability can be suppressed element degradation by solid acid catalyzed even when using the W 0 3 layer as elect port electrochromic layer Elec Torokuromikku An element is provided.
  • the present inventors have made intensive studies to solve the conventional problems as described above, and as a result, have completed the present invention.
  • the present invention relates to an electrolyte containing a supporting electrolyte, an organic solvent, and a basic amine compound.
  • the present invention relates to an electrolyte comprising a supporting electrolyte, an organic solvent and a basic amine compound in a polymer matrix.
  • the polymer matrix is preferably a polyvinylidene fluoride-based polymer compound.
  • the basic amine compound is a tertiary amine.
  • the content of the basic amine compound is preferably 1 mass ppm to 1000 mass ppm with respect to the mass of the electrolyte.
  • the organic solvent is a solvent containing a phosphate compound or a phosphate compound.
  • the present invention is an electoric chromic element in which an electrolyte layer is sandwiched between two transparent conductive substrates, wherein at least one of the conductive substrates has an electrochromic layer. Further, the present invention relates to an electrochromic device, wherein the electrolyte contains a basic amine compound.
  • the basic amine compound is preferably a tertiary amine.
  • the electrolyte is preferably an electrolyte containing a supporting electrolyte, an organic solvent, and a basic amine compound.
  • the electrolyte may be a polymer matrix containing a supporting electrolyte, an organic solvent, and a basic amine compound. Preferably, it is quality.
  • the polymer matrix is preferably a polyvinylidene fluoride-based polymer compound.
  • the content of the basic amine compound is 1 mass ⁇ ! Preferably it is ⁇ 10000 mass ppm.
  • the organic solvent is a phosphate ester-based compound or a solvent containing a phosphate ester-based compound.
  • the electrochromic layer is made of tungsten oxide. Is preferred. Hereinafter, the present invention will be described in detail.
  • the present invention relates to an electrolyte containing a supporting electrolyte, an organic solvent, and a basic amine compound.
  • the present invention relates to an electrolyte comprising a supporting electrolyte, an organic solvent, and a basic amine compound in a polymer matrix.
  • a vinylidene fluoride polymer compound is preferably used as the polymer matrix.
  • salts, acids and alkalis usually used in the field of electrochemistry or batteries can be used.
  • the salt is not particularly limited, and examples thereof include inorganic ion salts such as alkali metal salts and alkaline earth metal salts, quaternary ammonium salts, cyclic quaternary ammonium salts, and quaternary phosphonium salts. Salts are preferred.
  • the salts include halogen ions, S CN @ -, C 10 4 one, BF 4 one, CF 3 S0 3 ⁇ (CF 3 S0 2) 2 N- ⁇ (C 2 F 5 S0 2) 2 N -, PF 6 -, AsF 6 - ⁇ CH 3 COO-, CH 3 (C fj H 4) S0 3 -, and (C 2 F 5 S0 2) L i salts with selection Bareru pair Anion from 3 C, Na salt, Alternatively, a K salt may be mentioned, and a Li salt is particularly preferred.
  • L i C10 4, L i S CN, L iBF 4, L i As F ri L i CF 3 S0 3, L iPF have L il, Na l, NaSCN, NaC 10 4, N aBF 4 , NaAs F 6 , KS CN, KC 1 and the like can be exemplified.
  • halogen ions SCN-, C 10 4 -, BF 4 -, CF 3 S0 3 - ⁇ (CF 3 S0 2) 2 N -, (C 2 F 5 S0 2) 2 N- ⁇ PF 6, A s F fi- , CH 3 C 00-, C
  • H 3 (C fi H,) S0 3 and (C 2 F 5 S0 2 ) 3 C— Phosphonium salts having, specifically, (CH 3 ) 4 PBF 4 , (C 2 H 5 ) 4 PBF 4 , (C 3 H 7 ) 4 PBF 4 , (C 4 H 9 ) 4 PBF 4 and the like.
  • Phosphonium salts having, specifically, (CH 3 ) 4 PBF 4 , (C 2 H 5 ) 4 PBF 4 , (C 3 H 7 ) 4 PBF 4 , (C 4 H 9 ) 4 PBF 4 and the like.
  • the acids are not particularly limited, and various inorganic and organic acids such as sulfuric acid, hydrochloric acid, phosphoric acids, sulfonic acids, and carboxylic acids can be used.
  • the alkalis are not particularly limited, and any of sodium hydroxide, potassium hydroxide, lithium hydroxide and the like can be used.
  • the amount of the supporting electrolyte used is arbitrary, but usually, it is preferably 0.01 M or more, preferably 0.05 M or more, more preferably 0.1 M or more in the organic solvent. On the other hand, it is usually 20 M or less, preferably 10 M or less, and more preferably 5 M or less.
  • the electrolyte generally contains 0.01% by mass or more, preferably 0.1% by mass or more, and usually 20% by mass or less, and preferably 10% by mass or less.
  • the organic solvent will be described.
  • any of the solvents generally used for electrochemical cells and batteries can be used.
  • phosphoric ester compounds acetic anhydride, methanol, ethanol, tetrahydrofuran, propylene carbonate, nitromethane, acetonitrile, dimethylformamide, dimethylsulfoxide, hexamethylphosphonamide, ethylene carbonate, dimethoxane, and acetonitrile Butyrolactone, avalerolactone, sulfolane, dimethyloxetane, propionitrile, glulononitrile, adiponitrile, methoxyacetonitrile, dimethylacetamide, methylpyrrolidinone, dimethylsulfoxide, dioxolane, sulpholane, polyethylene Glycols and the like can be used.
  • phosphate ester compounds propylene carbonate, ethylene carbonate, Dimethylsulfoxide, dimethoxene, acetonitrile, abutyrolactone, Sulfolane, dioxolan, dimethylformamide, dimethoxetane, tetrahydrofuran, adiponitrile, methoxyacetonitrile, dimethylacetamide, methylpyrrolidinone, dimethylsulfoxide, dioxolan, sulfolane, trimethylphosphate, polyethylene glycol and the like are preferred.
  • the solvent one kind may be used alone, or two or more kinds may be used in combination.
  • a phosphoric ester compound or a solvent containing the phosphoric ester compound can also be used as a suitable compound.
  • the phosphate compound include trimethyl phosphate triethyl phosphate, tripropyl phosphate, ethyl dimethyl phosphate, triptyl phosphate, tripentyl phosphate, trihexyl phosphate, triheptyl phosphate, and phosphorus Examples thereof include trioctyl acid, trinonyl phosphate, tridecyl phosphate, tris (trifluoromethyl) phosphate, tris (pentafluoroethyl) phosphate, and triphenyl phosphate.
  • triethyl ester and trimethyl phosphate are preferable. preferable. Also, two or more of these can be used.
  • the amount of the solvent used is not particularly limited, but is usually 20% by mass or more, preferably 30% by mass or more in the electrolyte, and the upper limit is usually 98% by mass, preferably 95% by mass. %, More preferably 90% by mass or less.
  • the basic amine compound used in the present invention functions as a proton acceptor in the electrolyte, and usually has a pKa of the conjugate acid in an aqueous solution at 25 ° C and an aqueous solution of 4 to 12, preferably 5 to 11. Those in the range can be mentioned.
  • Examples of such basic amine compounds include primary amines (RNH 2 ), secondary amines (: R 2 NH), tertiary amines (R 3 N) and derivatives thereof. it can.
  • polyamines such as diamine, triamine, and tetraamine can also be used.
  • R represents a hydrocarbon group having 1 to 20 carbon atoms, preferably 1 to 10 carbon atoms, and may be the same or different.
  • Such a hydrocarbon group may be linear, branched, cyclic, saturated, or unsaturated, and examples thereof include an alkyl group, a cycloalkyl group, an aryl group, an arylalkyl group, and an alkylaryl group. , Specifically, methyl, ethyl, propyl, butyl Group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, phenyl group, tolyl group, penzyl group, naphthyl group, etc. .
  • Specific compounds include, for example, triethylamine, trimethylamine, tripropylamine, triptylamine, trihexylamine, triphenylamine, getylamine, dimethylamine, dipropylamine, dibutylamine, dihexylamine, tetramethylethylenediamine, tetramethylbenzidine.
  • N N 'over diphenyl benzidine, Kishiruamin Jechiruamin, Jifue two Ruamin, Mechiruami down, Puropiruamin, butylamine, to di, Fueniruamin, 2 Nafuchiruamin, pyridine, 4, 4 5 - Bibirijiru, 2, 2, one Bibirijiru, 2 : 6-Lutidine, 3,4-lutidine, 4-dimethylaminopyridine, quinoline, 2-methylquinoline, isoquinoline, quinazoline, 1,3,5-triazine, 1,2,4-triazolate , Imidazole, aniline, N-methylaniline, N, N-dimethylaniline, 2,3-dimethylaniline, 2,6-dimethylaniline, pyrrole, carbazole, N-methylcarbazole, piperidine, 1-methylbiperidine , Piperazine, 1-methylbiperazine, 1,4-dimethylbiper
  • tertiary amines such as triethylamine, triphenylamine, pyridine, 4,4-bipyridyl, 2,6-lutidine and isoquinoline.
  • the amount of the basic amine compound is not particularly limited and may be appropriately selected, but is usually preferably 1 ppm by mass or more, more preferably 10 mass ppm or more, and particularly preferably, based on the total mass of the electrolyte. Is 50 mass ppm. On the other hand, it is preferably at most 10,000 mass ppm, more preferably at most 5,000 mass ppm, particularly preferably at most 1,000 mass ppm.
  • the electrolyte of the present invention ion conductivity, usually at room temperature 1 X 1 0- 7 S / cm or more, preferably 1 X 1 0 - 6 S / cm or more, more preferably 1 X 1 0 - 5 S / cm
  • Ionic conductivity can be determined by a general method such as the complex impedance method.
  • the polyvinylidene fluoride polymer compound preferably used as the polymer matrix in the present invention will be described.
  • Examples of the polyvinylidene fluoride-based high molecular compound used as the polymer matrix in the present invention include a homopolymer of vinylidene fluoride or a copolymer of vinylidene fluoride with another polymerizable monomer, preferably a radical polymerizable monomer. Copolymers are exemplified. Examples of other polymerizable monomers to be copolymerized with vinylidene fluoride (hereinafter, referred to as copolymerizable monomers) include hexafluoropropylene, tetrafluoroethylene, trifluoroethylene, ethylene, propylene, acrylonitrile. , Vinylidene chloride, methyl acrylate, ethyl acrylate, methyl methacrylate, styrene and the like.
  • copolymerizable monomers can be used in an amount of 1 to 100 parts by weight, preferably 1 to 50 parts by weight, based on 100 parts by weight of vinylidene fluoride. Also, two or more of these copolymerizable monomers can be added. For example, copolymerization may be carried out using a combination of vinylidene fluoride + hexafluoropropylene + tetrafluoroethylene, vinylidene fluoride + tetrafluoroethylene + ethylene, vinylidene fluoride + tetrafluoroethylene + propylene, and the like.
  • Hexafluoropropylene is preferably used as the copolymerizable monomer.
  • a vinylidene fluoride-hexafluoropropylene copolymer obtained by copolymerizing 1 to 25% by mass of hexafluoropropylene with vinylidene fluoride is preferably used as a solid electrolyte having a high molecular matrix.
  • two or more kinds of vinylidene fluoride-hexafluoropropylene copolymers having different copolymerization ratios may be mixed and used.
  • these vinylidene fluoride-hexafluoropropylene copolymers are used during polymerization. Contains hydrogen fluoride due to decomposition of the monomer. Most of the hydrogen fluoride is removed by water washing, but remains in a trace amount, and is usually contained in an amount of about 10 to 100 ppm by mass, more typically on the order of tens of ppm.
  • one kind of a polymer compound selected from a polyacrylate-based polymer compound, a polyacrylonitrile-based polymer compound and a polyether-based polymer compound is used as the polymer matrix in the polyvinylidene fluoride-based polymer compound. It is also possible to use a mixture of two or more kinds.
  • the other polymer compound mixed with the polyvinylidene fluoride polymer compound is preferably 50% by mass or less.
  • the number average molecular weight of the polyvinylidene fluoride-based polymer compound used in the present invention is usually 10, 00 0 to 2, 0 0 0, 0 0 0, preferably 10 0, 0 0 0 Those having a range of 11, 0000, 0000 can be suitably used.
  • the above-mentioned various organic solvents can be combined as the organic solvent.
  • the phosphate ester compound or the phosphate ester compound A solvent containing is preferred.
  • the amount of the solvent used is not particularly limited, but is usually 20% by mass or more, preferably 30% by mass or more, and 80% by mass or less, preferably 70% by mass in the electrolyte. It is desirable to include the following amount.
  • Such a solid electrolyte can be easily obtained by forming a polyvinylidene fluoride polymer compound, a supporting electrolyte, an organic solvent, and a basic amine compound into a desired shape, for example, a sheet-to-film shape by a known method. I can do it.
  • the method in this case is not particularly limited, but a method obtained in a film state by a casting method can be preferably mentioned.
  • the film thickness can be adjusted by a coating apparatus, and it is usually preferable that the film thickness be 25 / m or more.
  • the upper limit of the film thickness is not particularly limited and may be arbitrarily selected. For example, when the film is manufactured by a casting method, the upper limit is usually about 500 m. The amount of the solvent in the solid electrolyte can be appropriately adjusted by selecting the drying conditions.
  • the shape and thickness of the solid electrolyte layer are appropriately selected depending on the application depending on the type of the device and are not particularly limited, but the thickness is usually lm or more. Preferably, it is particularly preferably at least 10 ⁇ m. On the other hand, it is preferably at most 3 mm, particularly preferably at most 1 mm.
  • the solid electrolyte of the present invention can be a stiff film, in which case its tensile modulus at 25 ° C. is preferably 5 ⁇ 10 4 N / m 2 or more.
  • the 1 X 1 0 5 N / m 2 or more, and most preferably it is desirable to have a characteristic is 5 X 1 0 5 N / m 2 or more.
  • the tensile modulus, tensile test machine generally used 2 cm X 5 by strip-shaped sample of cm is the value of the case having conducted the measurement c
  • the present invention is, two transparent conductive substrates An electrochromic element in which an electrolyte layer is sandwiched, wherein at least one of the conductive substrates has an electrochromic layer, and the electrolyte contains a basic amine compound.
  • the present invention relates to an electrochromic element.
  • the transparent conductive substrate means a transparent substrate that functions as an electrode.
  • the conductive substrate according to the present invention includes a substrate in which the substrate itself is made of a conductive material, and a laminate in which an electrode layer is laminated on one or both sides of a substrate having no conductivity. Regardless of whether or not it has conductivity, the substrate itself preferably has a smooth surface at room temperature, but that surface may be flat or curved, It may be deformed.
  • an electrochromic element in which both conductive substrates are transparent is suitable for a display element or light control glass.
  • the transparent conductive substrate is usually manufactured by laminating a transparent electrode layer on a transparent substrate.
  • transparent means having a light transmittance of 10 to 100% in the visible light region, and there may be a partially opaque portion.
  • the material of the transparent substrate is not particularly limited, and may be, for example, colorless or colored glass, reinforced glass, or the like, and may be colorless or colored transparent resin.
  • Specific examples of the transparent resin referred to here include polyethylene terephthalate, polyethylene naphtholate, polyamide, polysulfone, polyethersulfone, polyether-teretone, ketone, bolifenylene sulfide, polycarbonate, polyimide, Polymethyl methacrylate, polystyrene and the like.
  • the transparent electrode layer is not particularly limited as long as the object of the present invention is achieved, and examples thereof include a metal thin film such as gold, silver, chromium, copper, and tungsten, and a conductive film made of a metal oxide.
  • a metal thin film such as gold, silver, chromium, copper, and tungsten
  • a conductive film made of a metal oxide As the metal oxide, such as tin oxide, zinc oxide, and vanadium oxide, Indium Tin Oxide (IT 0 ( I n 2 0 3: S n)) doped with minor components thereto, Fluorine doped Tin Oxide (FTO ( Sn0 2: F)), Aluminum doped Zinc Oxide (AZ 0 (ZnO: a 1)) or the like is used as a preferable example.
  • the thickness of the electrode layer is usually 100 to 5000 ⁇ m, preferably 500 to 3000 ⁇ m.
  • the surface resistance (resistivity) is appropriately selected depending on the use of the substrate of the present invention
  • the method for forming the transparent electrode layer is not particularly limited, and a known method is appropriately selected and used depending on the type of the above-described metal or metal oxide used as the conductive layer. Usually, a vacuum evaporation method, an ion plating method, or the like is used. Method, CVD or sputter ring method, sol-gel method, etc. are used. In either case, it is desirable to form the substrate at a substrate temperature of 20 to 700 ° C.
  • the present invention is characterized in that at least one of the conductive substrates has an electrochromic layer.
  • the electrochromic layer is formed on a conductive substrate on a conductive substrate.
  • the material forming the electoric chromic layer may be any of an oxidative coloring type electrochromic compound and a reducing coloring type electrochromic compound.
  • Examples thereof include an inorganic compound of a metal oxide and various organic electrochromic compounds, and are not particularly limited.
  • an inorganic electochromic compound is preferable.
  • tungsten oxide (wo 3) vanadium oxide, molybdenum oxide, acid iridium, nickel oxide, titanium oxide, chromium oxide, manganese oxide, transition metal oxides and the ratio thereof of any such oxide cobalt
  • the oxide film included in the above is not particularly limited.
  • an inorganic electochromic compound is preferable.
  • tungsten oxide (wo 3) vanadium oxide, molybdenum oxide, acid iridium, nickel oxide, titanium oxide, chromium oxide, manganese oxide, transition metal oxides and the ratio thereof of any such oxide cobalt
  • a wet method such as a sol-gel method or an electrochemical method
  • a vacuum film forming method such as an evaporation method, a sputtering method, an ion plating method, or a pulse laser deposition method
  • a wet method such as a sol-gel method or an electrochemical method
  • a vacuum film forming method such as an evaporation method, a sputtering method, an ion plating method, or a pulse laser deposition method
  • the thickness of the chromic layer at the opening is not particularly limited, but is usually about 0.1 to 2 / m, preferably about 0.4 to 0.8 zm.
  • the electrochromic device of the present invention has an electrochromic layer on at least one side of the conductive substrate.
  • the transparent conductive substrate facing the conductive substrate having the electrochromic layer includes (a) In addition to the configuration using a conductive substrate, (b) a configuration using a conductive substrate having another electrification port chromic layer, and (c) a member in which conductive fine particles are bound on a conductive surface of the conductive substrate with a binder. May be arranged so that the light transmittance (or light reflectivity) required for the entire counter electrode is not impaired.
  • the form (c) is specifically described in, for example, Japanese Patent Application Laid-Open Nos. Hei 6-28190 and Hei 10-239719.
  • the electrochromic layer is disposed on both the conductive substrates, if one of the electrochromic layers is an oxidizing electrochromic layer, the other is a reducing electrochromic layer, and the other is an electrochromic layer.
  • the other is a reducing electrochromic layer at the opening, it is preferable to use an oxidizing electrochromic layer at the other side.
  • the electoric chromic layer of the other is not particularly limited, but may be nickel oxide, chromium oxide, or the like.
  • Preferred examples of the electrochromic device of the present invention include manganese oxide, cobalt oxide, iridium oxide, and Prussian blue.
  • Conductive fine particles with a binder It is preferable that a bound member is arranged.
  • Such conductive fine particles usually 10- 8 S ⁇ cm one 1 or more, preferably 10- 5 S - cm- 1 or more, more preferably Ru substance der showing a 10- 2 S ⁇ cm- 1 or more conductive It is desirable.
  • These conductive fine particles usually have an electric capacity of 1 farad / g or more, preferably 5 farads / g or more, more preferably 10 farads / g or more, or 1 clone / g or more. Preferably, it can store a charge amount of preferably 5 coulombs / g or more, more preferably 10 clones / g or more.c
  • a material constituting such fine particles for example, porous carbon
  • the fin evening one Kareshon material conductive fine particles having a 1 Fara' de / g or more electric capacity of the present invention that the conductive polymer compound, or mixtures thereof, if example embodiment, the surface area is typically, 10 m 2 / g or more, preferably 50 to 500 Om 2 / g, particularly preferably 300 to 4000 m 2 / g. Limit Those are in is not the name.
  • Such activated carbon can be obtained, for example, by a method of carbonization activation of palm, petroleum pitch,
  • Examples of the conductive fine particles capable of storing an electric charge of 1 clone / g or more according to the present invention include an in-situ radiation material, a conductive polymer compound, and the like. Materials that can be stored are preferred.
  • disulfides such as a known T i S 2, Mo S 2 ; C o 0 2, N i 0 dioxide such as 2; W 18 0 49, W 20 O 58 And the like.
  • examples of the conductive polymer compound include a conductive polymer compound containing polyalinine, polythiophene, polypropylene, polyphenylenevinylene, polyacene, or the like as a main component and obtained by doping or the like.
  • the particle size of the fine particles is not particularly limited as long as the object of the present invention is not impaired, but is usually 500 m to 0.1 m, preferably 200 m to 0.3 m, and more preferably 50 m.
  • An average particle size of Ml in the range of m to 0.5 m is preferred.
  • the electrolyte layer in the electorifice chromic element has an ion conductivity of 1 ⁇ 10 17 S / cm or more at room temperature, and plays a role of coloring, decoloring, and discoloring the electoral chromic layer.
  • Such an electrolyte layer can be formed using any of a liquid ion-conductive substance, a gelled liquid ion-conductive substance, and a solid ion-conductive substance. In particular, a solid ion-conductive substance is used. It is desirable.
  • Liquid ion conductive material Liquid ion conductive material
  • the liquid ionic conductive substance is prepared by dissolving a supporting electrolyte such as salts, acids and alkalis in a solvent.
  • any of the solvents generally used in electrochemical cells and batteries can be used, and specific examples include the organic solvents described above.
  • the use amount of the solvent is not particularly limited, but usually, the solvent accounts for at least 20% by mass, preferably at least 50% by mass, more preferably at least 70% by mass of the ion-conductive layer.
  • 9 8 wt%, preferably from 9 to 5% by weight, still as preferably c supporting electrolyte is 9 0 wt% or less, wherein the salts in the field of the field or the battery electrochemical Ru is typically used, acids, alkalis Can be used.
  • the supporting electrolyte may or may not be used, and when used, the amount of use is arbitrary.
  • the supporting electrolyte is usually 20 M or less in the ion conductive layer, preferably. Is preferably at most 10 M, more preferably at most 5 M, at least 0.1 M, preferably at least 0.05 M, even more preferably at least 0.1 M.
  • the gelled liquid-based ion-conductive substance means a substance obtained by thickening or gelling the above-mentioned liquid-based ion-conductive substance. This substance is obtained by adding a polymer or a gelling agent to the liquid-based ion-conductive substance. Is prepared.
  • the polymer used for this is not particularly limited, and examples thereof include polyacrylonitrile, carboxymethylcellulose, polyvinyl chloride, polyethylene oxide, Polyurethane, polyacrylate, polymethacrylate, polyamide, polyacrylamide, cellulose, polyester, polypropylene oxide, nafion and the like can be used.
  • the gelling agent is also not particularly limited, and oxyethylene methacrylate, oxyshethylene acrylate, urethane acrylate, acrylamide, agar, and the like can be used.
  • Solid ion conductive material
  • a solid ion-conductive substance refers to a substance that is solid at room temperature and has ion conductivity, including polyethylene oxide, a polymer of oxyethylene (meth) acrylate, naphion, polystyrene sulfonic acid, and polystyrene.
  • ether poly Ma one, full Uz Motokei polymers such Porifudzu fluoride polymer, Li 3 n, n a one ⁇ one A1 2 0 3, S n ( HP 0 4) the use of 2 ⁇ H 2 ⁇ like Can be.
  • a supporting electrolyte is dispersed in a polymer obtained by polymerizing an oxyalkylene methacrylate compound, an oxyalkylene acrylate 1, or a urea acrylate compound.
  • the solid polymer electrolyte molecular solid electrolyte can be used, the precursor ⁇ Les evening Nakurireto represented by the following general formula (1), the organic solvent, and a composition containing the supporting electrolyte And a solid polymer electrolyte obtained by solidifying this precursor.
  • R 1 and R 2 are the same or different groups and represent a group selected from the following general formulas (2) to (4).
  • R 3 and R 4 are the same or different groups, and represent a divalent hydrocarbon residue having 1 to 20, preferably 2 to 12 carbon atoms.
  • Y is a polyether unit (_ ⁇ —), a polyester unit (one C00—), polycarbonate Unit (-OCOO-) or a mixture of two or more of these units.
  • M represents an integer in the range of 1 to 100, preferably 1 to 50, and more preferably 1 to 20.
  • R 5 to R 7 are the same or different groups and represent a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.
  • R 8 represents a divalent organic residue having 1 to 20 carbon atoms, preferably 2 to 8 carbon atoms.
  • 19 represents a trivalent organic residue having 1 to 20 carbon atoms, preferably 2 to 8 carbon atoms.
  • R 1. Represents a tetravalent organic residue having 1 to 20 carbon atoms, preferably 2 to 8 carbon atoms.
  • Examples of the divalent hydrocarbon residue represented by R 3 and R 4 in the general formula (1) include a linear divalent hydrocarbon group, an aromatic hydrocarbon group, and an alicyclic hydrocarbon group.
  • the molecular weight of the urethane acrylate represented by the general formula (1) is not particularly limited, but is preferably 2,500 to 30,000, more preferably 3,000 to 20,000.
  • the amount of the organic solvent to be added is usually 100 to 1200 parts by mass, preferably 200 to 900 parts by mass, based on 100 parts by mass of the urethane acrylate. If the added amount of the organic solvent is too small, the ionic conductivity is not sufficient, and if the added amount of the organic solvent is too large, the mechanical strength may be reduced.
  • the supporting electrolyte is appropriately selected depending on the use, etc.
  • the amount of addition is 0.1 to organic solvent. It is 30% by mass, preferably 1 to 20% by mass.
  • Such optional components include, for example, a crosslinking agent, a polymerization initiator (light or heat), an ultraviolet absorber, and the like.
  • a composition comprising a monofunctional acryloyl-modified polyalkylene oxide represented by the following general formula (5), a polyfunctional acryloyl-modified polyalkylene oxide, the organic solvent, and the supporting electrolyte And a solid polymer electrolyte obtained by solidifying the precursor.
  • I 11 , R 12 , R 13 and R 14 are each independently a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, which may be the same or different, and R 11 is a hydrogen atom, a methyl group; R 12 is a hydrogen atom, a methyl group, R 13 is a hydrogen atom, a methyl group, and R 14 is a hydrogen atom, a methyl group, or an ethyl group.
  • n represents an integer of 1 or more, preferably 1 to 100, more preferably 2 to 50, and further preferably 2 to 30.
  • the oxyalkylene units may have different so-called copolymerized oxyalkylene units.
  • polyfunctional acryloyl-modified polyalkylene oxide used in the present invention include a compound represented by the general formula (6), a so-called bifunctional acryloyl-modified polyalkylene oxide, and a compound represented by the general formula (7). And the so-called polyfunctional acryloyl-modified polyalkylene oxide having three or more functional groups.
  • R 15 , R 16 , R 17 and R 18 each independently represent a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, and p represents an integer of 1 or more.
  • R ig , R 2 ° and R 21 each independently represent a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, q represents an integer of 1 or more, and r represents 2 to Is an integer of 4, and L represents an r-valent linking group.
  • the linking group L is usually a divalent, trivalent or tetravalent hydrocarbon group having 1 to 30, preferably 1 to 20 carbon atoms.
  • a bifunctional acryloyl-modified polyalkylene oxide represented by the general formula (6) and a trifunctional or higher polyfunctional acryloyl-modified polyalkylene oxide represented by the general formula (7) may be used in combination.
  • the mass ratio is usually 0.1 to 99.9-99.9 / 0.1, preferably 1/1.
  • a range of 99 to 99/1, more preferably 20/80 to 80/20 is desirable.
  • the mass ratio of the compound represented by the general formula (5) to the polyfunctional acryloyl-modified polyalkylene oxide used in the present invention is usually 1 / ⁇ .001 to; L / l, preferably 1 / 0.05 to 1 /. It is in the range of 0.5.
  • the compounding ratio of the organic solvent is usually in the range of 50 to 800% by mass, preferably 100 to 500% by mass with respect to the total mass of the compound represented by the general formula (5) and the polyfunctional acryloyl-modified polyalkylene oxide. Is desirable.
  • the compounding ratio of the supporting electrolyte is usually 1 to 30% by mass, preferably 3 to 20% by mass based on the total mass of the compound represented by the general formula (5), the polyfunctional acryloyl-modified polyalkylene oxide and the organic solvent. % Range.
  • ком ⁇ онент can be added as needed, as long as the object of the present invention is not impaired.
  • optional components include, but are not particularly limited to, a photopolymerization initiator for photopolymerization, a thermal polymerization initiator for thermal polymerization, and an ultraviolet absorber.
  • the amount of the polymerization initiator to be used is usually 0.005 to 0.005 mass of the compound represented by the general formula (5) and the polyfunctional acryloyl-modified polyalkylene oxide. It is in the range of 5% by weight, preferably 0.01 to 3% by weight.
  • the polymer solid electrolyte As a third example of the polymer solid electrolyte, a composition containing the organic solvent and the supporting electrolyte in a polymer matrix composed of a polyvinylidene fluoride-based polymer compound is used as a precursor. And the solid polymer electrolyte obtained by solidifying the polymer.
  • the thickness of the ion conductive layer is not particularly limited, but is usually 20 / ⁇ ! ⁇ ⁇ 1 mm, preferably in the range of 50-500 ⁇ m.
  • the present invention is characterized in that the ion conductive layer contains a basic amine compound.
  • the basic amine compound the above-described basic amine compounds can be used.
  • the amount of the basic amine compound is 1 mass ⁇ ⁇ ⁇ ! 1100000 mass ppm. It is preferably from 10 to 500 mass ppm, particularly preferably from 50 to: L000 mass ppm.
  • FIG. 1 As an example of the electrochromic device of the present invention, an example shown in FIG. 1 can be given. This device has a stripe member 1 1 in which a transparent conductive film 32 on a transparent substrate 31 and conductive fine particles formed on the transparent conductive film 32 are bound with a binder.
  • a color electrode formed by forming a transparent color conductive film 36 on a transparent substrate 37 and a reduction color (or oxidation color) electoral port chromic film 35 is formed. Is formed. The gap between the two is filled with an electrolyte 34, the periphery is sealed with a sealing material 38, and the transparent conductive film (32, 36) is connected to a power supply 39 via a lead wire via a bus 40. Have been.
  • the method of making the electrochromic color-forming electrode on which the electrochromic film is disposed and the counter electrode facing each other and the method of arranging the busper are not particularly limited. Various methods are possible depending on the form.
  • the electrolyte of the present invention can be used as an electrolyte for electrochemical devices such as all-solid-state secondary batteries, wet solar cells, electric double-layer capacitors, electrolytic capacitors, and electrochromic devices.
  • electrochemical devices such as all-solid-state secondary batteries, wet solar cells, electric double-layer capacitors, electrolytic capacitors, and electrochromic devices.
  • the improved adhesion to the electrodes and the high ionic conductivity, mechanical strength, and stability over time make it possible to easily manufacture higher-performance electrochemical devices.
  • It can be suitably used as an electrolyte for secondary batteries, high-energy batteries, and the like. Even when used in electrochemical devices, it has features such as no problems such as liquid leakage and excellent flame retardancy and durability.
  • the electroporous chromic element of the present invention can significantly improve the durability of the electrochromic element by including a predetermined amount of a basic amine compound in the electrolyte layer. It was possible to suppress a decrease in transparency of the chromic element during use over time.
  • the electoric chromic element of the present invention since it is not affected by the film physical properties of the electoral chromic layer, it is possible to suppress a change in the color responsiveness in the heat resistance test. Therefore, the electoric chromic element of the present invention is required to have durability. It can be used for various purposes such as windows and partitions of buildings and vehicles, various dimming devices, and furthermore, for example, character display devices, anti-glare mirrors, and decorative devices.
  • Example 1 Example 1
  • Poly (hexa fluoroalkyl propylene to vinylidene fluoride I) (trade name: Atofuina 'Japan Ltd. K YNAR 275 1) 2 g, pyridine 50 mg and L i BF 4 0. 3 g: the, Toryechiru phosphate 2 g and Aseton 6 g) to obtain a uniform solution, and after cooling to room temperature, apply it on a glass substrate by a dough-blade method, then heat and dry to evaporate the acetone in the solution, and make it 200 ⁇ m thick. A film-like solid electrolyte was obtained.
  • the solid electrolyte is easily peeled off from the glass substrate, it can be handled, the tensile elastic modulus was 3 X 10 ⁇ ⁇ / ⁇ 2 .
  • the solid electrolyte was measured ionic conductivity at complex Inpidansu method to obtain a good value of 1 X 10- 4 SZ cm.
  • LiTFS I lithium trifluoromethanesulfonimid
  • This solid electrolyte was easily separated from the glass substrate and could be handled, and the tensile elastic modulus was 4 ⁇ 10 6 N / m 2 .
  • solid electrolyte was obtained by complex Inpi one dance method Ion conductivity measured Toko filtration, good numerical values of 2 X 10- 4 SZcm.
  • Table 1 also shows the results of the same durability test as in Example 1 for this film-shaped solid electrolyte. It is clear that this solid electrolyte is also excellent in durability as in Example 1.
  • Example 3
  • Poly (vinylidene fluoride-hexafluoropropylene) (trade name: Atofina-Japan, mixture of KYNAR2751 and 2801, mixing ratio 1: 1) 2 g, isoquinoline 5 Omg and LiTFS I 0.5 g, phosphorus Heat and dissolve in 8 g of Triethyl acid to obtain a uniform solution, cool to room temperature, apply it on a glass substrate by the doctor blade method, and then heat and dry to evaporate the Triethyl phosphate in the solution. A film-like solid electrolyte having a uniform thickness was obtained.
  • This solid electrolyte was easily peeled off from the glass substrate and could be handled, and the tensile elastic modulus was 3 ⁇ 10 fiN / m 2 .
  • Table 1 also shows the results of the same durability test as in Example 1 for this film-shaped solid electrolyte. It is clear that this solid electrolyte is also excellent in durability as in Example 1.
  • Example 4
  • the solid electrolyte was measured Ion conductivity at complex impedance method, to obtain a good value of 1 X 10- 4 SZ cm.
  • Table 1 also shows the results of the same durability test as in Example 1 for this film-shaped solid electrolyte. It is clear that this solid electrolyte is also excellent in durability as in Example 1.
  • Example 5
  • Table 1 also shows the results of the same durability test as in Example 1 for this film-shaped solid electrolyte. It is clear that this solid electrolyte is also excellent in durability as in Example 1.
  • Example 6
  • the solid electrolyte was measured Ion conductivity at complex impedance method, to obtain a good value of 1 X 10- 4 S / cm.
  • Table 1 also shows the results of the same durability test as in Example 1 for this film-shaped solid electrolyte. It is clear that this solid electrolyte is also excellent in durability as in Example 1.
  • Poly (vinylidene fluoride hexafluoropropylene) (trade name: Atofina-Japan KYNAR275 1) 2 g, isoquinoline 50 mg and LiBF 4 0.3 g was heated and dissolved in a mixed solution of triethyl phosphate 8 g and propylene carbonate 3 g to obtain a uniform solution.After cooling to room temperature, the solution was coated on a glass substrate by the doctor blade method, and then heated and dried. Then, 50% by mass of the mixed solvent was evaporated to obtain a uniform solid electrolyte in the form of a film having a thickness of 200 / m. This solid electrolyte was easily peeled off from the glass substrate and could be handled. The tensile modulus was 3 ⁇ 10 6 N / m 2 , confirming that the solid electrolyte was self-supporting.
  • the solid electrolyte was measured Ion conductivity at complex impedance method, 3 X 1 0 - obtain a good value of 4 S / cm.
  • Table 1 also shows the results of the same durability test as in Example 1 for this film-shaped solid electrolyte. It is clear that this solid electrolyte is also excellent in durability as in Example 1. Comparative Example 1
  • the solid electrolyte was measured Ion conductivity at complex impedance method, to obtain a good value of 1 X 1 0- 4 S / cm .
  • Table 1 also shows the results of the same durability test as in Example 1 for this film-shaped solid electrolyte. As is clear from Table 1, the amount of the hydrolyzate of the solvent contained in the film-shaped solid electrolyte of Comparative Example 1 was large, and the durability was lower than that of Example 1. Comparative Example 2
  • Table 1 also shows the results of the same durability test as in Example 1 for this film-shaped solid electrolyte. As is clear from Table 1, the amount of the hydrolyzate of the solvent contained in the film-form solid electrolyte of Comparative Example 1 was large, and the durability was inferior to that of Example 1. table 1
  • Tungsten oxide was evaporated to a thickness of 500 nm on 1TO glass of 10 cm ⁇ 100111 to produce an elect-opening chromic electrode.
  • Activated carbon powder product name “YP17”, manufactured by Kuraray Co., Ltd., surface area: 1500 m 2 / g) 8 g
  • Graphite product name “USSP”, manufactured by Nippon Graphite Trading Co., Ltd.
  • Recon varnish trade name “7931”, manufactured by Okitsumo Co., Ltd. 2 25 g of butyl cellosolve was added to 6.7 g and mixed to prepare an activated carbon paste.
  • the activated carbon paste was printed as a stripe member on a lO cmx l O cm ITO glass using a screen equidistantly arranged so that the stripe member of 0 ⁇ m was 20% of the total area. Then, it was heat-cured at 180 ° C. for 90 minutes to prepare a counter electrode.
  • the chromic electrode of the electoral opening was opposed to the counter electrode substrate at an interval of 0.3 mm, and the periphery was sealed with epoxy resin.
  • the electrolyte was vacuum injected into the inside, and the injection port was sealed with epoxy resin.
  • a lead wire was connected to each of the electrochromic electrode and the counter electrode substrate to prepare a device. The performance evaluation of the obtained device was evaluated based on the following test.
  • Tv luminous transmittance
  • a luminosity transmittance meter MODEL 304 manufactured by Asahi Spectroscopy.
  • a current of 20 mA regulated voltage: 1.5 V
  • Tv reached 20% the mode was switched to the decoloring mode, and a current of 20 mA (regulated voltage: 1.0 V) was applied so that the chromic electrode on the electoral port was positive and the opposite electrode was negative.
  • the electrochromic device was left at 80 ° C. for 1,000 hours, but the transparency of the device was not changed.
  • the color erasing response was not changed at all.
  • Tungsten oxide was vapor-deposited on a 10 cm ⁇ 10 cm ITO glass to a thickness of 500 nm to fabricate an electoc-chromic electrode.
  • Activated carbon powder (trade name “YP 17”, manufactured by Kuraray Co., Ltd., surface area 150 OmVg) 8 g
  • Graphite (trade name “US SP”, manufactured by Nippon Graphite Shoji Co., Ltd.) 4 g
  • Activated carbon paste was prepared by adding and mixing 25 g of butylcellosolve to 26.7 g. Then, a stripe member with a stripe width of 500 m and a height of 100 m comprised 20% of the total area. Using a screen placed at equal intervals so as to obtain the above, the above-mentioned activated carbon paste was printed as a stripe member on a 10 cm x 10 cm IT0 glass, and then heat-hardened at 180 ° C for 90 minutes. A counter electrode was produced.
  • O main butoxy polyethylene glycol monomethyl drink evening acrylate (Shin-Nakamura Chemical Co. Stock Company M 40 GN [Number of oxyethylene units 4]) 1.0 g, Polyethylene glycol dimethyl acrylate (Shin-Nakamura Chemical Co., Ltd.
  • the electrochromic coloring electrode was opposed to the counter electrode substrate at a distance of 0.3 mm, and the periphery was sealed with an epoxy resin.
  • the electrolyte was vacuum-injected into the inside, the inlet was sealed with epoxy resin, and the electrolyte was gelled by irradiating with a fluorescent lamp overnight.
  • a lead wire was connected to each of the electorifice chromic electrode and that of the counter electrode substrate, thereby producing a device. The performance of the obtained device was evaluated based on the following test.
  • Tv luminous transmittance
  • Oxidized tungsten was vapor-deposited to a thickness of 500 nm on I O cmx I O cm I T0 glass to produce an electrochromic coloring electrode.
  • an iridium oxide was deposited to a thickness of 5000 A to produce a counter electrode substrate.
  • the electrochromic coloring electrode and the counter electrode substrate were opposed to each other at a distance of 0.3 mm, and the periphery was sealed with an epoxy resin.
  • the electrolyte was vacuum-injected into the inside, the inlet was sealed with epoxy resin, and the electrolyte was gelled by irradiating with a fluorescent lamp overnight.
  • a lead wire was connected to each of the electrochromic electrode and the counter electrode substrate to prepare a device. The performance of the obtained device was evaluated based on the following test.
  • Tv luminous transmittance
  • Oxidized tungsten was vapor-deposited on 10 cm ⁇ 100111 1TO glass to a thickness of 500 nm to produce an elect-port chromic color electrode.
  • Activated carbon powder (trade name “YP 17”, manufactured by Kuraray Co., Ltd., surface area 150 OmVg) 8 g
  • graphite (trade name “USSP”, manufactured by Nippon Graphite Shoji Co., Ltd.) 4 g
  • Activated carbon paste was prepared by adding and mixing 25 g of butyl cellosolve to 26.7 g, and then the stripe member with a stripe width of 500 im and a height of 100 m was made up to 20% of the total area.
  • the above-mentioned activated carbon paste was printed as a stripe member on I O cm x I O cm ITO glass, and then heat-hardened at 180 ° C for 90 minutes, and the counter electrode was Produced.
  • the electrochromic coloring electrode and the counter electrode substrate were opposed to each other at a distance of 0.3 mm, and the periphery was sealed with an epoxy resin.
  • the electrolyte was vacuum injected into the inside, and the injection port was sealed with epoxy resin.
  • a lead wire was connected to each of the electorifice chromic electrode and the counter electrode substrate to prepare a device. The performance evaluation of the obtained device was evaluated based on the following test.
  • Tv luminous transmittance
  • FIG. 1 is a cross-sectional view showing one embodiment of the electrochromic device of the present invention.
  • FIG. 2 is an example of a front view of a counter electrode.
  • FIG. 3 is an example of a front view of the counter electrode.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Dispersion Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Conductive Materials (AREA)

Abstract

An electrolyte enabling manufacture of an electrochemical device by a simple method, exhibiting a high ion conductivity, free from troubles such as liquid leakage, excellent in fire retardance, transparency, and applicable to various uses, and containing a support electrolyte, an organic solvent, and a basic amine compound. Further there is provided an electrochromic device having two transparent conductive substrates between which an electrolyte layer is interposed, wherein an electrochromic layer is provided to at least one of two transparent conductive substrates, and the electrolyte layer contains a basic amine compound. Therefore, the device performances such as the coloring/discoloring response and durability are improved irrespective of the physical properties of the electrochromic layer.

Description

明 細 書 電解質およびエレク トロクロミック素子  Description Electrolyte and electrochromic element
[技術分野] [Technical field]
本発明は、 全固体型の各種二次電池、 湿式太陽電池、 電気二重層キャパシ夕、 電解コンデンサ、 エレク ト口クロミック素子など各種の電気化学素子に適用可能 な電解質に関する。  The present invention relates to an electrolyte applicable to various electrochemical devices such as all-solid-state secondary batteries, wet-type solar cells, electric double-layer capacitors, electrolytic capacitors, and electrochromic devices at the electoral port.
また本発明は、 表示素子、 調光ガラスなどの各種用途に有用なエレク ト口クロ ミヅク素子に関する。  In addition, the present invention relates to an electric-port chromic element useful for various uses such as a display element and light control glass.
[背景技術] [Background technology]
従来、 一次電池、 二次電池などの各種の電気化学素子を作製する場合、 2枚の 電極の間に固体電解質を形成するためにプロピレンカーボネートなどの有機溶剤 を主成分としたいわゆる電解液を使用することが知られているが、 使用時に素子 の破損により液が飛散したり、 また使用中に液漏れが発生する場合があるなどの 問題点があった。  Conventionally, when manufacturing various types of electrochemical devices such as primary batteries and secondary batteries, a so-called electrolyte containing an organic solvent such as propylene carbonate as the main component is used to form a solid electrolyte between two electrodes. However, there is a problem that the liquid may be scattered due to damage of the element during use, or the liquid may leak during use.
これらの欠点を改良するものとして、 高分子固体電解質などの固体電解質が提 案され、 近年、 ポリフッ化ビニリデンを用いた高分子固体電解質が提案されてい る。 例えば、 特表平 8— 5 0 7 4 0 7号公報にはポリフヅ化ビ二リデン—へキサ フロロプロピレン共重合体の事実上フィルムからなり、 該フィルム内に中間沸点 溶媒を用いたリチウム塩溶液を均一に含有するリチウムイオン電池用固体電解質 が提案されている。 しかし、 このポリフヅ化ビニリデン一へキサフロロプロピレ ン共重合体中には、 その製造条件によっては微量のフッ化水素が含まれているこ とがあり、 これにより電気化学素子の耐久性に問題が生じることがあった。 共重合体中に含まれるフッ化水素の除去法としては、 ポリフツ化ビニリデン一 へキサフロロプロピレン共重合体を D M F、 アセトンなどの良溶媒に溶解し、 水 やアルコールなどの溶媒中で再沈殿する方法があるが、 非常に煩雑な操作を必要 とし、 工業的に実施するにはコストアップにつながることになる。 また、 共重合体中に含まれる微量のフッ化水素を除去しないで素子に適用した 場合は、 各種二次電池、 湿式太陽電池、 電気二重層キャパシ夕、 電解コンデンサ、 エレク トロクロミック素子など耐久性を必要とする電気化学素子では、 溶媒の加 水分解を引き起こし、 初期性能を維持することが難しくなる場合があった。 Solid electrolytes such as a solid polymer electrolyte have been proposed as means for improving these disadvantages. In recent years, a solid polymer electrolyte using polyvinylidene fluoride has been proposed. For example, Japanese Unexamined Patent Publication (Kokai) No. Hei 8-5507407 discloses a lithium salt solution comprising a polyvinylidene fluoride-hexafluoropropylene copolymer and comprising a medium boiling point solvent in the film. There has been proposed a solid electrolyte for a lithium-ion battery containing the same uniformly. However, the polyvinylidene fluoride-hexafluoropropylene copolymer may contain a small amount of hydrogen fluoride depending on the production conditions, and this may cause a problem in the durability of the electrochemical element. Sometimes occurred. As a method for removing hydrogen fluoride contained in the copolymer, polyvinylidene fluoride-hexafluoropropylene copolymer is dissolved in a good solvent such as DMF or acetone, and reprecipitated in a solvent such as water or alcohol. Although there is a method, it requires extremely complicated operations, and this leads to an increase in cost for industrial implementation. When applied to devices without removing a trace amount of hydrogen fluoride contained in the copolymer, the durability of various secondary batteries, wet solar cells, electric double-layer capacitors, electrolytic capacitors, electrochromic devices, etc. In an electrochemical device that requires, the solvent may be hydrolyzed, and it may be difficult to maintain the initial performance.
本発明はこのような実状に鑑み成されたものであり、 その目的は、 簡便な方法 により電気化学素子を製造することが可能で、 高いイオン伝導性を具備するとと もに、 素子の耐久性を向上させ、 多くの用途に展開可能な電解質を提供すること にめる。  The present invention has been made in view of such circumstances, and has as its object to manufacture an electrochemical element by a simple method, to have high ionic conductivity, and to improve the durability of the element. To provide electrolytes that can be deployed in many applications.
また、 各種調光素子や表示素子等に応用されるエレクトロクロミック素子には、 種々のものがあり、 例えば、 透明導電性基板、 エレク ト口クロミック層、 電解質、 透明導電性基板 (対極) が順次設けられているような構成を代表的なものとして 挙げることができる。  In addition, there are various types of electrochromic devices applied to various dimming devices and display devices. For example, a transparent conductive substrate, an electoric chromic layer, an electrolyte, and a transparent conductive substrate (counter electrode) are sequentially arranged. The configuration provided is a typical one.
このようなエレク トロクロミック素子において、 基本的な素子性能はエレク 1、 口クロミック層の膜物性による影響が大きい。 例えば、 エレク ト口クロミック層 として、 還元発色型エレクト口クロミック物質が用いられるケースでは、 酸化夕 ングステン (w o 3 ) 膜が代表的であるが、 素子の着消色応答性、 フォトクロミ ック性、 耐久性などの性能については W 0 3の膜物性による影響を受ける。 In such an electrochromic device, the basic device performance is largely affected by the film physical properties of the electrochromic layer. For example, the elect port chromic layer, the reduction coloring type elect port chromic case substances are used, oxidation evening tungsten (wo 3) The film is typically deposited decoloring response of the elements, photochromic click properties , affected by the W 0 3 of film properties for performance such as durability.
w〇3膜は、 通常、 スパッタリング法、 電子ビーム真空蒸着法などの真空成膜 法によって製造されることが多く、 真空成膜時の環境 ·条件の違いによって膜物 性の変化が起こるという問題点があった。 W_〇 3 film, a problem usually, a sputtering method, that can be produced by a vacuum deposition method such as electron beam vacuum deposition number, changes in membrane material properties by differences in environment and conditions at the time of vacuum deposition occurs There was a point.
また、 w o 3膜は固体酸触媒能を有することが知られており、 このため、 使用 条件や電解質層の種類によっては、 電解質層の構成部材が劣化するという欠点が あった。 Further, it is known that the wo 3 film has a solid acid catalyzing ability. Therefore, there is a disadvantage that the constituent members of the electrolyte layer are deteriorated depending on the use conditions and the type of the electrolyte layer.
そのため、 工業的な観点からは、 エレク ト口クロミック層の膜物性に左右され ることがなく、 またエレクトロクロミック膜の固体酸触媒作用による素子劣化を 抑制でき、 着消色応答性に優れると共に、 耐久性が向上したエレク ト口クロミツ ク素子の開発が望まれていた。  Therefore, from an industrial point of view, it is not affected by the film physical properties of the electoric chromic layer, it can suppress the device deterioration due to the solid acid catalysis of the electrochromic film, and it has excellent response to coloration and decoloration. There has been a demand for the development of an electronic aperture chromic element with improved durability.
本発明は、 エレク ト口クロミック素子において、 電解質に特定の塩基性物質を 添加することによって、 エレク トロクロミック膜の膜物性に左右されることがな く、 着消色応答性や耐久性などの素子性能を改善するとともに、 エレク ト口クロ ミック層として W 0 3層を使用した場合においても固体酸触媒作用による素子劣 化を抑制できるエレク トロクロミック素子を提供するものである。 [発明の開示] The present invention does not depend on the film physical properties of an electrochromic film by adding a specific basic substance to an electrolyte in an electrochromic element having an opening. Ku, thereby improving the device performance such as Chakushoiro response and durability can be suppressed element degradation by solid acid catalyzed even when using the W 0 3 layer as elect port electrochromic layer Elec Torokuromikku An element is provided. [Disclosure of the Invention]
本発明者らは上記のような従来の問題点を解決すベく鋭意研究を重ねた結果、 本発明を完成するに至ったものである。  The present inventors have made intensive studies to solve the conventional problems as described above, and as a result, have completed the present invention.
すなわち、 本発明は、 支持電解質、 有機溶媒および塩基性ァミン化合物を含有 してなる電解質に関するものである。  That is, the present invention relates to an electrolyte containing a supporting electrolyte, an organic solvent, and a basic amine compound.
また、 本発明は、 高分子マトリックス中に、 支持電解質、 有機溶媒および塩基 性ァミン化合物を含有してなる電解質に関するものである。  Further, the present invention relates to an electrolyte comprising a supporting electrolyte, an organic solvent and a basic amine compound in a polymer matrix.
本発明の電解質において、 前記高分子マトリックスはポリフッ化ビ二リデン系 高分子化合物であることが好ましい。  In the electrolyte of the present invention, the polymer matrix is preferably a polyvinylidene fluoride-based polymer compound.
本発明の電解質において、 前記塩基性ァミン化合物が第 3級ァミンであること が好ましい。  In the electrolyte of the present invention, it is preferable that the basic amine compound is a tertiary amine.
本発明の電解質において、 前記塩基性ァミン化合物の含有量が電解質の質量に 対して 1質量 p p m~ 1 0 0 0 0質量 p p mであることが好ましい。  In the electrolyte of the present invention, the content of the basic amine compound is preferably 1 mass ppm to 1000 mass ppm with respect to the mass of the electrolyte.
本発明の電解質において、 前記有機溶媒がリン酸エステル系化合物あるいはリ ン酸エステル系化合物を含有する溶媒であることが好ましい。  In the electrolyte of the present invention, it is preferable that the organic solvent is a solvent containing a phosphate compound or a phosphate compound.
さらに、 本発明は、 2枚の透明導電性基板に、 電解質の層が挟持されているェ レクト口クロミック素子であって、 前記導電性基板のうち少なくとも一方にエレ クトロクロミック層を有しており、 かつ、 前記電解質が塩基性ァミン化合物を含 有してなることを特徴とするエレク トロクロミヅク素子に関するものである。 本発明のエレク トロクロミヅク素子において、 前記塩基性ァミン化合物が第 3 級ァミンであることが好ましい。  Further, the present invention is an electoric chromic element in which an electrolyte layer is sandwiched between two transparent conductive substrates, wherein at least one of the conductive substrates has an electrochromic layer. Further, the present invention relates to an electrochromic device, wherein the electrolyte contains a basic amine compound. In the electrochromic device of the present invention, the basic amine compound is preferably a tertiary amine.
本発明のエレク ト口クロミック素子において、 前記電解質が、 支持電解質、 有 機溶媒および塩基性ァミン化合物を含有してなる電解質であることが好ましい。 本発明のエレク ト口クロミック素子において、 前記電解質が、 高分子マトリツ クス中に、 支持電解質、 有機溶媒および塩基性ァミン化合物を含有してなる電解 質であることが好ましい。 In the electoral chromic device of the present invention, the electrolyte is preferably an electrolyte containing a supporting electrolyte, an organic solvent, and a basic amine compound. In the electoric chromic device of the present invention, the electrolyte may be a polymer matrix containing a supporting electrolyte, an organic solvent, and a basic amine compound. Preferably, it is quality.
本発明のエレク トロクロミック素子において、 前記高分子マトリックスがポリ フッ化ビニリデン系高分子化合物であることが好ましい。  In the electrochromic device of the present invention, the polymer matrix is preferably a polyvinylidene fluoride-based polymer compound.
本発明のエレク トロクロミック素子において、 前記塩基性ァミン化合物の含有 量が電解質の質量に対して 1質量 ρρπ!〜 10000質量 ppmであることが好 ましい。  In the electrochromic device of the present invention, the content of the basic amine compound is 1 mass ρρπ! Preferably it is ~ 10000 mass ppm.
本発明のエレク トロクロミヅク素子において、 前記有機溶媒がリン酸エステル 系化合物あるいはリン酸エステル系化合物を含有する溶媒であることが好ましい 本発明のエレク トロクロミヅク素子において、 前記エレクトロクロミック層が 酸化タングステンからなることが好ましい。 以下、 本発明を詳細に説明する。  In the electrochromic device of the present invention, it is preferable that the organic solvent is a phosphate ester-based compound or a solvent containing a phosphate ester-based compound. In the electrochromic device of the present invention, the electrochromic layer is made of tungsten oxide. Is preferred. Hereinafter, the present invention will be described in detail.
本発明は、 支持電解質、 有機溶媒および塩基性ァミン化合物を含有してなる電 解質に関する。  The present invention relates to an electrolyte containing a supporting electrolyte, an organic solvent, and a basic amine compound.
また、 本発明は、 高分子マトリックス中に、 支持電解質、 有機溶媒および塩基 性ァミン化合物を含有してなる電解質に関する。 高分子マトリックスとしてはポ リフッ化ビニリデン系高分子化合物が好ましく用いられる。  Further, the present invention relates to an electrolyte comprising a supporting electrolyte, an organic solvent, and a basic amine compound in a polymer matrix. As the polymer matrix, a vinylidene fluoride polymer compound is preferably used.
本発明において用いられる支持電解質としては、 電気化学の分野又は電池の分 野で通常使用される塩類、 酸類、 アルカリ類が使用できる。 As the supporting electrolyte used in the present invention, salts, acids and alkalis usually used in the field of electrochemistry or batteries can be used.
塩類としては、 特に制限はなく、 例えば、 アルカリ金属塩、 アルカリ土類金属 塩等の無機イオン塩、 4級アンモニゥム塩、 環状 4級アンモニゥム塩、 4級ホス ホニゥム塩などが使用でき、 特に L i塩が好ましい。  The salt is not particularly limited, and examples thereof include inorganic ion salts such as alkali metal salts and alkaline earth metal salts, quaternary ammonium salts, cyclic quaternary ammonium salts, and quaternary phosphonium salts. Salts are preferred.
塩類の具体例としては、 ハロゲンイオン、 S CN―、 C 104一、 BF4一、 C F3S03\ (CF3S02) 2N-ヽ (C2F5S02) 2N -、 PF6-、 AsF6-ヽ CH3COO—、 CH3 ( C fj H 4 ) S03—、 および (C2F5S02) 3C から選 ばれる対ァニオンを有する L i塩、 Na塩、 あるいは K塩が挙げられ、 Li塩が 特に好ましい。 例えば、 L i C104、 L i S CN、 L iBF4、 L i As Fri L i CF3S03、 L iPF (い L i l、 Na l、 NaSCN、 NaC 104、 N aBF4、 NaAs F6、 KS CN、 K C 1等を例示することができる。 Specific examples of the salts include halogen ions, S CN @ -, C 10 4 one, BF 4 one, CF 3 S0 3 \ (CF 3 S0 2) 2 N-ヽ (C 2 F 5 S0 2) 2 N -, PF 6 -, AsF 6 -ヽ CH 3 COO-, CH 3 (C fj H 4) S0 3 -, and (C 2 F 5 S0 2) L i salts with selection Bareru pair Anion from 3 C, Na salt, Alternatively, a K salt may be mentioned, and a Li salt is particularly preferred. For example, L i C10 4, L i S CN, L iBF 4, L i As F ri L i CF 3 S0 3, L iPF ( have L il, Na l, NaSCN, NaC 10 4, N aBF 4 , NaAs F 6 , KS CN, KC 1 and the like can be exemplified.
またハロゲンイオン、 SCN―、 C 104一、 BF4—、 CF3S03-、 ( C F 3 S02) 2N―、 (C2F5S02) 2N―、 PF6—、 As F6—、 CH3COO_、 C H3 ( C 6H4) S03—、 および (C2F5S02) 3 C—から選ばれる対ァニオン を有する 4級アンモニゥム塩、 具体的には、 (CH3) 4NBF4、 (C2H5) 4 NBF4、 (n—C4Hg) 4NBF4、 (C2H5) 4NB r、 (CH3) 4NS03 CF3s (C2H5) 4NS03CF3、 (n— C4H9) 4NS03CF3、 (C2H 5) 4NC 104、 (n-C4H9) 4NC.104、 CH3 (C2H5) 3NB F4、 (CH3) 2 (C2H5) 2NBF4、 さらには The halogen ions, SCN-, C 10 4 one, BF 4 -, CF 3 S0 3 -, (CF 3 S0 2) 2 N-, (C 2 F 5 S0 2) 2 N-, PF 6 -, As F 6 -, CH 3 COO_, CH 3 (C 6 H 4) S0 3 -, and (C 2 F 5 S0 2) 4 grade Anmoniumu salt having a pair Anion selected from 3 C-, specifically, (CH 3 ) 4 NBF 4 , (C 2 H 5 ) 4 NBF 4 , (n-C 4 H g ) 4 NBF 4 , (C 2 H 5 ) 4 NBr, (CH 3 ) 4 NS0 3 CF 3 s (C 2 H 5 ) 4 NS0 3 CF 3 , (n— C 4 H 9 ) 4 NS0 3 CF 3 , (C 2 H 5 ) 4 NC 10 4 , (nC 4 H 9 ) 4 NC.10 4 , CH 3 ( C 2 H 5 ) 3 NB F 4 , (CH 3 ) 2 (C 2 H 5 ) 2 NBF 4 , and even
Figure imgf000007_0001
等が挙げられる。
Figure imgf000007_0001
And the like.
またハロゲンイオン、 SCN―、 C 104―、 BF4 -、 CF3S03-ヽ (CF3 S02) 2N -、 (C2F5S02) 2N—ヽ PF6 、 A s Ffi-、 CH3 C 00—、 CThe halogen ions, SCN-, C 10 4 -, BF 4 -, CF 3 S0 3 -ヽ (CF 3 S0 2) 2 N -, (C 2 F 5 S0 2) 2 N-ヽPF 6, A s F fi- , CH 3 C 00-, C
H3 ( C fi H , ) S03一、 および (C2F5S02) 3 C—から選ばれる対ァニオン を有するホスホニゥム塩、 具体的には、 (CH3) 4PBF4、 (C2H5) 4P B F4、 (C3H7) 4PBF4、 (C4H9) 4PBF4等が挙げられる。 Anion selected from H 3 (C fi H,) S0 3 and (C 2 F 5 S0 2 ) 3 C— Phosphonium salts having, specifically, (CH 3 ) 4 PBF 4 , (C 2 H 5 ) 4 PBF 4 , (C 3 H 7 ) 4 PBF 4 , (C 4 H 9 ) 4 PBF 4 and the like. Can be
また、 これらの混合物も好適に用いることができる。 酸類も特に限定されず、 具体的には硫酸、 塩酸、 リン酸類、 スルホン酸類、 力 ルボン酸類などの各種の無機酸および有機酸が使用できる。  Further, these mixtures can also be suitably used. The acids are not particularly limited, and various inorganic and organic acids such as sulfuric acid, hydrochloric acid, phosphoric acids, sulfonic acids, and carboxylic acids can be used.
アルカリ類も特に限定されず、 水酸化ナトリウム、 水酸化カリウム、 水酸化リ チウムなどがいずれも使用可能である。 支持電解質の使用量は任意であるが、 通常、 有機溶媒中に 0. 01M以上、 好 ましくは 0. 05M以上、 さらに好ましくは 0.. 1 M以上存在していることが望 ましく、 一方、 通常 20 M以下、 好ましくは 10 M以下、 さらに好ましくは 5 M 以下であることが望ましい。  The alkalis are not particularly limited, and any of sodium hydroxide, potassium hydroxide, lithium hydroxide and the like can be used. The amount of the supporting electrolyte used is arbitrary, but usually, it is preferably 0.01 M or more, preferably 0.05 M or more, more preferably 0.1 M or more in the organic solvent. On the other hand, it is usually 20 M or less, preferably 10 M or less, and more preferably 5 M or less.
また電解質中には、 通常 0. 01質量%以上、 好ましくは 0. 1質量%以上含 有することが好ましく、 一方、 通常 20質量%以下、 好ましくは 10質量%以下 であることが好ましい。 次に、 有機溶媒について説明する。  The electrolyte generally contains 0.01% by mass or more, preferably 0.1% by mass or more, and usually 20% by mass or less, and preferably 10% by mass or less. Next, the organic solvent will be described.
有機溶媒としては、 電気化学セルや電池に一般に使用される溶媒が、 いずれも 使用可能である。 具体的には、 リン酸エステル系化合物、 無水酢酸、 メタノール、 エタノール、 テトラヒドロフラン、 プロピレンカーボネート、 ニトロメタン、 ァ セトニトリル、 ジメチルホルムアミ ド、 ジメチルスルホキシド、 へキサメチルホ スホアミ ド、 エチレンカーボネート、 ジメ トキシェ夕ン、 ァ一ブチロラク トン、 ァ一バレロラク トン、 スルホラン、 ジメ トキシェタン、 プロピオンニトリル、 グ ル夕ロニトリル、 アジポニトリル、 メ トキシァセト二トリル、 ジメチルァセ トァ ミ ド、 メチルピロリジノン、 ジメチルスルホキシド、 ジォキソラン、 スルホラン、 トリメチルホスフェイ ト、 ポリエチレングリコール等が使用可能であって、 特に、 リン酸エステル系化合物、 プロピレンカーボネート、 エチレンカーボネート、 ジ メチルスルホキシド、 ジメ トキシェ夕ン、 ァセ トニトリル、 ァーブチロラク トン、 スルホラン、 ジォキソラン、 ジメチルホルムアミ ド、 ジメ トキシェタン、 テトラ ヒドロフラン、 アジポニトリル、 メ トキシァセトニトリル、 ジメチルァセトアミ ド、 メチルピロリジノン、 ジメチルスルホキシド、 ジォキソラン、 スルホラン、 トリメチルホスフェイ ト、 ポリエチレングリコール等が好ましい。 溶媒はその 1 種を単独で使用しても良いし、 また 2種以上を混合しても使用しても良い。 また、 リン酸エステル系化合物あるいはリン酸エステル系化合物を含有する溶媒も好適 なものとして用いることができる。 リン酸エステル系化合物としては、 具体的に は、 リン酸トリメチルヽ リン酸トリェチル、 リン酸トリプロピル、 リン酸ェチル ジメチル、 リン酸トリプチル、 リン酸トリペンチル、 リン酸トリへキシル、 リン 酸トリヘプチル、 リン酸トリオクチル、 リン酸トリノニル、 リン酸トリデシル、 リン酸トリス (トリフフロロメチル) 、 リン酸トリス (ペン夕フロロェチル) 、 リン酸トリフエニルなどを挙げることができ、 好ましくはリン酸トリェチル、 リ ン酸トリメチルが好ましい。 また、 これらを 2種類以上使用することもできる。 溶媒の使用量は特に制限はないが、 通常、 電解質中に 2 0質量%以上、 好まし くは 3 0質量%以上であり、 その上限値は通常 9 8質量%、 好ましくは 9 5質 量%以下、 さらに好ましくは 9 0質量%以下含有させることができる。 次に塩基性ァミン化合物について説明する。 As the organic solvent, any of the solvents generally used for electrochemical cells and batteries can be used. Specifically, phosphoric ester compounds, acetic anhydride, methanol, ethanol, tetrahydrofuran, propylene carbonate, nitromethane, acetonitrile, dimethylformamide, dimethylsulfoxide, hexamethylphosphonamide, ethylene carbonate, dimethoxane, and acetonitrile Butyrolactone, avalerolactone, sulfolane, dimethyloxetane, propionitrile, glulononitrile, adiponitrile, methoxyacetonitrile, dimethylacetamide, methylpyrrolidinone, dimethylsulfoxide, dioxolane, sulpholane, polyethylene Glycols and the like can be used. Particularly, phosphate ester compounds, propylene carbonate, ethylene carbonate, Dimethylsulfoxide, dimethoxene, acetonitrile, abutyrolactone, Sulfolane, dioxolan, dimethylformamide, dimethoxetane, tetrahydrofuran, adiponitrile, methoxyacetonitrile, dimethylacetamide, methylpyrrolidinone, dimethylsulfoxide, dioxolan, sulfolane, trimethylphosphate, polyethylene glycol and the like are preferred. As the solvent, one kind may be used alone, or two or more kinds may be used in combination. Further, a phosphoric ester compound or a solvent containing the phosphoric ester compound can also be used as a suitable compound. Specific examples of the phosphate compound include trimethyl phosphate triethyl phosphate, tripropyl phosphate, ethyl dimethyl phosphate, triptyl phosphate, tripentyl phosphate, trihexyl phosphate, triheptyl phosphate, and phosphorus Examples thereof include trioctyl acid, trinonyl phosphate, tridecyl phosphate, tris (trifluoromethyl) phosphate, tris (pentafluoroethyl) phosphate, and triphenyl phosphate. Preferably, triethyl ester and trimethyl phosphate are preferable. preferable. Also, two or more of these can be used. The amount of the solvent used is not particularly limited, but is usually 20% by mass or more, preferably 30% by mass or more in the electrolyte, and the upper limit is usually 98% by mass, preferably 95% by mass. %, More preferably 90% by mass or less. Next, the basic amine compound will be described.
本発明において用いられる塩基性ァミン化合物は、 電解質においてプロトン受 容体として働き、 通常、 2 5 °C、 水溶液中での共役酸の p K aが 4 ~ 1 2、 好ま しくは 5 ~ 1 1の範囲にあるものを挙げることができる。 かかる塩基性アミン化 合物としては、 第 1級ァミン (R N H 2 ) 、 第 2級ァミ ン (: R 2 N H ) 、 第 3級 ァミン (R 3 N ) またはこれらの誘導体を例示することができる。 また、 これら のモノアミン類の他、 ジァミン、 トリアミン、 テトラアミン等のポリアミンも用 いることができる。 前記 Rとしては、 各々個別に、 炭素数 1〜 2 0、 好ましくは 1〜 1 0の炭化水素基を表し、 各々同一でも異なってもよい。 かかる炭化水素基 としては、 鎖状、 分岐状、 環状、 飽和、 不飽和のいずれでもよく、 アルキル基、 シクロアルキル基、 ァリール基、 ァリールアルキル基、 アルキルァリール基など を例示することができ、 具体的には、 メチル基、 ェチル基、 プロピル基、 ブチル 基、 ペンチル基、 へキシル基、 ヘプチル基、 ォクチル基、 ノニル基、 シクロプロ ピル基、 シクロプチル基、 シクロペンチル基、 シクロへキシル基、 フエニル基、 トリル基、 ペンジル基、 ナフチル基などを挙げることができる。 具体的な化合物としては、 例えば、 トリエチルァミン、 トリメチルァミン、 ト リプロピルアミン、 トリプチルァミン、 トリへキシルァミン、 トリフエニルアミ ン、 ジェチルァミン、 ジメチルァミン、 ジプロピルァミン、 ジブチルァミン、 ジ へキシルァミン、 テトラメチルエチレンジアミン、 テトラメチルベンジジン、 N: N' ージフエニルベンジジン、 ジェチルァミン、 ジフエ二ルァミン、 メチルアミ ン、 プロピルァミン、 ブチルアミン、 ジへキシルァミン、 フエニルァミン、 2— ナフチルァミン、 ピリジン、 4, 45 —ビビリジル、 2, 2, 一ビビリジル、 2: 6ールチジン、 3, 4—ルチジン、 4ージメチルァミノピリジン、 キノリン、 2 —メチルキノリン、 イソキノリン、 キナゾリン、 1, 3, 5—トリアジン、 1, 2, 4—トリアゾール、 イミダゾ一ル、 ァニリン、 N—メチルァニリン、 N, N 一ジメチルァニリン、 2, 3一ジメチルァニリン、 2 , 6一ジメチルァニリン、 ピロール、 カルバゾール、 N—メチルカルバゾール、 ピペリジン、 1ーメチルビ ペリジン、 ピぺラジン、 1—メチルビペラジン、 1, 4—ジメチルビペラジン等 が挙げられる。 特に トリェチルァミン、 トリフエニルァミン、 ピリジン、 4, 4, ービピリジル、 2, 6—ルチジン、 ィソキノリンなどの第 3級アミンが好ま しい。 塩基性ァミン化合物の量としては、 特に限定されなく適宜選択されるところで あるが、 通常、 電解質の全質量に対して 1質量 ppm以上が好ましく、 さらに好 ましくは 10質量 p pm以上、 特に好ましくは 50質量 p pmである。 一方、 1 0000質量 p pm以下が好ましく、 さらに好ましくは 5000質量 ppm以下、 特に好ましくは 1000質量 ppm以下である。 塩基性ァミン化合物の量が 1質 量 ppm未満のときは溶媒の加水分解を抑制する効果に劣る場合があり、 100 00質量 p p mより多いとフッ化ビニリデン系高分子化合物の高温化での変性が 生じる場合がある。 本発明の電解質は、 イオン伝導度が、 通常室温で 1 X 1 0— 7 S / c m以上、 好ましくは 1 X 1 0 - 6 S / c m以上、 さらに好ましくは 1 X 1 0 - 5 S / c m以 上を示す。 イオン伝導度は、 複素インピーダンス法などの一般的な手法で求める ことができる。 次に、 本発明において高分子マトリックスとして好ましく用いられるポリフッ 化ビニリデン系高分子化合物について説明する。 The basic amine compound used in the present invention functions as a proton acceptor in the electrolyte, and usually has a pKa of the conjugate acid in an aqueous solution at 25 ° C and an aqueous solution of 4 to 12, preferably 5 to 11. Those in the range can be mentioned. Examples of such basic amine compounds include primary amines (RNH 2 ), secondary amines (: R 2 NH), tertiary amines (R 3 N) and derivatives thereof. it can. In addition to these monoamines, polyamines such as diamine, triamine, and tetraamine can also be used. R represents a hydrocarbon group having 1 to 20 carbon atoms, preferably 1 to 10 carbon atoms, and may be the same or different. Such a hydrocarbon group may be linear, branched, cyclic, saturated, or unsaturated, and examples thereof include an alkyl group, a cycloalkyl group, an aryl group, an arylalkyl group, and an alkylaryl group. , Specifically, methyl, ethyl, propyl, butyl Group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, phenyl group, tolyl group, penzyl group, naphthyl group, etc. . Specific compounds include, for example, triethylamine, trimethylamine, tripropylamine, triptylamine, trihexylamine, triphenylamine, getylamine, dimethylamine, dipropylamine, dibutylamine, dihexylamine, tetramethylethylenediamine, tetramethylbenzidine. , N: N 'over diphenyl benzidine, Kishiruamin Jechiruamin, Jifue two Ruamin, Mechiruami down, Puropiruamin, butylamine, to di, Fueniruamin, 2 Nafuchiruamin, pyridine, 4, 4 5 - Bibirijiru, 2, 2, one Bibirijiru, 2 : 6-Lutidine, 3,4-lutidine, 4-dimethylaminopyridine, quinoline, 2-methylquinoline, isoquinoline, quinazoline, 1,3,5-triazine, 1,2,4-triazolate , Imidazole, aniline, N-methylaniline, N, N-dimethylaniline, 2,3-dimethylaniline, 2,6-dimethylaniline, pyrrole, carbazole, N-methylcarbazole, piperidine, 1-methylbiperidine , Piperazine, 1-methylbiperazine, 1,4-dimethylbiperazine and the like. Particularly preferred are tertiary amines such as triethylamine, triphenylamine, pyridine, 4,4-bipyridyl, 2,6-lutidine and isoquinoline. The amount of the basic amine compound is not particularly limited and may be appropriately selected, but is usually preferably 1 ppm by mass or more, more preferably 10 mass ppm or more, and particularly preferably, based on the total mass of the electrolyte. Is 50 mass ppm. On the other hand, it is preferably at most 10,000 mass ppm, more preferably at most 5,000 mass ppm, particularly preferably at most 1,000 mass ppm. When the amount of the basic amine compound is less than 1 mass ppm, the effect of suppressing the hydrolysis of the solvent may be poor. May occur. The electrolyte of the present invention, ion conductivity, usually at room temperature 1 X 1 0- 7 S / cm or more, preferably 1 X 1 0 - 6 S / cm or more, more preferably 1 X 1 0 - 5 S / cm The following is shown. Ionic conductivity can be determined by a general method such as the complex impedance method. Next, the polyvinylidene fluoride polymer compound preferably used as the polymer matrix in the present invention will be described.
本発明において高分子マトリックスとして使用するポリフッ化ビ二リデン系高 分子化合物としては、 フッ化ビニリデンの単独重合体、 あるいはフッ化ビニリデ ンと他の重合性モノマー、 好適にはラジカル重合性モノマーとの共重合体が挙げ られる。 フッ化ビニリデンと共重合させる他の重合性モノマー (以下、 共重合性 モノマ一という。 ) としては、 具体的には、 へキサフロロプロピレン、 テトラフ ロロエチレン、 ト リフロロエチレン、 エチレン、 プロピレン、 アクリロニト リル、 塩化ビニリデン、 メチルァクリレート、 ェチルァクリレート、 メチルメタクリレ —ト、 スチレンなどを例示することができる。  Examples of the polyvinylidene fluoride-based high molecular compound used as the polymer matrix in the present invention include a homopolymer of vinylidene fluoride or a copolymer of vinylidene fluoride with another polymerizable monomer, preferably a radical polymerizable monomer. Copolymers are exemplified. Examples of other polymerizable monomers to be copolymerized with vinylidene fluoride (hereinafter, referred to as copolymerizable monomers) include hexafluoropropylene, tetrafluoroethylene, trifluoroethylene, ethylene, propylene, acrylonitrile. , Vinylidene chloride, methyl acrylate, ethyl acrylate, methyl methacrylate, styrene and the like.
これらの共重合性モノマーは、 フヅ化ビニリデン 1 0 0重量部に対して、 1〜 1 0 0重量部、 好ましくは 1〜5 0重量部の範囲で使用することができる。 また、 これらの共重合性モノマーを 2種類以上添加することもできる。 例えば、 フッ化 ビニリデン +へキサフロロプロピレン +テトラフロロエチレン、 フヅ化ビニリデ ン +テ トラフロロエチレン +エチレン、 フッ化ビニリデン +テ トラフロロェチレ ン +プロピレンなどの組み合わせで共重合させても良い。  These copolymerizable monomers can be used in an amount of 1 to 100 parts by weight, preferably 1 to 50 parts by weight, based on 100 parts by weight of vinylidene fluoride. Also, two or more of these copolymerizable monomers can be added. For example, copolymerization may be carried out using a combination of vinylidene fluoride + hexafluoropropylene + tetrafluoroethylene, vinylidene fluoride + tetrafluoroethylene + ethylene, vinylidene fluoride + tetrafluoroethylene + propylene, and the like.
共重合性モノマ一としては、 好適にはへキサフロロプロピレンが用いられる。 本発明においては、 特にフヅ化ビニリデンにへキサフロロプロピレンを 1〜2 5 質量%共重合させたフッ化ビニリデン一へキサフロロプロピレン共重合体を高分 子マトリックスとする固体電解質として好ましく用いることができる。 また共重 合比の異なる 2種類以上のフッ化ビ二リデン—へキサフロロプロピレン共重合体 を混合して使用しても良い。  Hexafluoropropylene is preferably used as the copolymerizable monomer. In the present invention, in particular, a vinylidene fluoride-hexafluoropropylene copolymer obtained by copolymerizing 1 to 25% by mass of hexafluoropropylene with vinylidene fluoride is preferably used as a solid electrolyte having a high molecular matrix. Can be. Further, two or more kinds of vinylidene fluoride-hexafluoropropylene copolymers having different copolymerization ratios may be mixed and used.
通常、 これらのフヅ化ビニリデン一へキサフロロプロピレン共重合体は重合時 のモノマーの分解等により、 フッ化水素を含有する。 水洗により大部分のフッ化 水素は除去されるものの微量に残存し、 通常、 1 0〜 1 0 0質量 p p m程度、 よ り典型的には数十 p p mオーダーで含まれる。 Usually, these vinylidene fluoride-hexafluoropropylene copolymers are used during polymerization. Contains hydrogen fluoride due to decomposition of the monomer. Most of the hydrogen fluoride is removed by water washing, but remains in a trace amount, and is usually contained in an amount of about 10 to 100 ppm by mass, more typically on the order of tens of ppm.
さらに、 本発明においては高分子マトリックスとしてポリフッ化ビ二リデン系 高分子化合物に、 ポリアクリレート系高分子化合物、 ポリアクリロニトリル系高 分子化合物およびポリエーテル系高分子化合物から選ばれる高分子化合物を 1種 類以上混合して使用することもできる。 ポリフッ化ビニリデン系高分子化合物に 混合される他の高分子化合物は 5 0質量%以下が好ましい。  Further, in the present invention, one kind of a polymer compound selected from a polyacrylate-based polymer compound, a polyacrylonitrile-based polymer compound and a polyether-based polymer compound is used as the polymer matrix in the polyvinylidene fluoride-based polymer compound. It is also possible to use a mixture of two or more kinds. The other polymer compound mixed with the polyvinylidene fluoride polymer compound is preferably 50% by mass or less.
本発明において用いられるポリフッ化ビ二リデン系高分子化合物の数平均分子 量は、 通常 1 0 , 0 0 0 ~ 2 , 0 0 0 , 0 0 0であり、 好ましくは 1 0 0 , 0 0 0〜1, 0 0 0 , 0 0 0の範囲のものが好適に使用することができる。  The number average molecular weight of the polyvinylidene fluoride-based polymer compound used in the present invention is usually 10, 00 0 to 2, 0 0 0, 0 0 0, preferably 10 0, 0 0 0 Those having a range of 11, 0000, 0000 can be suitably used.
高分子マトリックスとしてポリフッ化ビ二リデン系高分子化合物を用いた場合、 有機溶媒として、 前記各種の有機溶媒を組み合わせることができるが、 中でも、 特に前記のリン酸エステル系化合物あるいはリン酸エステル系化合物を含有する 溶媒が好ましい。 この場合、 溶媒の使用量は特に制限はないが、 通常、 電解質中 に 2 0質量%以上、 好ましくは 3 0質量%以上であり、 かつ 8 0質量%以下、 好 ましくは 7 0質量%以下の量で含有させることが望ましい。 次にポリフッ化ビ二リデン系高分子化合物を高分子マトリックスとして用いて 固体電解質を製造する方法について説明する。  When a polyvinylidene fluoride polymer compound is used as the polymer matrix, the above-mentioned various organic solvents can be combined as the organic solvent. Among them, particularly, the phosphate ester compound or the phosphate ester compound A solvent containing is preferred. In this case, the amount of the solvent used is not particularly limited, but is usually 20% by mass or more, preferably 30% by mass or more, and 80% by mass or less, preferably 70% by mass in the electrolyte. It is desirable to include the following amount. Next, a method for producing a solid electrolyte using a polyvinylidene fluoride polymer compound as a polymer matrix will be described.
かかる固体電解質は、 ポリフッ化ビニリデン系高分子化合物、 支持電解質、 有 機溶媒および塩基性ァミン化合物を、 公知の方法により所望の形状、 例えばシー トゃフィルム状に形成することにより容易に得ることが出来る。 この場合の方法 としては特に限定されないが、 好適にはキャス ト法によりフィルム状態で得る方 法を挙げることができる。  Such a solid electrolyte can be easily obtained by forming a polyvinylidene fluoride polymer compound, a supporting electrolyte, an organic solvent, and a basic amine compound into a desired shape, for example, a sheet-to-film shape by a known method. I can do it. The method in this case is not particularly limited, but a method obtained in a film state by a casting method can be preferably mentioned.
キャスト法については、 高分子マトリックスと電解液を混合し、 さらに適当な 希釈剤にて粘度調整を行い、 キャスト法に用いられる通常のコ一夕にて塗布し、 乾燥することで成膜することができる。 コ一夕としては、 ドクタコー夕、 ブレー ドコ一夕、 口ヅ ドコ一夕、 ナイフコー夕、 リバ一スロールコ一夕、 グラビアコー 夕、 スプレイコ一夕、 カーテンコ一夕を用いることができ、 粘度および膜厚によ り使い分けることができる。 塗工装置により、 膜厚は調整でき、 通常、 2 5 / m 以上の膜厚とすることが好ましい。 また、 膜厚の上限は特に限定されなく、 任意 に選択されるところであるが、 例えばキャスト法により製造する場合、 通常 5 0 0 m程度となる。 また、 固体電解質中の溶媒量としては前記乾燥条件を選択す ることにより適宜調整することができる。 For the casting method, a polymer matrix and an electrolyte solution are mixed, the viscosity is adjusted with an appropriate diluent, and the film is formed by coating and drying with the usual coating method used for the casting method. Can be. As for the night, the nights are: Doctor Ko, Brako, Koko, Koto, Knife, Yu, River Throrko, Gravure Evening, Sprayco and Curtainco can be used, and can be used depending on viscosity and film thickness. The film thickness can be adjusted by a coating apparatus, and it is usually preferable that the film thickness be 25 / m or more. The upper limit of the film thickness is not particularly limited and may be arbitrarily selected. For example, when the film is manufactured by a casting method, the upper limit is usually about 500 m. The amount of the solvent in the solid electrolyte can be appropriately adjusted by selecting the drying conditions.
固体電解質を各種電気化学素子に適用する場合、 素子の種類などにより固体電 解質層の形状や厚さは、 用途により適宜選択されて特に限定されないが、 厚さに ついては通常 l〃m以上が好ましく、 特に好ましくは 1 0〃m以上である。 一方、 3 mm以下が好ましく、 特に好ましくは 1 mm以下である。  When a solid electrolyte is applied to various types of electrochemical devices, the shape and thickness of the solid electrolyte layer are appropriately selected depending on the application depending on the type of the device and are not particularly limited, but the thickness is usually lm or more. Preferably, it is particularly preferably at least 10 μm. On the other hand, it is preferably at most 3 mm, particularly preferably at most 1 mm.
また、 本発明の固体電解質は、 腰のあるフィルムとすることが可能であり、 そ の場合、 通常、 2 5 °Cにおけるその引張弾性率が 5 X 1 0 4 N /m 2以上、 好ま しくは 1 X 1 0 5 N / m 2以上、 最も好ましくは 5 X 1 0 5 N / m 2以上である特 性を有することが望ましい。 なお、 この引張弾性率は、 通常用いられる引張り試 験機で、 2 c m X 5 c mの短冊状サンプルによって測定を行つた場合の値である c また、 本発明は、 2枚の透明導電性基板に、 電解質の層が挟持されているエレ クトロクロミック素子であって、 前記導電性基板のうち少なくとも一方にエレク トロクロミック層を有しており、 かつ、 前記電解質が塩基性ァミン化合物を含有 してなることを特徴とするエレク トロクロミック素子に関する。 In addition, the solid electrolyte of the present invention can be a stiff film, in which case its tensile modulus at 25 ° C. is preferably 5 × 10 4 N / m 2 or more. the 1 X 1 0 5 N / m 2 or more, and most preferably it is desirable to have a characteristic is 5 X 1 0 5 N / m 2 or more. Incidentally, the tensile modulus, tensile test machine generally used, 2 cm X 5 by strip-shaped sample of cm is the value of the case having conducted the measurement c Also, the present invention is, two transparent conductive substrates An electrochromic element in which an electrolyte layer is sandwiched, wherein at least one of the conductive substrates has an electrochromic layer, and the electrolyte contains a basic amine compound. The present invention relates to an electrochromic element.
本発明のエレク ト口クロミック素子には 2枚の透明導電性基板が使用される。 ここで透明導電性基板とは、 電極としての機能を果たす透明な基板を意味する。 本発明でいう導電性基板には、 基板自体を導電性材料で製造したものと、 導電性 を持たない基板の片面又は両面に電極層を積層させた積層板が包含される。 導電 性を備えているか否かに拘らず、 基板自体は常温において平滑な面を有している ことが好ましいが、 その面は平面であっても、 曲面であっても差し支えなく、 応 力で変形するものであっても差し支えない。  Two transparent conductive substrates are used in the electorifice chromic device of the present invention. Here, the transparent conductive substrate means a transparent substrate that functions as an electrode. The conductive substrate according to the present invention includes a substrate in which the substrate itself is made of a conductive material, and a laminate in which an electrode layer is laminated on one or both sides of a substrate having no conductivity. Regardless of whether or not it has conductivity, the substrate itself preferably has a smooth surface at room temperature, but that surface may be flat or curved, It may be deformed.
一般に、 2枚の導電性基板がいずれも透明であるエレク トロクロミック素子は、 表示素子や調光ガラスに好適である。 透明導電性基板は、 通常、 透明基板上に透明電極層を積層させて製造される。 ここで、 透明とは可視光領域において 10〜 1 00 %の光透過率を有することを 意味し、 部分的に不透明な部分があってもよい。 In general, an electrochromic element in which both conductive substrates are transparent is suitable for a display element or light control glass. The transparent conductive substrate is usually manufactured by laminating a transparent electrode layer on a transparent substrate. Here, “transparent” means having a light transmittance of 10 to 100% in the visible light region, and there may be a partially opaque portion.
透明基板の材質は特に限定されず、 例えば、 無色あるいは有色ガラス、 強化ガ ラス等であって差し支えなく、 無色あるいは有色の透明性樹脂でもよい。 ここで いう透明性樹脂の具体例としては、 ポリエチレンテレフ夕レート、 ポリエチレン ナフ夕レート、 ポリアミ ド、 ポリサルフォン、 ポリエーテルサルフォン、 ポリエ —テルエ一テルケトン、 ボリフエ二レンサルフアイ ド、 ポリカーボネート、 ポリ' イミ ド、 ボリメチルメタクリレート、 ボリスチレン等が挙げられる。  The material of the transparent substrate is not particularly limited, and may be, for example, colorless or colored glass, reinforced glass, or the like, and may be colorless or colored transparent resin. Specific examples of the transparent resin referred to here include polyethylene terephthalate, polyethylene naphtholate, polyamide, polysulfone, polyethersulfone, polyether-teretone, ketone, bolifenylene sulfide, polycarbonate, polyimide, Polymethyl methacrylate, polystyrene and the like.
透明電極層としては、 本発明の目的を果たすものである限り特に限定されない が、 例えば金、 銀、 クロム、 銅、 タングステンなどの金属薄膜、 金属酸化物から なる導電膜などが挙げられる。 金属酸化物としては、 例えば、 酸化錫、 酸化亜鉛、 酸化バナジウムや、 これらに微量成分をドープした Indium Tin Oxide( I T 0 ( I n 203 : S n) ) 、 Fluorine doped Tin Oxide (FTO (Sn02 : F) ) 、 Aluminum doped Zinc Oxide ( A Z 0 (ZnO : A 1 ) ) などが好適なものとし て用いられる。 電極層の膜厚は通常、 100〜 5000〃m、 好ましくは 500 〜3000〃mである。 また、 表面抵抗 (抵抗率) は、 本発明の基板の用途によ り適宜選択されるところであるが、 通常、 0. 5〜500 Ω/s q、 好ましくは 2〜 5 Ο Ω/s qである。 The transparent electrode layer is not particularly limited as long as the object of the present invention is achieved, and examples thereof include a metal thin film such as gold, silver, chromium, copper, and tungsten, and a conductive film made of a metal oxide. As the metal oxide, such as tin oxide, zinc oxide, and vanadium oxide, Indium Tin Oxide (IT 0 ( I n 2 0 3: S n)) doped with minor components thereto, Fluorine doped Tin Oxide (FTO ( Sn0 2: F)), Aluminum doped Zinc Oxide (AZ 0 (ZnO: a 1)) or the like is used as a preferable example. The thickness of the electrode layer is usually 100 to 5000 μm, preferably 500 to 3000 μm. The surface resistance (resistivity) is appropriately selected depending on the use of the substrate of the present invention, but is usually 0.5 to 500 Ω / sq, preferably 2 to 5 Ω / sq.
透明電極層の形成法としては、 特に限定されなく、 導電層として用いる前述の 金属や金属酸化物の種類により適宜公知の方法が選択使用されるところであるが、 通常、 真空蒸着法、 イオンプレーティング法、 CVDあるいはスパヅ夕リング法、 ゾルゲル法などが用いられる。 いずれの場合も基板温度 2 0〜700°Cの範囲内 で形成されるのが望ましい。  The method for forming the transparent electrode layer is not particularly limited, and a known method is appropriately selected and used depending on the type of the above-described metal or metal oxide used as the conductive layer. Usually, a vacuum evaporation method, an ion plating method, or the like is used. Method, CVD or sputter ring method, sol-gel method, etc. are used. In either case, it is desirable to form the substrate at a substrate temperature of 20 to 700 ° C.
本発明においては、 導電性基板の少なくとも一方にエレクトロクロミヅク層を 有することを特徴とする。 エレク トロクロミック層は導電性基板上の導電性を具 備する面上に形成される。  The present invention is characterized in that at least one of the conductive substrates has an electrochromic layer. The electrochromic layer is formed on a conductive substrate on a conductive substrate.
エレク ト口クロミック層を構成する材料としては、 酸化発色型エレク トロクロ ミック性化合物、 還元発色型エレクトロクロミック性化合物のいずれでもよく、 金属酸化物の無機化合物、 各種有機エレクトロクロミック性化合物などが挙げら れ、 特に限定されないが、 特に無機エレクト口クロミック化合物が好ましい。 具 体的には、 酸化タングステン (w o 3 ) 、 酸化バナジウム、 酸化モリブデン、 酸 化イリジウム、 酸化ニッケル、 酸化チタン、 酸化クロム、 酸化マンガン、 酸化コ バルトなどの遷移金属酸化物やこれらを任意の割合で含む酸化膜が挙げられる。 また、 成膜方法はゾルゲル法、 電気化学的方法などの湿式法や蒸着法、 スパッ 夕リング法、 イオンプレーティング法、 パルスレーザーディポジションなどの真 空成膜方式を用いることができる。 The material forming the electoric chromic layer may be any of an oxidative coloring type electrochromic compound and a reducing coloring type electrochromic compound. Examples thereof include an inorganic compound of a metal oxide and various organic electrochromic compounds, and are not particularly limited. In particular, an inorganic electochromic compound is preferable. In concrete terms, tungsten oxide (wo 3), vanadium oxide, molybdenum oxide, acid iridium, nickel oxide, titanium oxide, chromium oxide, manganese oxide, transition metal oxides and the ratio thereof of any such oxide cobalt The oxide film included in the above. As a film forming method, a wet method such as a sol-gel method or an electrochemical method, or a vacuum film forming method such as an evaporation method, a sputtering method, an ion plating method, or a pulse laser deposition method can be used.
エレク ト口クロミヅク層の厚さは特に限定されないが、 通常 0 . l〜 2 / m、 好ましくは 0 . 4〜0 . 8 z m程度が望ましい。  The thickness of the chromic layer at the opening is not particularly limited, but is usually about 0.1 to 2 / m, preferably about 0.4 to 0.8 zm.
本発明のエレクトロクロミック素子においては、 導電性基板の少なくとも 方 にエレク トロクロミック層を有するものであるが、 エレク トロクロミック層を有 する導電性基板と対向する透明導電性基板としては、 ( a ) 導電性基板を用いる 形態、 (b ) 他のエレク ト口クロミック層を有する導電性基板を用いる形態の他、 ( c ) 導電性基板の導電面上に導電性微粒子をバインダ一で結着した部材が対向 電極基板全体として、 対向電極全体として必要とされる光透過性 (または光反射 性) が損なわれない程度に配置されている形態が挙げられる。  The electrochromic device of the present invention has an electrochromic layer on at least one side of the conductive substrate. The transparent conductive substrate facing the conductive substrate having the electrochromic layer includes (a) In addition to the configuration using a conductive substrate, (b) a configuration using a conductive substrate having another electrification port chromic layer, and (c) a member in which conductive fine particles are bound on a conductive surface of the conductive substrate with a binder. May be arranged so that the light transmittance (or light reflectivity) required for the entire counter electrode is not impaired.
上記 ( c ) の形態については、 例えば、 特開平 6— 2 8 1 9 7 0号公報、 特開 平 1 0— 2 3 9 7 1 6号公報等に具体的に記載されている。  The form (c) is specifically described in, for example, Japanese Patent Application Laid-Open Nos. Hei 6-28190 and Hei 10-239719.
導電性基板の両方にエレク トロクロミック層を配置するケースにおいては、 一 方のエレク トロクロミツク層が酸化性エレク トロクロミツク層の場合は、 他方に は還元性エレク トロクロミック層を、 一方のエレク トロクロミック層が還元性ェ レク ト口クロミツク層の場合は、 他方には酸化性ェレク ト口クロミック層を用い ることが好ましい。 例えば、 一方のエレク ト口クロミック層が、 酸化タンダステ ン層の場合においては、 他方 (対極側導電性基板) のエレク ト口クロミック層と しては、 特に限定されないが、 酸化ニッケル、 酸化クロム、 酸化マンガン、 酸化 コバルト、 酸化イ リジウム、 プルシアンブルー等が好適なものとして挙げられる 本発明のエレク トロクロミック素子においては、 エレク トロクロミック層を有 する導電性基板と対向する導電性基板の導電面上に導電性微粒子をバインダ一で 結着した部材が配置されていることが好ましい。 In the case where the electrochromic layer is disposed on both the conductive substrates, if one of the electrochromic layers is an oxidizing electrochromic layer, the other is a reducing electrochromic layer, and the other is an electrochromic layer. When is a reducing electrochromic layer at the opening, it is preferable to use an oxidizing electrochromic layer at the other side. For example, in the case where one of the electoric chromic layers is a tungsten oxide layer, the electoric chromic layer of the other (counter electrode side conductive substrate) is not particularly limited, but may be nickel oxide, chromium oxide, or the like. Preferred examples of the electrochromic device of the present invention include manganese oxide, cobalt oxide, iridium oxide, and Prussian blue. On the conductive surface of the conductive substrate facing the conductive substrate having the electrochromic layer, Conductive fine particles with a binder It is preferable that a bound member is arranged.
かかる導電性微粒子は、 通常 10— 8S · cm一1以上、 好ましくは 10— 5S - cm— 1以上、 さらに好ましくは 10— 2S · cm—1以上の導電性を示す物質であ ることが望ましい。 Such conductive fine particles, usually 10- 8 S · cm one 1 or more, preferably 10- 5 S - cm- 1 or more, more preferably Ru substance der showing a 10- 2 S · cm- 1 or more conductive It is desirable.
また、 これらの導電性微粒子は、 通常、 1ファラッ ド/ g以上、 好ましくは 5 ファラッ ド /g以上、 さらに好ましくは 10ファラッ ド /g以上の電気容量を有 するか、 または 1クローン/ g以上、 好ましくは 5クーロン/ g以上、 さらに好 ましくは 10クローン/ g以上の電荷量を蓄え得ることができるものが望ましい c このような微粒子を構成する材料物質としては、 例えば、 多孔質カーボン、 ィ ン夕一カレション材料、 導電性高分子化合物又はこれらの混合物等が挙げられる 本発明の 1ファラッ ド /g以上の電気容量を有する導電性微粒子としては、 例 えば、 表面積が通常、 10m2/g以上、 好ましくは 50〜500 Om2/g、 特に好ましくは 300〜4000 m2/gの範囲内の多孔質力一ボン等が挙げら れ、 特に活性炭等を好ましく挙げることができるがこれに限定されるものではな い。 このような活性炭は、 例えば、 やしがら、 石油ピッチ、 フエノール樹脂、 レ 一ヨン繊維、 ポリアクリロニトリル繊維等を炭化賦活処理する方法等により得る ことができる。 These conductive fine particles usually have an electric capacity of 1 farad / g or more, preferably 5 farads / g or more, more preferably 10 farads / g or more, or 1 clone / g or more. Preferably, it can store a charge amount of preferably 5 coulombs / g or more, more preferably 10 clones / g or more.c As a material constituting such fine particles, for example, porous carbon, the fin evening one Kareshon material, conductive fine particles having a 1 Fara' de / g or more electric capacity of the present invention that the conductive polymer compound, or mixtures thereof, if example embodiment, the surface area is typically, 10 m 2 / g or more, preferably 50 to 500 Om 2 / g, particularly preferably 300 to 4000 m 2 / g. Limit Those are in is not the name. Such activated carbon can be obtained, for example, by a method of carbonization activation of palm, petroleum pitch, phenolic resin, rayon fiber, polyacrylonitrile fiber, and the like.
本発明の 1クローン/ g以上の電荷量を蓄え得る導電性微粒子としては、 ィン 夕一力レーシヨン材料、 導電性高分子化合物等が挙げられるが、 特に印加電圧 3 V以内で前記電荷量を蓄え得ることができる材料が好ましい。  Examples of the conductive fine particles capable of storing an electric charge of 1 clone / g or more according to the present invention include an in-situ radiation material, a conductive polymer compound, and the like. Materials that can be stored are preferred.
前記ィン夕一力レシヨン材料としては、 公知の T i S2、 Mo S2等の二硫化 物; C o 02、 N i 02等の二酸化物 ; W 18049、 W20O58等の酸化物等を挙 げることができる。 As the fin evening Ichiriki Reshiyon material, disulfides such as a known T i S 2, Mo S 2 ; C o 0 2, N i 0 dioxide such as 2; W 18 0 49, W 20 O 58 And the like.
一方、 前記導電性高分子化合物としては、 ポリアリニン、 ポリチォフェン、 ポ リピロ一ル、 ポリフエ二レンビニレン、 ポリアセン等を主成分とし、 ドーピング 等を行なって得られる導電性高分子化合物等を挙げることができる。  On the other hand, examples of the conductive polymer compound include a conductive polymer compound containing polyalinine, polythiophene, polypropylene, polyphenylenevinylene, polyacene, or the like as a main component and obtained by doping or the like.
また、 前記微粒子の粒径は、 本発明の目的を損なわない限り特に限定されない が、 通常 500〃m〜 0. 1〃m、 好ましくは 200〃m〜0. 3〃m、 さらに 好ましくは 50〃m〜 0. 5〃mの範 Mlの平均粒径が望ましい。 次に、 電解質層 (以下、 イオン伝導層ともいう。 ) について説明する。 The particle size of the fine particles is not particularly limited as long as the object of the present invention is not impaired, but is usually 500 m to 0.1 m, preferably 200 m to 0.3 m, and more preferably 50 m. An average particle size of Ml in the range of m to 0.5 m is preferred. Next, an electrolyte layer (hereinafter, also referred to as an ion conductive layer) will be described.
一般に、 エレクト口クロミック素子における電解質層は、 室温において 1 X 1 0一7 S / c m以上のイオン伝導度を有し、 エレクト口クロミック層を着色、 消色、 変色させる役割を果たす。 こうした電解質層は、 液系イオン伝導性物質、 ゲル化 液系イオン伝導性物質あるいは固体系イオン伝導性物質のいずれかを用いて形成 することができるが、 特に固体系ィォン伝導性物質を使用することが望ましい。 In general, the electrolyte layer in the electorifice chromic element has an ion conductivity of 1 × 10 17 S / cm or more at room temperature, and plays a role of coloring, decoloring, and discoloring the electoral chromic layer. Such an electrolyte layer can be formed using any of a liquid ion-conductive substance, a gelled liquid ion-conductive substance, and a solid ion-conductive substance. In particular, a solid ion-conductive substance is used. It is desirable.
液系イオン伝導性物質 Liquid ion conductive material
液系イオン導電性物質は、 塩類、 酸類、 アルカリ類等の支持電解質を溶媒に溶 解して調製される。  The liquid ionic conductive substance is prepared by dissolving a supporting electrolyte such as salts, acids and alkalis in a solvent.
溶媒としては、 電気化学セルや電池に一般に使用される溶媒が、 いずれも使用 可能であり、 具体的には前記例示した有機溶媒を挙げることができる。 溶媒の使 用量は特に制限はないが、 通常、 溶媒はイオン伝導層の 2 0質量%以上、 好まし くは 5 0質量%以上、 さらに好ましくは 7 0質量%以上を占め、 その上限値は 9 8質量%、 好ましくは 9 5質量%以下、 さらに好ましくは 9 0質量%以下である c 支持電解質としては、 前記した電気化学の分野又は電池の分野で通常使用され る塩類、 酸類、 アルカリ類が使用できる。 As the solvent, any of the solvents generally used in electrochemical cells and batteries can be used, and specific examples include the organic solvents described above. The use amount of the solvent is not particularly limited, but usually, the solvent accounts for at least 20% by mass, preferably at least 50% by mass, more preferably at least 70% by mass of the ion-conductive layer. 9 8 wt%, preferably from 9 to 5% by weight, still as preferably c supporting electrolyte is 9 0 wt% or less, wherein the salts in the field of the field or the battery electrochemical Ru is typically used, acids, alkalis Can be used.
支持電解質は、 使用しても使用しなくても良く、 また使用する場合の使用量は 任意であるが、 一般的には、 支持電解質はイオン伝導層中に通常 2 0 M以下、 好 ましくは 1 0 M以下、 さらに好ましくは 5 M以下で、 0 . 0 1 M以上、 好ましく は 0 . 0 5 M以上、 さらに好ましくは 0 . 1 M以上存在していることが望ましい c  The supporting electrolyte may or may not be used, and when used, the amount of use is arbitrary. In general, the supporting electrolyte is usually 20 M or less in the ion conductive layer, preferably. Is preferably at most 10 M, more preferably at most 5 M, at least 0.1 M, preferably at least 0.05 M, even more preferably at least 0.1 M.
ゲル化液系ィォン伝導性物質 Gelled liquid ion conductive material
ゲル化液系イオン伝導性物質は、 上記した液系イオン伝導性物質を増粘又はゲ ル化させた物質を意味し、 このものは液系イオン伝導性物質にさらにポリマ一又 はゲル化剤を配合して調製される。  The gelled liquid-based ion-conductive substance means a substance obtained by thickening or gelling the above-mentioned liquid-based ion-conductive substance. This substance is obtained by adding a polymer or a gelling agent to the liquid-based ion-conductive substance. Is prepared.
これに使用されるポリマーは、 特に限定されず、 例えば、 ポリアクリロニトリ ル、 力ルボキシメチルセルロース、 ボリ塩化ビニル、 ポリエチレンオキサイ ド、 ポリウレタン、 ポリァクリレート、 ポリメタクリレート、 ポリアミ ド、 ポリァク リルアミ ド、 セルロース、 ポリエステル、 ポリプロピレンオキサイ ド、 ナフィォ ンなどが使用できる。 The polymer used for this is not particularly limited, and examples thereof include polyacrylonitrile, carboxymethylcellulose, polyvinyl chloride, polyethylene oxide, Polyurethane, polyacrylate, polymethacrylate, polyamide, polyacrylamide, cellulose, polyester, polypropylene oxide, nafion and the like can be used.
ゲル化剤も特には限定されず、 ォキシエチレンメタクリレート、 ォキシェチレ ンァクリレート、 ウレタンァクリレー卜、 アクリルアミ ド、 寒天などが使用でき る。 固体系イオン伝導性物質  The gelling agent is also not particularly limited, and oxyethylene methacrylate, oxyshethylene acrylate, urethane acrylate, acrylamide, agar, and the like can be used. Solid ion conductive material
固体系イオン伝導性物質は、 室温で固体であり、 かつイオン伝導性を有する物 質を指し、 これには、 ポリエチレンォキサイ ド、 ォキシエチレン (メタ) ァクリ レートのポリマー、 ナフイオン、 ポリスチレンスルホン酸、 ポリエーテル系ポリ マ一、 ポリフヅ化ビニリデン系ポリマー等のフヅ素系ポリマー、 Li3N、 N a 一^一 A1203、 S n (HP 04) 2 · H 2〇等を使用することができる。 この ほか、 ォキシアルキレンメ夕クリレ一卜系化合物、 ォキシアルキレンァクリレー 1、系化合物またはウレ夕ンァクリレート系化合物を重合することによって得られ る高分子化合物に、 支持電解質を分散させた高分子固体電解質が使用可能である c 前記高分子固体電解質の第 1の例としては、 下記一般式 ( 1) で示されるゥ レ夕ンァクリレート、 前記有機溶媒、 及び前記支持電解質を含む組成物を前駆体 とし、 この前駆体を固化することにより得られる高分子固体電解質が挙げられる
Figure imgf000018_0001
A solid ion-conductive substance refers to a substance that is solid at room temperature and has ion conductivity, including polyethylene oxide, a polymer of oxyethylene (meth) acrylate, naphion, polystyrene sulfonic acid, and polystyrene. ether poly Ma one, full Uz Motokei polymers such Porifudzu fluoride polymer, Li 3 n, n a one ^ one A1 2 0 3, S n ( HP 0 4) the use of 2 · H 2 〇 like Can be. In addition, a supporting electrolyte is dispersed in a polymer obtained by polymerizing an oxyalkylene methacrylate compound, an oxyalkylene acrylate 1, or a urea acrylate compound. as a first example of c the solid polymer electrolyte molecular solid electrolyte can be used, the precursor © Les evening Nakurireto represented by the following general formula (1), the organic solvent, and a composition containing the supporting electrolyte And a solid polymer electrolyte obtained by solidifying this precursor.
Figure imgf000018_0001
一般式 ( 1) において、 R1及び R2は同一又は異なる基であって、 下記一般 式 (2) 〜 (4) から選ばれる基を示す。 R3及び R4は同一又は異なる基であ つて、 炭素数 1〜20、 好ましくは 2 ~ 12の 2価炭化水素残基を示す。 Yはポ リエーテル単位 (_◦— ) 、 ポリエステル単位 (一 C00— ) 、 ポリカーボネー ト単位 (― OCOO— ) 又はこれらの単位が 2以上結合した混合単位を示す。 ま た、 mは 1〜 1 00、 好ましくは 1〜50、 さらに好ましくは 1〜20の範囲の 整数を示す。 In the general formula (1), R 1 and R 2 are the same or different groups and represent a group selected from the following general formulas (2) to (4). R 3 and R 4 are the same or different groups, and represent a divalent hydrocarbon residue having 1 to 20, preferably 2 to 12 carbon atoms. Y is a polyether unit (_◦—), a polyester unit (one C00—), polycarbonate Unit (-OCOO-) or a mixture of two or more of these units. M represents an integer in the range of 1 to 100, preferably 1 to 50, and more preferably 1 to 20.
Figure imgf000019_0001
一般式 ( 2) 〜 (4) において、 R5〜R7はそれぞれ同一又は異なる基であ つて、 水素原子又は炭素数 1~3のアルキル基を示す。 また R8は炭素数 1〜2 0、 好ましくは炭素数 2〜 8の 2価有機残基を示す。 1 9は炭素数1〜20、 好 ましくは炭素数 2〜 8の 3価有機残基を示す。 R1。は炭素数 1〜20、 好まし くは炭素数 2〜 8の 4価有機残基を示す。
Figure imgf000019_0001
In the general formulas (2) to (4), R 5 to R 7 are the same or different groups and represent a hydrogen atom or an alkyl group having 1 to 3 carbon atoms. R 8 represents a divalent organic residue having 1 to 20 carbon atoms, preferably 2 to 8 carbon atoms. 19 represents a trivalent organic residue having 1 to 20 carbon atoms, preferably 2 to 8 carbon atoms. R 1. Represents a tetravalent organic residue having 1 to 20 carbon atoms, preferably 2 to 8 carbon atoms.
一般式 ( 1) の R3及び; R4で示される 2価炭化水素残基としては、 鎖状 2価 炭化水素基、 芳香族炭化水素基、 含脂環炭化水素基等が挙げられる。 Examples of the divalent hydrocarbon residue represented by R 3 and R 4 in the general formula (1) include a linear divalent hydrocarbon group, an aromatic hydrocarbon group, and an alicyclic hydrocarbon group.
前記一般式 ( 1 ) で示されるウレタンァクリレートの分子量は、 特に制限さ れないが、 好ましくは 2 , 500〜 30 , ひ 00、 より好ましくは 3 , 000〜 20, 000が望ましい。  The molecular weight of the urethane acrylate represented by the general formula (1) is not particularly limited, but is preferably 2,500 to 30,000, more preferably 3,000 to 20,000.
有機溶媒の添加量はウレ夕ンァクリレート 1 00質量部に対して通常 1 00 〜 1200質量部、 好ましくは 200〜900質量部の割合である。 有機溶媒の 添加量が少なすぎると、 イオン伝導度も十分ではなく、 また有機溶媒の添加量が 多すぎると機械強度が低下してしまう場合がある。  The amount of the organic solvent to be added is usually 100 to 1200 parts by mass, preferably 200 to 900 parts by mass, based on 100 parts by mass of the urethane acrylate. If the added amount of the organic solvent is too small, the ionic conductivity is not sufficient, and if the added amount of the organic solvent is too large, the mechanical strength may be reduced.
支持電解質としては、 本発明の高分子固体電解質の用途等その目的により適宜 選択され、 本発明の目的を損なわない限り、 特に限定されないが、 前記に例示し たもの1が好適なものとして挙げられる。 添加量としては有機溶媒に対し 0. 1〜 30質量%好ましくは1〜20質量%である。 The supporting electrolyte is appropriately selected depending on the use, etc. The purpose of the solid polymer electrolyte of the present invention, as long as they do not impair the object of the present invention, but are not limited to, those exemplified above 1 can be mentioned as preferred . The amount of addition is 0.1 to organic solvent. It is 30% by mass, preferably 1 to 20% by mass.
また本発明の目的を損なわない限り、 さらに別の成分を必要に応じて加える ことができる。 かかる任意成分としては、 例えば架橋剤や重合開始剤 (光又は 熱) 、 紫外線吸収剤等が挙げられる。  Further, other components can be added as needed, as long as the object of the present invention is not impaired. Such optional components include, for example, a crosslinking agent, a polymerization initiator (light or heat), an ultraviolet absorber, and the like.
前記高分子固体電解質の第 2の例としては、 下記一般式 (5) で表される単 官能ァクリロイル変性ポリアルキレンォキシド、 多官能ァクリロイル変性ポリア ルキレンォキシド、 前記有機溶媒、 及び前記支持電解質を含む組成物を前駆体と し、 この前駆体を固化することにより得られる高分子固体電解質が挙げられる。  As a second example of the polymer solid electrolyte, a composition comprising a monofunctional acryloyl-modified polyalkylene oxide represented by the following general formula (5), a polyfunctional acryloyl-modified polyalkylene oxide, the organic solvent, and the supporting electrolyte And a solid polymer electrolyte obtained by solidifying the precursor.
R11 R12R13 R 11 R 12 R 13
I I I I I I
CHつ =C— CO- CHCHO- R 14 (5) CH = C— CO- CHCHO- R 14 (5)
ll  ll
O  O
—般式 (5) において、 I 11、 R12、 R 13及び R 14は、 各々個別に水素原子 又は 1〜5の炭素原子を有するアルキル基であり、 互いに同一でも異なってもよ く、 特に R 1 1は水素原子、 メチル基、 ; R 12は水素原子、 メチル基、 R 13は水素 原子、 メチル基、 R 14は水素原子、 メチル基、 ェチル基が好ましい。 —In the general formula (5), I 11 , R 12 , R 13 and R 14 are each independently a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, which may be the same or different, and R 11 is a hydrogen atom, a methyl group; R 12 is a hydrogen atom, a methyl group, R 13 is a hydrogen atom, a methyl group, and R 14 is a hydrogen atom, a methyl group, or an ethyl group.
また、 一般式 ( 5 ) の nは 1以上の整数を示し、 好ましくは 1〜 100、 より 好ましくは 2〜 50、 さらに好ましくは 2 ~ 30の範囲の整数を示す。  In the general formula (5), n represents an integer of 1 or more, preferably 1 to 100, more preferably 2 to 50, and further preferably 2 to 30.
また、 nが 2以上の場合、 ォキシアルキレンユニッ トが互いに異なるいわゆ る共重合ォキシアルキレンュニッ トを持つものでもよい。  When n is 2 or more, the oxyalkylene units may have different so-called copolymerized oxyalkylene units.
本発明に使用される多官能ァクリロイル変性ポリアルキレンォキシドとしては、 好適なものとして、 一般式 (6) で示される化合物、 いわゆる 2官能ァクリロイ ル変性ポリアルキレンォキシド、 及び一般式 (7) で示される化合物、 いわゆる 3官能以上の多官能ァクリロイル変性ポリアルキレンォキシド等が挙げられる。  Preferable examples of the polyfunctional acryloyl-modified polyalkylene oxide used in the present invention include a compound represented by the general formula (6), a so-called bifunctional acryloyl-modified polyalkylene oxide, and a compound represented by the general formula (7). And the so-called polyfunctional acryloyl-modified polyalkylene oxide having three or more functional groups.
CH2 (6)CH 2 (6)
Figure imgf000020_0001
2021
Figure imgf000020_0001
2021
CHCHO- L (7) CHCHO- L (7)
Figure imgf000021_0001
一般式 (6) において、 R15、 R16、 R 17及び R 18は、 各々個別に水素原子 又は 1〜 5の炭素原子を有するアルキル基を示し、 pは 1以上の整数を示す。 一般式 (7) において、 Rig、 R2°及び R21は、 各々個別に水素原子又は 1 〜 5の炭素原子を有するアルキル基を示し、 qは 1以上の整数を示し、 rは 2〜 4の整数であり、 Lは r価の連結基を示す。 また連結基 Lは、 通常、 炭素数 1〜 30、 好ましくは 1〜20の二価、 三価又は四価の炭化水素基である。
Figure imgf000021_0001
In the general formula (6), R 15 , R 16 , R 17 and R 18 each independently represent a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, and p represents an integer of 1 or more. In the general formula (7), R ig , R 2 ° and R 21 each independently represent a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, q represents an integer of 1 or more, and r represents 2 to Is an integer of 4, and L represents an r-valent linking group. The linking group L is usually a divalent, trivalent or tetravalent hydrocarbon group having 1 to 30, preferably 1 to 20 carbon atoms.
もちろん、 前記一般式 (6) で示される 2官能ァクリロイル変性ポリアルキレ ンォキシドと前記一般式 (7) で表される 3官能以上の多官能ァクリロイル変性 ポリアルキレンォキシドを併用してもよい。 一般式 (6) で示される化合物と一 般式 (7) で示される化合物を併用する場合、 その質量比は通常 0. 1ダ99. 9-99. 9/0. 1、 好ましくは 1/99〜 99/1、 さらに好ましくは 20 /80〜80/20の範囲が望ましい。 本発明に使用される一般式 (5) で示さ れる化合物と多官能ァクリロイル変性ポリアルキレンォキシドの質量比は通常 1 /◦. 001〜; L/l、 好ましくは 1/0. 05〜 1/0. 5の範囲である。 前記有機溶媒の配合割合としては、 一般式 (5) で示される化合物及び多官能 ァクリロイル変性ポリアルキレンォキシドの質量和に対して通常 50〜800質 量%、 好ましくは 100〜500質量%の範囲が望ましい。  Of course, a bifunctional acryloyl-modified polyalkylene oxide represented by the general formula (6) and a trifunctional or higher polyfunctional acryloyl-modified polyalkylene oxide represented by the general formula (7) may be used in combination. When the compound represented by the general formula (6) and the compound represented by the general formula (7) are used in combination, the mass ratio is usually 0.1 to 99.9-99.9 / 0.1, preferably 1/1. A range of 99 to 99/1, more preferably 20/80 to 80/20 is desirable. The mass ratio of the compound represented by the general formula (5) to the polyfunctional acryloyl-modified polyalkylene oxide used in the present invention is usually 1 / ◦.001 to; L / l, preferably 1 / 0.05 to 1 /. It is in the range of 0.5. The compounding ratio of the organic solvent is usually in the range of 50 to 800% by mass, preferably 100 to 500% by mass with respect to the total mass of the compound represented by the general formula (5) and the polyfunctional acryloyl-modified polyalkylene oxide. Is desirable.
また、 前記支持電解質の配合割合は、 一般式 (5) で示される化合物、 多官能 ァクリロイル変性ポリアルキレンォキシド及び有機溶媒の質量和に対して通常 1 〜30質量%、 好ましくは 3~20質量%の範囲である。  The compounding ratio of the supporting electrolyte is usually 1 to 30% by mass, preferably 3 to 20% by mass based on the total mass of the compound represented by the general formula (5), the polyfunctional acryloyl-modified polyalkylene oxide and the organic solvent. % Range.
また本発明の目的を損なわない限り、 さらに別の成分を必要に応じて加える ことができる。 かかる任意成分としては、 特に限定されないが、 光重合のための 光重合開始剤あるいは熱重合するための熱重合開始剤、 紫外線吸収剤等を挙げる ことができる。 重合開始剤の使用量は、 一般式 (5) で示される化合物及び多官 能ァクリロイル変性ポリアルキレンォキシドの質量和に対して通常 0. 005〜 5質量%、 好ましくは 0 . 0 1〜3質量%の範囲である。 前記高分子固体電解質の第 3の例としては、 ポリフッ化ビ二リデン系高分子 化合物からなる高分子マトリックス中に、 前記有機溶媒、 及び前記支持電解質を 含む組成物を前駆体とし、 この前駆体を固化することにより得られる前記の高分 子固体電解質が挙げられる。 本発明においてイオン伝導層の膜厚は特に限定されないが、 通常 2 0 / π!〜 1 mm、 好ましくは 5 0〜5 0 0〃mの範囲が好ましい。 本発明においては、 イオン伝導層中に塩基性アミン化合物を含有していること を特徴とする。 塩基性ァミン化合物としては前記した塩基性ァミン化合物を用い ることができる。 Further, other components can be added as needed, as long as the object of the present invention is not impaired. Examples of such optional components include, but are not particularly limited to, a photopolymerization initiator for photopolymerization, a thermal polymerization initiator for thermal polymerization, and an ultraviolet absorber. The amount of the polymerization initiator to be used is usually 0.005 to 0.005 mass of the compound represented by the general formula (5) and the polyfunctional acryloyl-modified polyalkylene oxide. It is in the range of 5% by weight, preferably 0.01 to 3% by weight. As a third example of the polymer solid electrolyte, a composition containing the organic solvent and the supporting electrolyte in a polymer matrix composed of a polyvinylidene fluoride-based polymer compound is used as a precursor. And the solid polymer electrolyte obtained by solidifying the polymer. In the present invention, the thickness of the ion conductive layer is not particularly limited, but is usually 20 / π!範 囲 1 mm, preferably in the range of 50-500 μm. The present invention is characterized in that the ion conductive layer contains a basic amine compound. As the basic amine compound, the above-described basic amine compounds can be used.
塩基性ァミン化合物の量は、 イオン伝導層の質量に対して 1質量 ρ ρ π!〜 1 0 0 0 0質量 p p mである。 好ましくは 1 0〜 5 0 0 0質量 p p mであり、 特に好 ましくは 5 0〜: L 0 0 0質量 p p mである。  The amount of the basic amine compound is 1 mass ρ ρ π! 1100000 mass ppm. It is preferably from 10 to 500 mass ppm, particularly preferably from 50 to: L000 mass ppm.
塩基性ァミン化合物の含有量が 1質量 p p mより少ない場合は、 添加効果が十 分でなく、 また、 塩基性ァミン化合物の含有量が 1 0 0 0 0質量 p p mより多い 場合は、 W 0 3膜が溶出する等の悪影響を与える現象が起こるおそれがあり好ま しくない。 When the content of the basic Amin compound is less than 1 ppm by weight, the addition effect is not sufficient, and if the content of the basic Amin compound is more than 1 0 0 0 0 ppm by weight, W 0 3 film It is not preferable because phenomena such as elution may occur, which may have an adverse effect.
イオン伝導層中に塩基性ァミン化合物を配合することにより、 エレク ト口クロ ミック層の膜物性に左右されることがなく、 エレク ト口クロミック素子の耐久性 の大幅な向上等の優れた効果を発現することができるが、 これは固体酸触媒能を 有するエレク トロクロミック層を用いた場合のイオン伝導層の加水分解反応を抑 制する作用があるものと推定される。 本発明のエレクトロクロミック素子としては、 例えば図 1に示す例を挙げるこ とができる。 この素子は、 透明基板 3 1上に透明導電膜 3 2、 及び該透明導電膜 3 2上に形成した導電性微粒子をバインダーで結着させたス トライプ部材 1 1 (又はドッ ト部材 1 1, ) を適当な間隔で均等に配置形成した対向電極を備える c この対向電極の正面図を図 2又は図 3に示す。 図 2及び図 3において、 2'は透明 基板上の透明導電膜を示す。 By blending a basic amine compound in the ion conductive layer, excellent effects such as a significant improvement in the durability of the electoric chromic element can be achieved without being affected by the film physical properties of the electoric chromic layer. It can be expressed, but this is presumed to have the effect of suppressing the hydrolysis reaction of the ion conductive layer when using an electrochromic layer having a solid acid catalytic activity. As an example of the electrochromic device of the present invention, an example shown in FIG. 1 can be given. This device has a stripe member 1 1 in which a transparent conductive film 32 on a transparent substrate 31 and conductive fine particles formed on the transparent conductive film 32 are bound with a binder. (Or a dot member 11, 1) is provided with a counter electrode in which it is uniformly arranged at appropriate intervals. C A front view of this counter electrode is shown in FIG. 2 or FIG. 2 and 3, reference numeral 2 'denotes a transparent conductive film on a transparent substrate.
この対向電極に対向する他方側には、 透明基板 3 7上に透明導電膜 3 6を形成 した電極に、 還元発色型 (または酸化発色型) エレクト口クロミック膜 3 5を形 成した発色電極が形成されている。 そして、 両者の間隙は電解質 3 4で満たされ、 周辺がシール材 3 8で密封され、 透明導電膜 ( 3 2 , 3 6 ) がバスパ一 4 0を介 してリード線により電源 3 9に接続されている。  On the other side opposite to the counter electrode, a color electrode formed by forming a transparent color conductive film 36 on a transparent substrate 37 and a reduction color (or oxidation color) electoral port chromic film 35 is formed. Is formed. The gap between the two is filled with an electrolyte 34, the periphery is sealed with a sealing material 38, and the transparent conductive film (32, 36) is connected to a power supply 39 via a lead wire via a bus 40. Have been.
本発明のエレク トロクロミヅク素子の作製において、 エレク ト口クロミック膜 を配置したエレク トロクロミック発色電極と対向電極とを対向させる方法及びバ スパーの配置方法は特に限定されず、 エレク ト口クロミック素子の使用形態によ り各種手法が可能である。  In the manufacture of the electrochromic device of the present invention, the method of making the electrochromic color-forming electrode on which the electrochromic film is disposed and the counter electrode facing each other and the method of arranging the busper are not particularly limited. Various methods are possible depending on the form.
[産業上の利用可能性] [Industrial applicability]
本発明の電解質は、 全固体型の各種二次電池、 湿式太陽電池、 電気二重層キヤ パシ夕、 電解コンデンサ、 エレク ト口クロミック素子などの電気化学素子の電解 質として使用でき、 特に固体電解質と電極との密着性が改善されているとともに、 高いイオン伝導性、 機械強度、 経時安定性を有することから、 より高性能な電気 化学素子を簡便に製造することが可能でき、 例えば、 薄膜型二次電池、 高工ネル ギ一電池などの電解質として好適に用いることができる。 また電気化学素子に使 用した場合でも、 液漏れなどのトラブルの発生が無く、 難燃性や耐久性にも優れ るなどの特徴を有している。  The electrolyte of the present invention can be used as an electrolyte for electrochemical devices such as all-solid-state secondary batteries, wet solar cells, electric double-layer capacitors, electrolytic capacitors, and electrochromic devices. The improved adhesion to the electrodes and the high ionic conductivity, mechanical strength, and stability over time make it possible to easily manufacture higher-performance electrochemical devices. It can be suitably used as an electrolyte for secondary batteries, high-energy batteries, and the like. Even when used in electrochemical devices, it has features such as no problems such as liquid leakage and excellent flame retardancy and durability.
また、 本発明のエレク ト口クロミック素子は、 電解質層中に塩基性ァミン化合 物を所定量含有させることにより、 エレクト口クロミック素子の耐久性を大幅に 改善することができ、 具体的にはエレクトロクロミック素子の経時使用における 透明性低下を抑止することができたものである。  In addition, the electroporous chromic element of the present invention can significantly improve the durability of the electrochromic element by including a predetermined amount of a basic amine compound in the electrolyte layer. It was possible to suppress a decrease in transparency of the chromic element during use over time.
また、 本発明のエレク ト口クロミック素子においては、 エレク ト口クロミック 層の膜物性に左右されないため、 耐熱性試験での着消色応答性の変化を抑制する ことができる。 従って、 本発明のエレク ト口クロミック素子は、 耐久性が要求さ れる用途に使用可能であり、 例えば建築物や車両の窓や間仕切り、 各種調光素子、 さらには文字表示素子、 防眩ミラー、 装飾素子など種々の用途にも使用すること ができる。 Further, in the electoric chromic element of the present invention, since it is not affected by the film physical properties of the electoral chromic layer, it is possible to suppress a change in the color responsiveness in the heat resistance test. Therefore, the electoric chromic element of the present invention is required to have durability. It can be used for various purposes such as windows and partitions of buildings and vehicles, various dimming devices, and furthermore, for example, character display devices, anti-glare mirrors, and decorative devices.
[発明を実施するための最良の形態] [Best Mode for Carrying Out the Invention]
以下に実施例および比較例を挙げ、 本発明を更に詳しく説明するが、 本発明は これらに限定されるものではない。 実施例 1  Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited thereto. Example 1
(1) フィルム状固体電解質の作製  (1) Preparation of solid electrolyte film
ポリ (フッ化ビニリデン一へキサフロロプロピレン) (商品名 : ァトフイナ ' ジャパン製 K YNAR 275 1 ) 2 g、 ピリジン 50 m gおよび L i B F 40. 3 g:を、 リン酸トリェチル 2 gおよびァセトン 6 gに加熱溶解し、 均一な溶液を 得、 室温に冷却した後ガラス基板上にドク夕一ブレード法で塗布し、 次いで加熱 乾燥をして溶液中のァセトンを蒸発させ、 200〃m厚の均一なフィルム状固体 電解質を得た。 Poly (hexa fluoroalkyl propylene to vinylidene fluoride I) (trade name: Atofuina 'Japan Ltd. K YNAR 275 1) 2 g, pyridine 50 mg and L i BF 4 0. 3 g: the, Toryechiru phosphate 2 g and Aseton 6 g) to obtain a uniform solution, and after cooling to room temperature, apply it on a glass substrate by a dough-blade method, then heat and dry to evaporate the acetone in the solution, and make it 200 μm thick. A film-like solid electrolyte was obtained.
得られたフィルムの1 H— NMRスぺクトル測定の結果、 フィルム中にリン酸 トリエチルが 48. 8質量%含まれることが判った。 As a result of 1 H-NMR spectrum measurement of the obtained film, it was found that the film contained 48.8% by mass of triethyl phosphate.
この固体電解質はガラス基板から容易に剥離し、 取り扱うことができ、 引張弾 性率は 3 X 10 βΝ/πι2であった。 The solid electrolyte is easily peeled off from the glass substrate, it can be handled, the tensile elastic modulus was 3 X 10 β Ν / πι 2 .
この固体電解質を、 複素ィンピーダンス法にてイオン伝導度測定したところ、 1 X 10— 4 SZ c mの良好な数値を得た。 The solid electrolyte was measured ionic conductivity at complex Inpidansu method to obtain a good value of 1 X 10- 4 SZ cm.
( 2 ) 耐久性試験  (2) Durability test
このフィルム状固体電解質を 100°Cのオーブン中に置き、 1000時間後、 フィルムをジメチルスルフォキシドー d6 ( ( CD 3) 2 S 0;重 DMS 0) に溶 解し、 NMRスぺク トルを測定し、 残留溶媒の加水分解を観察した。 結果を表 1 に示した。 表 1より、 固体電解質中に含まれる溶媒の加水分解が発生しておらず、 耐久性に優れることが明らかである。 · 実施例 2 This film-shaped solid electrolyte was placed in an oven at 100 ° C, and after 1000 hours, the film was dissolved in dimethyl sulfoxide d 6 ((CD 3 ) 2 S 0; heavy DMS 0) and subjected to NMR spectroscopy. Torr was measured and the hydrolysis of the residual solvent was observed. The results are shown in Table 1. From Table 1, it is clear that no hydrolysis of the solvent contained in the solid electrolyte occurs and the durability is excellent. · Example 2
ポリ (フヅ化ビニリデン一へキサフロロプロピレン) (商品名 : ァトフイナ ' ジャパン製 K YNAR 2801 ) 2 g、 4, 4 ' —ビビリジル 50 m gおよびリ チウム トリフロロメタンスルフォンイミ ド (LiTFS I) 0. 5 gを、 リン 酸トリェチル 8 gに加熱溶解し、 均一な溶液を得、 室温に冷却した後ガラス基板 上にドク夕一プレード法で塗布し、 次いで加熱乾燥をして溶液中のリン酸トリエ チルを 50質量%蒸発させ、 200〃m厚の均一なフィルム状固体電解質を得た c 得られたフィルムの1 H— NMRスぺクトル測定の結果、 フィルム中にリン酸 トリエチルが 46. 8質量%含まれることが判った。 Poly (vinylidene fluoride hexafluoropropylene) (trade name: Atofina 'KYNAR 2801 manufactured by Japan') 2 g, 4, 4 '-Viviridyl 50 mg and lithium trifluoromethanesulfonimid (LiTFS I) 0. 5 g was dissolved by heating in 8 g of triethyl phosphate to obtain a uniform solution. After cooling to room temperature, the solution was coated on a glass substrate by the doctor plate method, and then dried by heating to obtain a solution of phosphoric acid in the solution. chill evaporated 50 wt%, 200〃M of 1 H- NMR scan Bae spectrum measurement of a uniform film-like solid electrolyte was obtained c to give a film of thickness results, triethyl phosphate 46.8 mass in the film %.
この固体電解質はガラス基板から容易に剥離し、 取り扱うことができ、 引張弾 性率は 4 X 106N/m2であった。 This solid electrolyte was easily separated from the glass substrate and could be handled, and the tensile elastic modulus was 4 × 10 6 N / m 2 .
またこの固体電解質を、 複素インピ一ダンス法にてィォン伝導度測定したとこ ろ、 2 X 10— 4SZcmの良好な数値を得た。 Also the solid electrolyte was obtained by complex Inpi one dance method Ion conductivity measured Toko filtration, good numerical values of 2 X 10- 4 SZcm.
このフィルム状固体電解質について実施例 1と同様の耐久性試験を行った結果 を表 1に併記した。 この固体電解質についても実施例 1と同様に、 耐久性に優れ ることが明らかである。 実施例 3  Table 1 also shows the results of the same durability test as in Example 1 for this film-shaped solid electrolyte. It is clear that this solid electrolyte is also excellent in durability as in Example 1. Example 3
ポリ (フヅ化ビニリデン一へキサフロロプロピレン) (商品名 : ァトフイナ - ジャパン製 KYNAR2751と 2801の混合物、 混合比 1 : 1 ) 2 g、 イソ キノリン 5 Omgおよび L iTFS I 0. 5 gを、 リン酸トリェチル 8 gに加熱 溶解し、 均一な溶液を得、 室温に冷却した後ガラス基板上にドクターブレード法 で塗布し、 次いで加熱乾燥をして溶液中のリン酸トリェチルを蒸発させ、 200 /m厚の均一なフィルム状固体電解質を得た。  Poly (vinylidene fluoride-hexafluoropropylene) (trade name: Atofina-Japan, mixture of KYNAR2751 and 2801, mixing ratio 1: 1) 2 g, isoquinoline 5 Omg and LiTFS I 0.5 g, phosphorus Heat and dissolve in 8 g of Triethyl acid to obtain a uniform solution, cool to room temperature, apply it on a glass substrate by the doctor blade method, and then heat and dry to evaporate the Triethyl phosphate in the solution. A film-like solid electrolyte having a uniform thickness was obtained.
得られたフィルムの1 H— NMRスぺクトル測定の結果、 フィルム中にリン酸 トリェチルが 47. 5質量%含まれることが判った。 As a result of 1 H-NMR spectrum measurement of the obtained film, it was found that the film contained 47.5% by mass of triethyl phosphate.
この固体電解質はガラス基板から容易に剥離し、 取り扱うことができ、 引張弾 性率は 3 x 10 fiN/m2であった。 This solid electrolyte was easily peeled off from the glass substrate and could be handled, and the tensile elastic modulus was 3 × 10 fiN / m 2 .
この固体電解質を、 複素インピーダンス法にてイオン伝導度測定したところ、 1. 8 x 10_4 SZcmの良好な数値を得た。 When the ionic conductivity of this solid electrolyte was measured by the complex impedance method, 1. obtain good numerical value of 8 x 10_ 4 SZcm.
このフィルム状固体電解質について実施例 1と同様の耐久性試験を行った結果 を表 1に併記した。 この固体電解質についても実施例 1と同様に、 耐久性に優れ ることが明らかである。 実施例 4  Table 1 also shows the results of the same durability test as in Example 1 for this film-shaped solid electrolyte. It is clear that this solid electrolyte is also excellent in durability as in Example 1. Example 4
ポリ (フヅ化ビニリデン一へキサフロロプロピレン) (商品名 :ァトフイナ - ジャパン製 K YNAR 275 1 ) 2 gヽ イソキノリン 50 m gおよび L i S 03 CF30. 3 gを、 リン酸トリェチル 8 gに加熱溶解し、 均一な溶液を得、 室温 に冷却した後ガラス基板上にドク夕一ブレード法で塗布し、 次いで加熱乾燥をし て溶液中のリン酸トリエチルを蒸発させ、 300〃m厚の均一なフィルム状固体 電解質を得た。 この固体電解質はガラス基板から容易に剥離し、 取り扱うことが でき、 引張弾性率は 3 X 106N/m2であった。 Poly (full Uz fluoride one to hexa Fluorochemicals propylene): - (trade name Atofuina Japan Ltd. K YNAR 275 1) 2 gヽisoquinoline 50 mg and L i S 0 3 CF 3 0. 3 g, Toryechiru phosphoric acid 8 g After heating and dissolving in a solution, a uniform solution was obtained, and after cooling to room temperature, the solution was coated on a glass substrate by a doctor blade method, and then dried by heating to evaporate the triethyl phosphate in the solution. A uniform film-like solid electrolyte was obtained. This solid electrolyte was easily separated from the glass substrate and could be handled, and the tensile modulus was 3 × 10 6 N / m 2 .
得られたフィルムの1 H— NMRスぺク トル測定の結果、 フィルム中にリン酸 トリェチルが 45. 3質量%含まれることが判った。 As a result of 1 H-NMR spectrum measurement of the obtained film, it was found that the film contained 45.3% by mass of triethyl phosphate.
この固体電解質を、 複素インピーダンス法にてィォン伝導度測定したところ、 1 X 10— 4 SZ cmの良好な数値を得た。 The solid electrolyte was measured Ion conductivity at complex impedance method, to obtain a good value of 1 X 10- 4 SZ cm.
このフィルム状固体電解質について実施例 1と同様の耐久性試験を行った結果 を表 1に併記した。 この固体電解質についても実施例 1と同様に、 耐久性に優れ ることが明らかである。 実施例 5  Table 1 also shows the results of the same durability test as in Example 1 for this film-shaped solid electrolyte. It is clear that this solid electrolyte is also excellent in durability as in Example 1. Example 5
ポリ (フヅ化ビニリデン一へキサフロロプロピレン) (商品名 :ァトフイナ - ジャパン製 K YNAR 2751 ) 2 g、 4, 45 —ビビリジル 50 mgおよび L i SO3CF30. 3 gをリン酸トリェチル 8 gに加熱溶解し、 均一な溶液を得、 室温に冷却した後ガラス基板上にドクターブレード法で塗布し、 次いで加熱乾燥 をして溶液中のリン酸トリエチルを蒸発させ、 300 zm厚の均一なフィルム状 固体電解質を得た。 この固体電解質はガラス基板から容易に剥離し、 取り扱うこ とができ、 引張弾性率は 5 X 10 fiN/m2であった。 得られたフィルムの1 H— NMRスぺクトル測定の結果、 フィルム中にリン酸 トリエチルが 40. 5質量%含まれることが判った。 Poly (full Uz fluoride hexa fluoroalkyl propylene to single) (trade name: Atofuina - Japan Ltd. K YNAR 2751) 2 g, 4 , 4 5 - Bibirijiru 50 mg and L i SO 3 CF 3 0. 3 g of phosphoric acid Toryechiru 8 g to obtain a uniform solution.After cooling to room temperature, apply the solution on a glass substrate by the doctor blade method, then heat and dry to evaporate triethyl phosphate in the solution. A solid electrolyte in the form of a film was obtained. This solid electrolyte was easily peeled off from the glass substrate and could be handled, and the tensile modulus was 5 × 10 fiN / m 2 . As a result of 1 H-NMR spectrum measurement of the obtained film, it was found that the film contained 40.5% by mass of triethyl phosphate.
この固体電解質を、 複素インピーダンス法にてィォン伝導度測定したところ、 8 X 10 5 S/ cmの良好な数値を得た。 When this solid electrolyte was measured for ion conductivity by the complex impedance method, a good value of 8 × 10 5 S / cm was obtained.
このフィルム状固体電解質について実施例 1と同様の耐久性試験を行った結果 を表 1に併記した。 この固体電解質についても実施例 1と同様に、 耐久性に優れ ることが明らかである。 実施例 6  Table 1 also shows the results of the same durability test as in Example 1 for this film-shaped solid electrolyte. It is clear that this solid electrolyte is also excellent in durability as in Example 1. Example 6
ポリ '(フヅ化ビニリデン一へキサフロロプロピレン) (商品名 : ァトフイナ - ジャパン製 K YNAR 275 1 ) 2 :、 4, 45 —ビビリジル 50 mgおよび L i T F Sェ 0. 5 gを、 リン酸トリェチル 6 gとリン酸トリプチル 2 に加熱溶 解し、 均一な溶液を得、 室温に冷却した後ガラス基板上にドクターブレード法で 塗布し、 次いで加熱乾燥をして溶液中のリン酸トリェチルを 30質量%蒸発させ、 300 m厚の均一なフィルム状固体電解質を得た。 この固体電解質はガラス基 板から容易に剥離し、 取り扱うことができ、 引張弾性率は 1 X 106N/m2で あり、 自立性があることが確認された。 Poly '(full Uz fluoride one to hexa fluorosilicone propylene) (trade name: Atofuina - Japan Ltd. K YNAR 275 1) 2:, 4, 4 5 - Bibirijiru 50 mg and L i TFS E 0. 5 g, phosphoric acid Heat and dissolve in 6 g of Triethyl and Triptyl Phosphate 2 to obtain a uniform solution. After cooling to room temperature, apply it to a glass substrate by a doctor blade method, and then heat dry to remove Triethyl phosphate in the solution. By mass% evaporation, a uniform film solid electrolyte having a thickness of 300 m was obtained. This solid electrolyte was easily peeled off from the glass substrate and could be handled. The tensile modulus was 1 × 10 6 N / m 2 , and it was confirmed that the solid electrolyte was self-supporting.
得られたフィルムの1 H— NMRスぺク トル測定の結果、 フィルム中にリン酸 トリェチルとリン酸トリプチルが 48. 9質量% (質量比 1. 0/0. 9) 含ま れることが判った。 As a result of 1 H-NMR spectrum measurement of the obtained film, it was found that the film contained 48.9% by mass of triethyl phosphate and triptyl phosphate (mass ratio 1.0 / 0.9). .
この固体電解質を、 複素インピーダンス法にてィォン伝導度測定したところ、 1 X 10— 4 S/ cmの良好な数値を得た。 The solid electrolyte was measured Ion conductivity at complex impedance method, to obtain a good value of 1 X 10- 4 S / cm.
このフィルム状固体電解質について実施例 1と同様の耐久性試験を行った結果 を表 1に併記した。 この固体電解質についても実施例 1と同様に、 耐久性に優れ ることが明らかである。 実施例 Ί  Table 1 also shows the results of the same durability test as in Example 1 for this film-shaped solid electrolyte. It is clear that this solid electrolyte is also excellent in durability as in Example 1. Example Ί
ポリ (フヅ化ビニリデン一へキサフロロプロピレン) (商品名 : ァトフイナ - ジャパン製 KYNAR275 1) 2 g、 イソキノリン 50mgおよび L iBF4 0. 3 gを、 リン酸トリェチル 8 gとプロピレンカーボネート 3 gの混合溶液に 加熱溶解し、 均一な溶液を得、 室温に冷却した後ガラス基板上にドクターブレー ド法で塗布し、 次いで加熱乾燥をして混合溶媒の 5 0質量%を蒸発させ、 2 0 0 /m厚の均一なフィルム状固体電解質を得た。 この固体電解質はガラス基板から 容易に剥離し、 取り扱うことができ、 引張弾性率は 3 X 106N/m2であり、 自立性があることが確認された。 Poly (vinylidene fluoride hexafluoropropylene) (trade name: Atofina-Japan KYNAR275 1) 2 g, isoquinoline 50 mg and LiBF 4 0.3 g was heated and dissolved in a mixed solution of triethyl phosphate 8 g and propylene carbonate 3 g to obtain a uniform solution.After cooling to room temperature, the solution was coated on a glass substrate by the doctor blade method, and then heated and dried. Then, 50% by mass of the mixed solvent was evaporated to obtain a uniform solid electrolyte in the form of a film having a thickness of 200 / m. This solid electrolyte was easily peeled off from the glass substrate and could be handled. The tensile modulus was 3 × 10 6 N / m 2 , confirming that the solid electrolyte was self-supporting.
得られたフィルムの1 H— NMRスぺク トル測定の結果、 フィルム中にリン酸 ト リエチルとプロピレンカーボネートが 47. 6質量% (質量比 1. 0/0. 5) 含まれることが判った。 As a result of 1 H-NMR spectrum measurement of the obtained film, it was found that the film contained 47.6% by mass of triethyl phosphate and propylene carbonate (mass ratio 1.0 / 0.5). .
この固体電解質を、 複素インピーダンス法にてィォン伝導度測定したところ、 3 X 1 0 -4 S/ cmの良好な数値を得た。 The solid electrolyte was measured Ion conductivity at complex impedance method, 3 X 1 0 - obtain a good value of 4 S / cm.
このフィルム状固体電解質について実施例 1と同様の耐久性試験を行った結果 を表 1に併記した。 この固体電解質についても実施例 1と同様に、 耐久性に優れ ることが明らかである。 比較例 1  Table 1 also shows the results of the same durability test as in Example 1 for this film-shaped solid electrolyte. It is clear that this solid electrolyte is also excellent in durability as in Example 1. Comparative Example 1
ポリ (フッ化ビニリデン一へキサフロロプロピレン) (商品名 : ァトフイナ · ジャパン製 K YNAR 2 7 5 1 ) 2ぎと]^ 16 40. 3 gを、 リン酸トリェチ ル 2 gおよびアセトン 6 gに加熱溶解し、 均一な溶液を得、 室温に冷却した後ガ ラス基板上にドク夕一ブレード法で塗布し、 次いで加熱乾燥をして溶液中のァセ トンを蒸発させ、 2 0ひ〃 m厚の均一なフィルム状固体電解質を得た。 この固体 電解質はガラス基板から容易に剥離し、 取り扱うことができ、 引張弾性率は 3 X 1 0 fiN/m2であった。 Poly (hexa fluoroalkyl propylene to vinylidene fluoride I) (trade name: Atofuina Japan Ltd. K YNAR 2 7 5 1) and 2 skill] a ^ 16 4 0. 3 g, the phosphoric acid Toryechi le 2 g and acetone 6 g After heating and dissolving, a uniform solution was obtained. After cooling to room temperature, the solution was coated on a glass substrate by a single-blade method, and then heated and dried to evaporate acetone in the solution. A film-like solid electrolyte having a uniform thickness was obtained. This solid electrolyte was easily separated from the glass substrate and could be handled, and the tensile modulus was 3 × 10 fi N / m 2 .
この固体電解質を、 複素インピーダンス法にてィォン伝導度測定したところ、 1 X 1 0— 4S/cmの良好な数値を得た。 The solid electrolyte was measured Ion conductivity at complex impedance method, to obtain a good value of 1 X 1 0- 4 S / cm .
このフィルム状固体電解質について実施例 1と同様の耐久性試験を行った結果 を表 1に併記した。 表 1から明らかなように、 比較例 1のフィルム状固体電解質 中に含まれる溶媒の加水分解物量が多く、 実施例 1に比べて、 耐久性に劣るもの でめった。 比較例 2 Table 1 also shows the results of the same durability test as in Example 1 for this film-shaped solid electrolyte. As is clear from Table 1, the amount of the hydrolyzate of the solvent contained in the film-shaped solid electrolyte of Comparative Example 1 was large, and the durability was lower than that of Example 1. Comparative Example 2
ポリ (フッ化ビニリデン一へキサフロロプロピレン) (商品名 :ァトフイナ - ジャパン製 K YNAR 280 1 ) 2 gと L i TFS I O. 5 gを、 リン酸トリエ チル 8 gに加熱溶解し、 均一な溶液を得、 室温に冷却した後ガラス基板上にドク 夕一ブレード法で塗布し、 次いで加熱乾燥をして溶液中のリン酸トリエチルを 5 0質量%蒸発させ、 200〃m厚の均一なフィルム状固体電解質を得た。 この固 体電解質はガラス基板から容易に剥離し、 取り扱うことができ、 引張弾性率は 4 X 10 eN/m2であり、 自立性があることが確認された。 Poly (vinylidene fluoride-hexafluoropropylene) (Product name: KYNAR 280 1 manufactured by Atofina-Japan) 2 g and Li TFS I O. 5 g are heated and dissolved in 8 g of triethyl phosphate, and the mixture is uniformly mixed. A solution was obtained, cooled to room temperature, coated on a glass substrate by a doctor blade method, and then dried by heating to evaporate 50% by mass of triethyl phosphate in the solution. A solid electrolyte was obtained. This solid electrolyte was easily peeled off from the glass substrate and could be handled. The tensile elastic modulus was 4 × 10 eN / m 2 , confirming that the solid electrolyte was self-supporting.
またこの固体電解質を、 複素インピーダンス法にてィォン伝導度測定したとこ ろ、 2 X 10— 4S/c mの良好な数値を得た。 Also the solid electrolyte was obtained Toko filtrate was measured Ion conductivity at complex impedance method, a good value of 2 X 10- 4 S / cm.
このフィルム状固体電解質について実施例 1と同様の耐久性試験を行った結果 を表 1に併記した。 表 1から明らかなように、 比較例 1のフィルム状固体電解質 中に含まれる溶媒の加水分解物量が多く、 実施例 1に比べて、 耐久性に劣るもの であった。 表 1  Table 1 also shows the results of the same durability test as in Example 1 for this film-shaped solid electrolyte. As is clear from Table 1, the amount of the hydrolyzate of the solvent contained in the film-form solid electrolyte of Comparative Example 1 was large, and the durability was inferior to that of Example 1. table 1
溶媒の加水分解の状況 概観  Overview of solvent hydrolysis
実施例 1 変化なし 変化なし  Example 1 No change No change
実施例 2 ' 変化なし 変化なし  Example 2 'No change No change
実施例 3 変化なし 変化なし  Example 3 No change No change
実施例 4 変化なし 変化なし  Example 4 No change No change
実施例 5 変化なし 変化なし  Example 5 No change No change
実施例 6 変化なし 変化なし  Example 6 No change No change
実施例 Ί 変化なし 変化なし  Example な し No change No change
比較例 1 多い 黄変  Comparative Example 1 Many Yellowing
比較例 2 多い 黄変 実施例 8 Comparative Example 2 Many Yellowing Example 8
( 1) エレクト口クロミック発色電極の作製  (1) Fabrication of electoric chromic electrode
1 0 cmx 1 0 0111の 1 TOガラス上に厚さ 5 00 nmとなるように酸化タン グステンを蒸着し、 エレクト口クロミヅク発色電極を作製した。  Tungsten oxide was evaporated to a thickness of 500 nm on 1TO glass of 10 cm × 100111 to produce an elect-opening chromic electrode.
(2) 対向電極基板の作製  (2) Preparation of counter electrode substrate
活性炭粉末 (商品名 「YP 1 7」 、 クラレ社製、 表面積 1 5 0 0 m2/g) 8 g、 グラフアイ ト ( (商品名 「U S S P」 、 日本黒鉛商事社製) 4 g、 およびシ リコンワニス (商品名 「 79 3 1」 、 ォキツモ社製) 2 '6. 7 gにプチルセロソ ルブ 2 5 gを加えて混合し、 活性炭ペーストを調製した。 次いで、 ストライプ幅 5 00〃m、 高さ 1 0 0〃mのストライプ部材が全面積の 2 0 %になるように等 間隔に配置されたスクリーンを使用し、 l O cmx l O cmの I TOガラス上に 前記活性炭ペーストをストライプ部材として印刷し、 その後 1 80°Cで 9 0分熱 硬化させ、 対向電極を作製した。 Activated carbon powder (product name “YP17”, manufactured by Kuraray Co., Ltd., surface area: 1500 m 2 / g) 8 g, Graphite (product name “USSP”, manufactured by Nippon Graphite Trading Co., Ltd.) 4 g, and Recon varnish (trade name “7931”, manufactured by Okitsumo Co., Ltd.) 2 25 g of butyl cellosolve was added to 6.7 g and mixed to prepare an activated carbon paste. The activated carbon paste was printed as a stripe member on a lO cmx l O cm ITO glass using a screen equidistantly arranged so that the stripe member of 0〃m was 20% of the total area. Then, it was heat-cured at 180 ° C. for 90 minutes to prepare a counter electrode.
(3) イオン伝導層前駆体の調製  (3) Preparation of ion conductive layer precursor
L i C 104を l mo 1 /Lの濃度でァープチロラクトンに溶解した溶液 ( 1 Mの L i C 104/GB L溶液) 5. 0 g、 2— ( 5—メチルー 2—ヒドロキシ フエニル) ベンゾトリアゾール (C I BA— GE I GY社製 TINUVIN P) 0. 03 g、 およびトリエチルァミン (pKa= 1 0.7 2) 0. 0 0 3 gを混合し て均一溶液を得た。 L i C 10 4 a l (L i C 10 4 / GB L solution of 1 M) mo 1 / L concentration solution in § over Petit butyrolactone of 5. 0 g, 2- (5- methyl-2 A homogeneous solution was obtained by mixing 0.03 g of hydroxyphenyl) benzotriazole (TINUVIN P, manufactured by CI BA-GEIGY) and 0.03 g of triethylamine (pKa = 10.72).
(4) エレクト口クロミック素子の作製  (4) Fabrication of electoric chromic element
前記ェレク ト口クロミック発色電極と前記対向電極基板とを間隔 0. 3 mmで 対向させ、 周辺をエポキシ樹脂でシールした。 内部に前記電解液を真空注入して 注入口をエポキシ樹脂で封止した。 次いでエレク トロクロミック電極および対向 電極基板のそれそれにリード線を接続して素子を作製した。 得られた素子の性能 評価を下記の試験に基づいて評価した。  The chromic electrode of the electoral opening was opposed to the counter electrode substrate at an interval of 0.3 mm, and the periphery was sealed with epoxy resin. The electrolyte was vacuum injected into the inside, and the injection port was sealed with epoxy resin. Next, a lead wire was connected to each of the electrochromic electrode and the counter electrode substrate to prepare a device. The performance evaluation of the obtained device was evaluated based on the following test.
( 5 ) 着消色応答性評価  (5) Evaluation of color erasing response
前記エレク ト口クロミック素子を着消色した時の視感度透過率 (Tv) の変化 を測定した。 Tvの測定は朝日分光社製の視感度透過率計 MODE L 3 04で行 つた。 着色の際は、 エレク ト口クロミック発色電極側が負極、 対向電極側が正極にな るようにして 20mA (規制電圧 1. 5V) の電流を流した。 Tvが 20%に到 達したら消色モードに移行し、 エレク ト口クロミック発色電極側が正極、 対向電 極側が負極になるようにして 20mA (規制電圧 1. 0V) の電流を流した。 前記エレク トロクロミック素子を 80°Cで 1 000時間放置したが、 素子の透 明性は変わらなかった。 また、 着消色応答性を評価した結果、 消色応答性は全く 変化していなかった。 実施例 9 The change in luminous transmittance (Tv) when the electoric chromic element was colored or erased was measured. Tv was measured with a luminosity transmittance meter MODEL 304 manufactured by Asahi Spectroscopy. At the time of coloring, a current of 20 mA (regulated voltage: 1.5 V) was passed so that the chromic electrode on the electoral port side was the negative electrode and the counter electrode side was the positive electrode. When Tv reached 20%, the mode was switched to the decoloring mode, and a current of 20 mA (regulated voltage: 1.0 V) was applied so that the chromic electrode on the electoral port was positive and the opposite electrode was negative. The electrochromic device was left at 80 ° C. for 1,000 hours, but the transparency of the device was not changed. In addition, as a result of evaluating the color erasing response, the color erasing response was not changed at all. Example 9
( 1) エレクト口クロミック発色電極の作製  (1) Fabrication of electoric chromic electrode
10 cmx 10 cmの I TOガラス上に厚さ 500 nmとなるように酸化タン グステンを蒸着し、 エレクト口クロミック発色電極を作製した。  Tungsten oxide was vapor-deposited on a 10 cm × 10 cm ITO glass to a thickness of 500 nm to fabricate an electoc-chromic electrode.
(2) 対向電極基板の作製  (2) Preparation of counter electrode substrate
活性炭粉末 (商品名 「YP 17」 、 クラレ社製、 表面積 150 OmVg) 8 g、 グラフアイ ト ( (商品名 「US SP」 、 日本黒鉛商事社製) 4 g、 およびシ リコンワニス (商品名 「7931」 、 ォキヅモ社製) 26. 7 gにプチルセロソ ルブ 2 5 gを加えて混合し、 活性炭ペーストを調製した。 次いで、 ストライプ幅 500〃m、 高さ 100〃mのストライプ部材が全面積の 20 %になるように等間 隔に配置されたスクリーンを使用し、 1 0 cmx 10 cmの I T 0ガラス上に前 記活性炭ペーストをストライプ部材として印刷し、 その後 180°Cで 90分熱硬 化させ、 対向電極を作製した。  Activated carbon powder (trade name “YP 17”, manufactured by Kuraray Co., Ltd., surface area 150 OmVg) 8 g, Graphite (trade name “US SP”, manufactured by Nippon Graphite Shoji Co., Ltd.) 4 g Activated carbon paste was prepared by adding and mixing 25 g of butylcellosolve to 26.7 g. Then, a stripe member with a stripe width of 500 m and a height of 100 m comprised 20% of the total area. Using a screen placed at equal intervals so as to obtain the above, the above-mentioned activated carbon paste was printed as a stripe member on a 10 cm x 10 cm IT0 glass, and then heat-hardened at 180 ° C for 90 minutes. A counter electrode was produced.
(3) イオン伝導層前駆体の調製  (3) Preparation of ion conductive layer precursor
L i B F4を l mo l/Lの濃度でプロピレンカーボネートに溶解した溶液 ( 1 Mの L i B F4/P C溶液) 4. O :、 メ トキシポリエチレングリコールモ ノメ夕クリレート (新中村化学工業株式会社製 M 40 G N [ォキシエチレンュ ニッ ト数 4] ) 1. 0 g、 ポリエチレングリコールジメ夕クリレ一ト (新中村化 学工業株式会社製 4 G [ォキシエチレンユニッ ト数 4] ) 0. 02 g、 1 - ( 4ーィソプロピルフエニル) 一 2—ヒドロキシ _ 2—メチルプロパン一 1—ォ ン 0. 02 g、 2— ( 5 _メチル _ 2—ヒドロキシフエニル) ベンゾトリアゾー ル (C I B A— GE I GY社製 TINUVIN P) 0. 03 g、 およびピリジン ( K a= 5. 42 ) 0. 006 gを混合して均一溶液を得た。 L i BF 4 and (a 1 M L i BF 4 / PC solution) solution in propylene carbonate at a concentration of l mo l / L 4. O: , main butoxy polyethylene glycol monomethyl drink evening acrylate (Shin-Nakamura Chemical Co. Stock Company M 40 GN [Number of oxyethylene units 4]) 1.0 g, Polyethylene glycol dimethyl acrylate (Shin-Nakamura Chemical Co., Ltd. 4G [Number of oxyethylene units 4]) 0.02 g , 1- (4-Isopropylphenyl) 1-2-hydroxy_2-methylpropane-11-0.02 g, 2- (5_methyl_2-hydroxyphenyl) benzotriazole And 0.06 g of pyridine (K a = 5.42) were mixed with each other to obtain a homogeneous solution.
(4) エレク ト口クロミック素子の作製  (4) Fabrication of electoric chromic element
前記エレク トロクロミック発色電極と前記対向電極基板とを間隔 0. 3mmで 対向させ、 周辺をエポキシ樹脂でシールした。 内部に前記電解液を真空注入して 注入口をェポキシ樹脂で封止し、 一晩蛍光灯を照射して電解液をゲル化させた。 次いで、 エレク ト口クロミック電極および対向電極基板のそれそれにリ一ド線を 接続して素子を作製した。 得られた素子の性能評価を下記の試験に基づいて評価 した。  The electrochromic coloring electrode was opposed to the counter electrode substrate at a distance of 0.3 mm, and the periphery was sealed with an epoxy resin. The electrolyte was vacuum-injected into the inside, the inlet was sealed with epoxy resin, and the electrolyte was gelled by irradiating with a fluorescent lamp overnight. Next, a lead wire was connected to each of the electorifice chromic electrode and that of the counter electrode substrate, thereby producing a device. The performance of the obtained device was evaluated based on the following test.
( 5 ) 着消色応答性評価  (5) Evaluation of color erasing response
前記エレク ト口クロミック素子を着消色した時の視感度透過率 (Tv) の変化 を測定した。 Tvの測定は朝日分光社製の視感度透過率計 MODEL 304で行 つた o  The change in luminous transmittance (Tv) when the electoric chromic element was colored or erased was measured. Tv was measured using a luminous transmittance meter MODEL 304 manufactured by Asahi Spectroscopy o
着色の際は、 エレクト口クロミック発色電極側が負極、 対向電極側が正極にな るようにして 20mA (規制電圧 1. 5V) の電流を流した。 Tvが 20%に到 達したら消色モードに移行し、 エレク ト口クロミック発色電極側が正極、 対向電 極側が負極になるようにして 20mA (規制電圧 1. 0V) の電流を流した。 前記エレク トロクロミヅク素子を 80°Cで 1000時間放置したが、 素子の透 明性は変わらなかった。 また、 着消色応答性を評価した結果、 消色応答性は全く 変化していなかった。 実施例 10  At the time of coloring, a current of 20 mA (regulated voltage: 1.5 V) was passed so that the electoric chromic electrode side was the negative electrode and the counter electrode side was the positive electrode. When Tv reached 20%, the mode was switched to the decoloring mode, and a current of 20 mA (regulated voltage: 1.0 V) was applied so that the chromic electrode on the electoral port was positive and the opposite electrode was negative. When the electrochromic device was left at 80 ° C. for 1000 hours, the transparency of the device was not changed. In addition, as a result of evaluating the color erasing response, the color erasing response was not changed at all. Example 10
(1) エレク ト口クロミック発色電極の作製  (1) Fabrication of chromic electrode for electoral opening
l O cmx l O cmの I T 0ガラス上に厚さ 500 nmとなるように酸化夕ン グステンを蒸着し、 エレクトロクロミック発色電極を作製した。  Oxidized tungsten was vapor-deposited to a thickness of 500 nm on I O cmx I O cm I T0 glass to produce an electrochromic coloring electrode.
(2) 対向電極基板の作製  (2) Preparation of counter electrode substrate
10 cmx 10 c mの I T 0ガラス上に、 厚さ 5000 Aとなるように酸化ィ リジゥムを蒸着し、 対向電極基板を作製した。  On a 10 cm × 10 cm Ito glass, an iridium oxide was deposited to a thickness of 5000 A to produce a counter electrode substrate.
(3) イオン伝導層前駆体の調製 · L i BF4を lmo 1 /Lの濃度でァ一プチロラク トンに溶解した溶液 ( 1 M の L i B F4/GB L溶液) 4. 0 g、 メ トキシポリエチレングリコールモノメ 夕クリレート (新中村化学工業株式会社製 M40 GN [ォキシエチレンュニヅ ト数 4] ) 1. 0 g、 ポリエチレングリコールジメ夕クリレート (新中村化学ェ 業株式会社製 4G [ォキシエチレンュニッ ト数 4] ) 0. 02 g、 1— (4— ィソプロピルフエニル) 一 2—ヒドロキシー 2—メチルプロパン一 1—オン 0. 02 2— ( 5—メチル一 2—ヒドロキシフエニル) ベンゾトリァゾ一ル'( C I BA— GE I GY社製 TINUVIN P) 0. 03 :、 およびピリジン 0. 00 5 gを混合して均一溶液を得た。 (3) Preparation of ion conductive layer precursor L i BF 4 was dissolved in § one Puchiroraku tons at a concentration of lmo 1 / L solution (1 M of L i BF 4 / GB L solution) 4. 0 g, main butoxy polyethylene glycol monomethyl evening acrylate (Shin Nakamura Chemical M40 GN manufactured by Kogyo Co., Ltd. [Number of oxyethylene units 4]) 1.0 g, polyethylene glycol dimethacrylate (4G manufactured by Shin-Nakamura Chemical Co., Ltd. [Number of oxyethylene units 4]) 0 .02 g, 1— (4-Isopropylphenyl) 1-2-hydroxy-2-methylpropane-1-one 0.02 2— (5-Methyl-12-hydroxyphenyl) benzotriazole '(CI BA — TINUVIN P) 0.03: GE I GY and 0.005 g of pyridine were mixed to obtain a homogeneous solution.
(4) エレク ト口クロミック素子の作製  (4) Fabrication of electoric chromic element
前記エレクトロクロミック発色電極と前記対向電極基板とを間隔 0. 3mmで 対向させ、 周辺をエポキシ樹脂でシールした。 内部に前記電解液を真空注入して 注入口をェポキシ樹脂で封止し、 一晩蛍光灯を照射して電解液をゲル化させた。 次いで、 エレク トロクロミック電極および対向電極基板のそれそれにリード線を 接続して素子を作製した。 得られた素子の性能評価を下記の試験に基づいて評価 した。  The electrochromic coloring electrode and the counter electrode substrate were opposed to each other at a distance of 0.3 mm, and the periphery was sealed with an epoxy resin. The electrolyte was vacuum-injected into the inside, the inlet was sealed with epoxy resin, and the electrolyte was gelled by irradiating with a fluorescent lamp overnight. Next, a lead wire was connected to each of the electrochromic electrode and the counter electrode substrate to prepare a device. The performance of the obtained device was evaluated based on the following test.
( 5 ) 着消色応答性評価  (5) Evaluation of color erasing response
前記エレク ト口クロミック素子を着消色した時の視感度透過率 (Tv) の変化 を測定した。 Tvの測定は朝日分光社製の視感度透過率計 MODEL 304で行 つ Ίこ。  The change in luminous transmittance (Tv) when the electoric chromic element was colored or erased was measured. Tv is measured with a luminous transmittance meter MODEL 304 manufactured by Asahi Spectroscopy.
着色の際は、 エレクト口クロミック発色電極側が負極、 対向電極側が正極にな るようにして 20mA (規制電圧 1. 5V) の電流を流した。 Tvが 20%に到 達したら消色モ一ドに移行し、 エレク ト口クロミック発色電極側が正極、 対向電 極側が負極になるようにして 20 mA (規制電圧 1. 0 V) の電流を流した。 前記エレク トロクロミツク素子を 80°Cで 1000時間放置したが、 素子の透 明性は変わらなかった。 また、 着消色応答性を評価した結果、 消色応答性は全く 変化していなかった。 比較例 3 At the time of coloring, a current of 20 mA (regulated voltage: 1.5 V) was passed so that the electoric chromic electrode side was the negative electrode and the counter electrode side was the positive electrode. When Tv reaches 20%, the mode shifts to the decoloring mode, and a current of 20 mA (regulated voltage: 1.0 V) is applied so that the chromic color developing electrode side is positive and the opposite electrode side is negative. did. When the electrochromic device was left at 80 ° C. for 1000 hours, the transparency of the device did not change. In addition, as a result of evaluating the color erasing response, the color erasing response was not changed at all. Comparative Example 3
( 1 ) エレクト口クロミック発色電極の作製  (1) Preparation of electoric chromic electrode
10 cmx 100111の1 TOガラス上に厚さ 500 nmとなるように酸化夕ン グステンを蒸着し、 エレクト口クロミック発色電極を作製した。  Oxidized tungsten was vapor-deposited on 10 cm × 100111 1TO glass to a thickness of 500 nm to produce an elect-port chromic color electrode.
(2) 対向電極基板の作製  (2) Preparation of counter electrode substrate
活性炭粉末 (商品名 「YP 17」 、 クラレ社製、 表面積 150 OmVg) 8 g、 グラフアイ ト ( (商品名 「USSP」 、 日本黒鉛商事社製) 4g、 およびシ リコンワニス (商品名 「 7931」 、 ォキツモ社製) 26. 7 gにプチルセロソ ルブ 25 gを加えて混合し、 活性炭ペーストを調製した。 次いで、 ストライプ幅 500 im、 高さ 100〃mのストライプ部材が全面積の 20%になるように等間 隔に配置されたスクリーンを使用し、 l O cmx l O cmの I TOガラス上に前 記活性炭ペーストをストライプ部材として印刷し、 その後 180°Cで 90分熱硬 化させ、 対向電極を作製した。  Activated carbon powder (trade name “YP 17”, manufactured by Kuraray Co., Ltd., surface area 150 OmVg) 8 g, graphite (trade name “USSP”, manufactured by Nippon Graphite Shoji Co., Ltd.) 4 g Activated carbon paste was prepared by adding and mixing 25 g of butyl cellosolve to 26.7 g, and then the stripe member with a stripe width of 500 im and a height of 100 m was made up to 20% of the total area. Using a screen placed at equal intervals, the above-mentioned activated carbon paste was printed as a stripe member on I O cm x I O cm ITO glass, and then heat-hardened at 180 ° C for 90 minutes, and the counter electrode was Produced.
(3) 電解液の調製  (3) Preparation of electrolyte
1 Mの L i B F4/GB L溶液 5. 0 g、 および 2— (5—メチルー 2—ヒド ロキシフエニル) ペンゾトリアゾール (C I B A— GE I GY社製 TINUVIN P) 0. 03 gを混合して均一溶液を得た。 L i BF 4 / GB L solution of 1 M 5. 0 g, and 2- (5-methyl-2-hydrate Rokishifueniru) Pen zone triazole (CIBA- GE I GY Inc. TINUVIN P) by mixing 0. 03 g A homogeneous solution was obtained.
(4) エレク ト口クロミック素子の作製  (4) Fabrication of electoric chromic element
前記エレクトロクロミック発色電極と前記対向電極基板とを間隔 0. 3mmで 対向させ、 周辺をエポキシ樹脂でシールした。 内部に前記電解液を真空注入して 注入口をエポキシ樹脂で封止した。 次いで、 エレク ト口クロミック電極および対 向電極基板のそれそれにリード線を接続して素子を作製した。 得られた素子の性 能評価を下記の試験に基づいて評価した。  The electrochromic coloring electrode and the counter electrode substrate were opposed to each other at a distance of 0.3 mm, and the periphery was sealed with an epoxy resin. The electrolyte was vacuum injected into the inside, and the injection port was sealed with epoxy resin. Next, a lead wire was connected to each of the electorifice chromic electrode and the counter electrode substrate to prepare a device. The performance evaluation of the obtained device was evaluated based on the following test.
( 5 ) 着消色応答性評価  (5) Evaluation of color erasing response
前記エレク ト口クロミック素子を着消色した時の視感度透過率 (Tv) の変化 を測定した。 Tvの測定は朝日分光社製の視感度透過率計 MODEL 304で行 つた。  The change in luminous transmittance (Tv) when the electoric chromic element was colored or erased was measured. Tv was measured with a luminous transmittance meter MODEL 304 manufactured by Asahi Spectroscopy.
着色の際は、 エレク ト口クロミック発色電極側が負極、 対向電極側が正極にな るようにして 20 mA (規制電圧 1. 5V) の電流を流した。 Tvが 20%に到 達したら消色モードに移行し、 エレク ト口クロミック発色電極側が正極、 対向電 極側が負極になるようにして 2 0 mA (規制電圧 1 . 0 V ) の電流を流した。 前記エレクトロクロミヅク素子を 8 0 °Cで 1 0 0 0時間放置した結果、 イオン 伝導層が加水分解され、 透明性が低下した。 また、 着消色応答性を評価した結果、 消色応答性が低下していた。 At the time of coloring, a current of 20 mA (regulated voltage: 1.5 V) was passed so that the chromic color developing electrode side became the negative electrode and the counter electrode side became the positive electrode. Tv reaches 20% When the voltage reached, the mode was changed to the decoloring mode, and a current of 20 mA (regulated voltage: 1.0 V) was passed so that the chromic color developing electrode side became the positive electrode and the counter electrode side became the negative electrode. As a result of leaving the electrochromic device at 800 ° C. for 100 hours, the ion conductive layer was hydrolyzed and the transparency was lowered. In addition, as a result of evaluating the coloring / decoloring responsiveness, the erasing response was reduced.
[図面の簡単な説明] [Brief description of drawings]
図 1は、 本発明のエレクトロクロミック素子の一実施形態を示す断面図である 図 2は、 対向電極の正面図の一例である。  FIG. 1 is a cross-sectional view showing one embodiment of the electrochromic device of the present invention. FIG. 2 is an example of a front view of a counter electrode.
図 3は、 対向電極の正面図の一例である。  FIG. 3 is an example of a front view of the counter electrode.

Claims

請 求 の 範 囲 The scope of the claims
1 . 支持電解質、 有機溶媒および塩基性ァミン化合物を含有してなる電 解質。 1. An electrolyte comprising a supporting electrolyte, an organic solvent and a basic amine compound.
2 . 高分子マトリックス中に、 支持電解質、 有機溶媒および塩基性ァミ ン化合物を含有してなる電解質。 2. An electrolyte containing a supporting electrolyte, an organic solvent, and a basic amine compound in a polymer matrix.
3 . 前記高分子マトリックスがポリフッ化ビ二リデン系高分子化合物で あることを特徴とする請求の範囲第 2項に記載の電解質。 3. The electrolyte according to claim 2, wherein the polymer matrix is a polyvinylidene fluoride-based polymer compound.
4 . 前記塩基性ァミン化合物が第 3級ァミンであることを特徴とする請 求の範囲第 1項または第 2項に記載の電解質。 4. The electrolyte according to claim 1 or 2, wherein the basic amine compound is a tertiary amine.
5 . 前記塩基性ァミン化合物の含有量が電解質の質量に対して 1質量 p p m〜 1 0 0 0 0質量 p p mであることを特徴とする請求の範囲第 1項または第 2項に記載の電解質。 5. The electrolyte according to claim 1, wherein the content of the basic amine compound is 1 mass ppm to 1000 mass ppm with respect to the mass of the electrolyte.
6 . 前記有機溶媒がリン酸エステル系化合物あるいはリン酸エステル系 化合物を含有する溶媒であることを特徴とする請求の範囲第 1項または第 2項に 記載の電解質。 6. The electrolyte according to claim 1, wherein the organic solvent is a phosphate compound or a solvent containing a phosphate compound.
7 . 2枚の透明導電性基板に、 電解質の層が挟持されているエレク トロ クロミヅク素子であって、 前記導電性基板のうち少なくとも一方にエレク トロク 口ミック層を有しており、 かつ、 前記電解質が塩基性ァミン化合物を含有してな ることを特徴とするエレク ト口クロミック素子。 7. An electrochromic element in which an electrolyte layer is sandwiched between two transparent conductive substrates, wherein at least one of the conductive substrates has an electrochromic layer, and An electoric chromic element, wherein the electrolyte contains a basic amine compound.
8 . 前記塩基性ァミン化合物が第 3級ァミンであることを特徴とする請 求の範囲第 7項に記載のェレク ト口クロミック素子。 8. The elect-mouth chromic device according to claim 7, wherein the basic amine compound is a tertiary amine.
9 . 前記電解質が、 支持電解質、 有機溶媒および塩基性ァミン化合物を 含有してなる電解質であることを特徴とする請求の範囲第 7項に記載のエレク ト 口クロミック素子。 9. The electoral chromic device according to claim 7, wherein the electrolyte is an electrolyte containing a supporting electrolyte, an organic solvent and a basic amine compound.
1 0 . 前記電解質が、 高分子マトリックス中に、 支持電解質、 有機溶媒お よび塩基性ァミン化合物を含有してなる電解質であることを特徴とする請求の範 囲第 7項に記載のエレク トロクロミック素子。 10. The electrochromic according to claim 7, wherein the electrolyte is an electrolyte containing a supporting electrolyte, an organic solvent, and a basic amine compound in a polymer matrix. element.
1 1 . 前記高分子マトリックスがポリフッ化ビニリデン系高分子化合物で あることを特徴とする請求の範囲第 1 0項に記載のエレク トロクロミック素子。 11. The electrochromic device according to claim 10, wherein the polymer matrix is a polyvinylidene fluoride-based polymer compound.
1 2 . 前記塩基性ァミン化合物の含有量が電解質の質量に対して 1質量 p ρ π!〜 1 0 0 0 0質量 p p mであることを特徴とする請求の範囲第 7項、 第 9項 または第 1 0項に記載のエレク トロクロミック素子。 1 2. The content of the basic amine compound is 1 mass p ρ π! The electrochromic device according to claim 7, 9 or 10, wherein the electrochromic element has a mass of 1100000 ppm.
1 3 . 前記有機溶媒がリン酸エステル系化合物あるいはリン酸エステル系 化合物を含有する溶媒であることを特徴とする請求の範囲第 9項または第 1 0項 に記載のエレク ト口クロミック素子。 13. The electoric chromic device according to claim 9 or 10, wherein the organic solvent is a phosphate compound or a solvent containing a phosphate compound.
1 4 . 前記エレク トロクロミック層が酸化タングステンからなることを特 徴とする請求の範囲第 7項に記載のエレク トロクロミック素子。 14. The electrochromic device according to claim 7, wherein the electrochromic layer is made of tungsten oxide.
PCT/JP2002/012444 2001-11-29 2002-11-28 Electrolyte and electrochromic device WO2003046653A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2001-364378 2001-11-29
JP2001364378A JP2003161963A (en) 2001-11-29 2001-11-29 Electrochromic element
JP2002-080693 2002-03-22
JP2002080693A JP4295466B2 (en) 2002-03-22 2002-03-22 Solid electrolyte

Publications (1)

Publication Number Publication Date
WO2003046653A1 true WO2003046653A1 (en) 2003-06-05

Family

ID=26624763

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/012444 WO2003046653A1 (en) 2001-11-29 2002-11-28 Electrolyte and electrochromic device

Country Status (1)

Country Link
WO (1) WO2003046653A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7630117B2 (en) 2004-09-21 2009-12-08 Lg Chem, Ltd. Electrolyte comprising eutectic mixture and electrochromic device using the same
CN114296285A (en) * 2021-12-16 2022-04-08 烟台大学 High-performance electrolyte for Prussian blue-based electrochromic device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5673423A (en) * 1979-11-21 1981-06-18 Elna Co Ltd Electrolyte for driving electrolytic condenser
JPH0215567A (en) * 1988-07-01 1990-01-19 Sanyo Electric Co Ltd Nonaqueous type electrolyte battery
JPH0343960A (en) * 1989-07-11 1991-02-25 Sanyo Electric Co Ltd Nonaqueous electrolyte battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5673423A (en) * 1979-11-21 1981-06-18 Elna Co Ltd Electrolyte for driving electrolytic condenser
JPH0215567A (en) * 1988-07-01 1990-01-19 Sanyo Electric Co Ltd Nonaqueous type electrolyte battery
JPH0343960A (en) * 1989-07-11 1991-02-25 Sanyo Electric Co Ltd Nonaqueous electrolyte battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7630117B2 (en) 2004-09-21 2009-12-08 Lg Chem, Ltd. Electrolyte comprising eutectic mixture and electrochromic device using the same
CN114296285A (en) * 2021-12-16 2022-04-08 烟台大学 High-performance electrolyte for Prussian blue-based electrochromic device

Similar Documents

Publication Publication Date Title
EP0519921B1 (en) Electrochromic element, materials for use in such element, processes for making such element and such materials and use of such element in an electrochromic glass device
JP6256841B2 (en) Flexible transparent electrochromic device and method for its preparation
KR101731301B1 (en) Microporous polymer membrane for electrochromic device and smart window including the same
US11203688B2 (en) Composite containing organic/metallic hybrid polymer and ionic liquid, electrochromic device in which same is used, and method for manufacturing said composite and device
JP2014510944A (en) Stable electrochromic module
CN102841473B (en) A kind of electrochromic device and preparation method thereof
Ganesh et al. Designing an All‐Solid‐State Tungsten Oxide Based Electrochromic Switch with a Superior Cycling Efficiency
KR20200038456A (en) Electro-optical device with transparent ion exchange membrane
JP4360663B2 (en) Electrochromic mirror
JPH11183942A (en) Electrochromic element
KR102052440B1 (en) Electrochromic supercapacitor
JP2003161963A (en) Electrochromic element
WO2003046653A1 (en) Electrolyte and electrochromic device
EP3444663B1 (en) Electrochromic device and manufacturing method therefor
Wu et al. Electrochromic materials: Scope for the cyclic decay mechanisms and performance stability optimisation strategies
KR101780704B1 (en) Gel polymer electrolyte composition and electrochromic device using the same
JP2003043526A (en) Electrochromic element
JPH04328723A (en) Electrochromic element
JP2003015164A (en) Electrochromic element
JP2004101729A (en) Thin film
Sun et al. Cellulose-based KV3O8· 0· 75H2O composite films and self-healing Li+ gel electrolyte for multifunctional flexible electrochromic device
WO2003003110A1 (en) Electrochromic element
WO1999032928A1 (en) Electrochromic element
JP2000235198A (en) Electrochromic device
JP2006134827A (en) Electrode and dye-sensitized solar cell

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR GB

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase