JPH0715821B2 - Non-aqueous electrolyte battery - Google Patents

Non-aqueous electrolyte battery

Info

Publication number
JPH0715821B2
JPH0715821B2 JP63165725A JP16572588A JPH0715821B2 JP H0715821 B2 JPH0715821 B2 JP H0715821B2 JP 63165725 A JP63165725 A JP 63165725A JP 16572588 A JP16572588 A JP 16572588A JP H0715821 B2 JPH0715821 B2 JP H0715821B2
Authority
JP
Japan
Prior art keywords
battery
aqueous electrolyte
negative electrode
electrolytic solution
storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63165725A
Other languages
Japanese (ja)
Other versions
JPH0215567A (en
Inventor
修弘 古川
精司 吉村
昌利 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP63165725A priority Critical patent/JPH0715821B2/en
Priority to CA000582548A priority patent/CA1308778C/en
Priority to DE3855872T priority patent/DE3855872T2/en
Priority to EP88119035A priority patent/EP0349675B1/en
Publication of JPH0215567A publication Critical patent/JPH0215567A/en
Priority to US07/492,267 priority patent/US5112704A/en
Priority to CA000616390A priority patent/CA1317633C/en
Priority to CA000616388A priority patent/CA1317631C/en
Priority to CA000616389A priority patent/CA1317632C/en
Publication of JPH0715821B2 publication Critical patent/JPH0715821B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • H01M6/162Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • H01M6/162Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte
    • H01M6/168Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte by additives

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、電池缶内に、正極と負極と溶質及び有機溶媒
から成る電解液とを備え、上記溶質としてトリフルオロ
メタンスルホン酸リチウムが用いられた非水系電解液電
池に関し、特に電解液の改良に関するものである。
TECHNICAL FIELD The present invention provides a battery can in which a positive electrode, a negative electrode, and an electrolyte solution containing a solute and an organic solvent are provided, and lithium trifluoromethanesulfonate is used as the solute. The present invention relates to an aqueous electrolyte battery, and more particularly to improvement of an electrolyte.

従来の技術 リチウム、ナトリウム、或いはこれらの合金を活物質と
する負極を用いた非水系電解液電池では、高エネルギー
密度で且つ自己放電率が低いという利点を有している
が、低温放電特性に劣るという課題を有している。
2. Description of the Related Art Non-aqueous electrolyte batteries using a negative electrode using lithium, sodium, or an alloy thereof as an active material have the advantages of high energy density and low self-discharge rate, but have low temperature discharge characteristics. It has the problem of being inferior.

そこで、電解液の溶質として、非水系溶媒に対する溶解
度が高く、低温放電時に負極上にリチウムが析出するこ
とのないトリフルオロメタンスルホン酸リチウム(LiCF
3SO3)を用いて、リチウム電池の低温放電特性を改良す
るようなものが提案されている。しかし、上記LiCF3SO3
を溶質として用いた場合には、電池を長期間保存した場
合に、電池缶、集電体等の金属材料が腐食して電解液中
に溶解する。更に、この金属材料が負極表面に再析出す
る結果、保存後の低温放電特性が劣化する。
Therefore, as a solute of the electrolytic solution, lithium trifluoromethanesulfonate (LiCF), which has a high solubility in a non-aqueous solvent and does not deposit lithium on the negative electrode during low temperature discharge, is used.
The use of 3 SO 3 ) to improve the low temperature discharge characteristics of lithium batteries has been proposed. However, the above LiCF 3 SO 3
When is used as a solute, when the battery is stored for a long period of time, the metal material such as the battery can and the current collector is corroded and dissolved in the electrolytic solution. Furthermore, as a result of re-precipitation of this metal material on the surface of the negative electrode, the low temperature discharge characteristics after storage deteriorate.

そこで、電池缶材料としてステンレス鋼、特にニッケル
をほとんど含まないフェライト系ステンレス鋼が用いら
れている。
Therefore, stainless steel, particularly ferritic stainless steel containing almost no nickel, is used as a material for battery cans.

発明が解決しようとする課題 しかしながら、このようなものを電池缶材料として用い
た場合であっても金属材料の腐食という課題を十分に解
決することができなかった。この結果、保存後の低温放
電特性を未だ十分に改良することができないという課題
を有していた。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention However, even when such a material is used as a battery can material, the problem of corrosion of a metal material cannot be sufficiently solved. As a result, there is a problem that the low temperature discharge characteristics after storage cannot be sufficiently improved.

そこで本発明は、電池缶材料の腐食を十分に防止するこ
とにより、保存後の低温放電特性に優れた非水系電解液
電池の提供を目的とするものである。
Therefore, an object of the present invention is to provide a non-aqueous electrolyte battery having excellent low-temperature discharge characteristics after storage by sufficiently preventing corrosion of the battery can material.

課題を解決するための手段 本発明は上記目的を達成するために、電池缶内に、正極
と負極と溶質及び有機溶媒から成る電解液とを備え、上
記溶質としてトリフルオロメタンスルホン酸リチウムが
用いられた非水系電解液電池において、前記電解液中
に、前記電池缶と電解液との反応を阻止する、1,2−ジ
フェニルエチレンジアミン、リン酸エステル、亜リン酸
エステル、次亜リン酸化合物からなる群より選択された
少なくとも1種の反応阻止剤が添加されたことを特徴と
する。
Means for Solving the Problems The present invention, in order to achieve the above object, comprises a positive electrode, a negative electrode, and an electrolyte containing a solute and an organic solvent in a battery can, and lithium trifluoromethanesulfonate is used as the solute. In a nonaqueous electrolytic solution battery, the electrolytic solution comprises a 1,2-diphenylethylenediamine, a phosphoric acid ester, a phosphorous acid ester, and a hypophosphorous acid compound, which inhibits the reaction between the battery can and the electrolytic solution. At least one reaction inhibitor selected from the group is added.

作用 上記構成の如く、電解液中に、電池缶と電解液との反応
を阻止する、1,2−ジフェニルエチレンジアミン、リン
酸エステル、亜リン酸エステル、次亜リン酸化合物から
なる群より選択された少なくとも1種の反応阻止剤を添
加すれば、トリフルオロメタンスルホン酸リチウムを溶
質として用いた場合であっても、電池の保存中に電池缶
が腐食するのを抑制することができる。したがって、初
期の低温放電特性のみならず保存後の低温放電特性も優
れることになる。
Action As described above, in the electrolytic solution, selected from the group consisting of 1,2-diphenylethylenediamine, phosphoric acid ester, phosphorous acid ester, hypophosphorous acid compound, which inhibits the reaction between the battery can and the electrolytic solution. By adding at least one reaction inhibitor, even when lithium trifluoromethanesulfonate is used as a solute, it is possible to prevent corrosion of the battery can during storage of the battery. Therefore, not only the initial low temperature discharge characteristics but also the low temperature discharge characteristics after storage are excellent.

第1実施例 (実施例I) 本発明の実施例Iを、第1図に示す扁平型非水系電解液
電池に基づいて、以下に説明する。
First Example (Example I) Example I of the present invention will be described below based on the flat type non-aqueous electrolyte battery shown in FIG.

リチウム金属から成る負極2は負極集電体7の内面に圧
着されており、この負極集電体7はフェライト系ステン
レス鋼(SUS430)から成る断面略コ字状の負極缶5の内
底面に固着されている。上記負極缶5の周端はポリプロ
ピレン製の絶縁パッキング8の内部に固定されており、
絶縁パッキング8の外周にはステンレスから成り上記負
極缶5とは反対方向に断面略コ字状を成す正極缶4が固
定されている。この正極缶4の内底面には正極集電体6
が固定されており、この正極集電体6の内面には正極1
が固定されている。この正極1と前記負極2との間に
は、電解液が含浸されたセパレータ3が介装されてい
る。
The negative electrode 2 made of lithium metal is pressure-bonded to the inner surface of the negative electrode current collector 7, and the negative electrode current collector 7 is fixed to the inner bottom surface of the negative electrode can 5 made of ferritic stainless steel (SUS430) and having a substantially U-shaped cross section. Has been done. The peripheral edge of the negative electrode can 5 is fixed inside an insulating packing 8 made of polypropylene,
A positive electrode can 4 made of stainless steel and having a substantially U-shaped cross section is fixed to the outer periphery of the insulating packing 8 in a direction opposite to the negative electrode can 5. A positive electrode current collector 6 is provided on the inner bottom surface of the positive electrode can 4.
Is fixed on the inner surface of the positive electrode current collector 6.
Is fixed. A separator 3 impregnated with an electrolytic solution is interposed between the positive electrode 1 and the negative electrode 2.

ところで、前記正極1は、350〜430℃の温度範囲で熱処
理した二酸化マンガンを活物質として用い、この二酸化
マンガンと、導電剤としてのカーボン粉末と、結着剤と
してのフッ素樹脂粉末とを85:10:5の重量比で混合す
る。次に、この混合物を加圧形成した後、250〜350℃で
熱処理して作製した。一方、前記負極2はリチウム圧延
板を所定寸法に打抜くことにより作製した。また、電解
液としては、PC(プロピレンカーボネート)とDME(1,2
−ジメトキシエタン)とを4:6の割合で混合した混合溶
媒に、トリフルオロメタンスルホン酸リチウム(LiCF3S
O3)を1モル/l溶解させ、更に添加剤として亜リン酸ト
リエチルを0.1g/l溶解させたものを用いた。尚、電池径
は20mm、電池厚は2.5mm、電池容量は130mAHである。
By the way, the positive electrode 1 uses manganese dioxide heat-treated in a temperature range of 350 to 430 ° C. as an active material, and the manganese dioxide, carbon powder as a conductive agent, and fluororesin powder as a binder are mixed with 85: Mix at a weight ratio of 10: 5. Next, this mixture was formed under pressure and then heat-treated at 250 to 350 ° C. On the other hand, the negative electrode 2 was produced by punching a rolled lithium plate into a predetermined size. In addition, as the electrolyte, PC (propylene carbonate) and DME (1,2
-Dimethoxyethane) in a mixed solvent of 4: 6, lithium trifluoromethanesulfonate (LiCF 3 S
O 3 ) was dissolved in 1 mol / l, and triethyl phosphite was dissolved in 0.1 g / l as an additive. The battery diameter is 20 mm, the battery thickness is 2.5 mm, and the battery capacity is 130 mAH.

このようにして作製した電池を、以下(A1)電池と称す
る。
The battery thus manufactured is hereinafter referred to as (A 1 ) battery.

(実施例II) 電解液の添加剤として、亜リン酸トリ−n−ブチルを用
い、これを0.1g/l溶解させた他は、上記実施例Iと同様
にして電池を作製した。
(Example II) A battery was prepared in the same manner as in Example I except that tri-n-butyl phosphite was used as an additive for the electrolytic solution and 0.1 g / l thereof was dissolved.

このようにして作製した電池を、以下(A2)電池と称す
る。
The battery thus manufactured is hereinafter referred to as (A 2 ) battery.

(比較例) 電解液に添加剤を添加しない他は、上記実施例Iと同様
にして電池を作製した。
(Comparative Example) A battery was produced in the same manner as in Example I except that no additive was added to the electrolytic solution.

このようにして作製した電池を、以下(Z)電池と称す
る。
The battery thus manufactured is hereinafter referred to as (Z) battery.

ここで、上記本発明の(A1)電池〜(A2)電池及び比較
例の(Z)電池の各部の構成を、下記第1表に示す。
Here, the configurations of the respective parts of the (A 1 ) battery to (A 2 ) battery of the present invention and the (Z) battery of the comparative example are shown in Table 1 below.

(実験I) 上記本発明の(A1)電池〜(A2)電池及び比較例の
(Z)電池において、初期の低温放電特性と保存後の低
温放電特性とを調べたので、その結果を第2図及び第3
図に示す。尚、第2図は電池組立後直ちに温度−20℃,
負荷3KΩで放電したときの低温放電特性であり、第3図
は電池組立後温度60℃で3ヶ月保存(室温で4.5年間保
存した場合に相当)したのち、温度−20℃,負荷3KΩで
放電したときの低温放電特性である。
(Experiment I) In the (A 1 ) battery to (A 2 ) battery of the present invention and the (Z) battery of Comparative Example, the initial low temperature discharge characteristics and the low temperature discharge characteristics after storage were examined. 2 and 3
Shown in the figure. Fig. 2 shows the temperature of -20 ℃ immediately after the battery is assembled.
Fig. 3 shows the low-temperature discharge characteristics when discharged at a load of 3KΩ. Fig. 3 shows the battery was assembled and stored at a temperature of 60 ℃ for 3 months (equivalent to storage at room temperature for 4.5 years), then discharged at a temperature of -20 ℃ and a load of 3KΩ It is a low temperature discharge characteristic when it is done.

第2図及び第3図から明らかなように、本発明の(A1
電池〜(A2)電池と比較例の(Z)電池とは初期の低温
放電特性では同等の値を示しているが、保存後の低温放
電特性では(A1)電池〜(A2)電池は(Z)電池より優
れていることが認められる。
As is apparent from FIGS. 2 and 3, (A 1 ) of the present invention
Batteries ~ (A 2 ) batteries and the comparative example (Z) batteries show similar values in the initial low temperature discharge characteristics, but (A 1 ) batteries ~ (A 2 ) batteries in the low temperature discharge characteristics after storage. Are found to be superior to the (Z) battery.

(実験II) 高温保存後の電池の内部インピーダンスを1KHzの周波数
で測定したので、その結果を下記第2表に示す。
Since measured at a frequency of 1 kH z the internal impedance of the battery after (Experiment II) high-temperature storage, and the results are shown in Table 2 below.

上記第2表より、比較例の(Z)電池は保存後に内部イ
ンピーダンスが著しく増大しているのに比べて、本発明
の(A1)電池〜(A2)電池は保存後でも内部インピーダ
ンスは若干増大するのみである。
From Table 2 above, the internal impedance of the (Z) battery of the comparative example increased remarkably after storage, whereas the internal impedance of the (A 1 ) battery to (A 2 ) battery of the present invention was high even after storage. It only increases slightly.

また、保存後の電池を分解してみたことろ、(Z)電池
では負極リチウム表面が黒く変色していたのに対し、
(A1)電池〜(A2)電池ではそのような現象は見られな
かった。
In addition, disassembling the battery after storage revealed that the negative electrode lithium surface was discolored black in the (Z) battery.
No such phenomenon was observed with the (A 1 ) battery to the (A 2 ) battery.

更に、保存後の電池缶を金属顕微鏡で観察したところ、
(Z)電池ではかなり孔食がみられるのに対して、
(A1)電池〜(A2)電池の電池缶は腐食されていないこ
とが認められた。
Furthermore, when observing the battery can after storage with a metallurgical microscope,
(Z) Batteries show considerable pitting corrosion,
It was confirmed that the battery cans of the (A 1 ) battery to the (A 2 ) battery were not corroded.

これらの結果より、比較例の(Z)電池では保存中に電
池缶が腐食して負極表面に再析出し、この結果、保存後
の低温放電特性が低下したものと考えられる。一方、本
発明の(A1)電池〜(A2)電池のように電解液中に亜リ
ン酸トリエチル、或いは亜リン酸トリ−n−ブチルを加
えると、電池缶の腐食が抑制され、この結果、保存後の
低温放電特性の低下を防止できるものと考えられる。
From these results, it is considered that in the battery of Comparative Example (Z), the battery can corroded during storage and redeposited on the surface of the negative electrode, and as a result, the low temperature discharge characteristics after storage deteriorated. On the other hand, when triethyl phosphite or tri-n-butyl phosphite is added to the electrolytic solution as in the case of the (A 1 ) battery to the (A 2 ) battery of the present invention, corrosion of the battery can is suppressed. As a result, it is considered that the deterioration of the low temperature discharge characteristics after storage can be prevented.

尚、上記第1実施例は添加剤として、亜リン酸トリエチ
ル、亜リン酸トリ−n−ブチルを用いたが、このような
ものに限定されるものではなく、他のチッ素含有化合物
(例えば、1,2−ジフェニルエチレンジアミン)、或い
は他のリン含有化合物(リン酸トリエチル、次亜リン酸
アンモニウム、オルトリン酸尿素)であっても上記と同
様な効果を奏する。
Although triethyl phosphite and tri-n-butyl phosphite were used as the additives in the above-mentioned first example, the present invention is not limited to these, and other nitrogen-containing compounds (for example, , 1,2-diphenylethylenediamine), or other phosphorus-containing compounds (triethyl phosphate, ammonium hypophosphite, urea orthophosphate) can achieve the same effects as above.

また、正極はMnO2に限定されるものではなく、その他の
酸化物〔改質MnO2、重量化MnO2、Li含有MnO2、MoO3、Cu
O、CrOx、V2O5等〕、硫化物〔FeS、TiS2、MoS2等〕、ハ
ロゲン化物〔(CF)n等〕を用いても同様の効果を奏す
る。
Further, the positive electrode is not limited to MnO 2 , but other oxides (modified MnO 2 , weighted MnO 2 , Li-containing MnO 2 , MoO 3 , Cu
O, CrO x , V 2 O 5 and the like], sulfides [FeS, TiS 2 , MoS 2 and the like], and halides [(CF) n and the like] have the same effect.

発明の効果 以上説明したように本発明によれば、電池の保存中に電
池缶が腐食するのを抑制することができるので、初期の
低温放電特性のみならず保存後の低温放電特性も優れ
る。この結果、非水系電解液電池の性能を飛躍的に向上
させることができるという効果を奏する。
EFFECTS OF THE INVENTION As described above, according to the present invention, corrosion of a battery can during storage of a battery can be suppressed, so that not only initial low temperature discharge characteristics but also low temperature discharge characteristics after storage are excellent. As a result, the performance of the non-aqueous electrolyte battery can be dramatically improved.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の非水系電解液電池の断面図、第2図は
本発明の(A1)電池〜(A2)電池及び比較例の(Z)電
池における初期の低温放電特性を示すグラフ、第3図は
(A1)電池〜(A2)電池及び(Z)電池における保存後
の低温放電特性を示すグラフ。 1…正極、2…負極、4…正極缶、5…負極缶。
FIG. 1 is a cross-sectional view of a non-aqueous electrolyte battery of the present invention, and FIG. 2 shows initial low temperature discharge characteristics of the (A 1 ) battery to (A 2 ) battery of the present invention and the comparative (Z) battery. The graph and FIG. 3 are graphs showing low temperature discharge characteristics after storage in the (A 1 ) battery to the (A 2 ) battery and the (Z) battery. 1 ... Positive electrode, 2 ... Negative electrode, 4 ... Positive electrode can, 5 ... Negative electrode can.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】電池缶内に、正極と、負極と、溶質及び有
機溶媒から成る電解液とを備え、上記溶質としてトリフ
ルオロメタンスルホン酸リチウムが用いられた非水系電
解液において、 前記電解液に、前記電池缶と電解液との反応阻止剤とし
て、1,2−ジフェニルエチレンジアミン、リン酸エステ
ル、亜リン酸エステル、次亜リン酸化合物からなる群よ
り選択された少なくとも1種が添加されたことを特徴と
する非水系電解液電池。
1. A non-aqueous electrolyte solution comprising a positive electrode, a negative electrode, and an electrolytic solution containing a solute and an organic solvent in a battery can, wherein lithium trifluoromethanesulfonate is used as the solute. As the reaction inhibitor between the battery can and the electrolytic solution, at least one selected from the group consisting of 1,2-diphenylethylenediamine, phosphoric acid ester, phosphorous acid ester, and hypophosphorous acid compound was added. A non-aqueous electrolyte battery characterized by:
【請求項2】前記リン酸エステルが、リン酸トリエチ
ル、オルトリン酸尿素よりなる群から選択されるもので
あり、 前記亜リン酸エステルが、亜リン酸トリエチル、亜リン
酸トリ−n−ブチルよりなる群から選択されるものであ
り、 前記次亜リン酸化合物が、次亜リン酸アンモニウムであ
る、 ことを特徴とする請求項1記載の非水系電解液電池。
2. The phosphoric acid ester is selected from the group consisting of triethyl phosphate and urea orthophosphoric acid, and the phosphorous ester is selected from triethyl phosphite and tri-n-butyl phosphite. The non-aqueous electrolyte battery according to claim 1, wherein the hypophosphite compound is ammonium hypophosphite.
JP63165725A 1988-07-01 1988-07-01 Non-aqueous electrolyte battery Expired - Fee Related JPH0715821B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP63165725A JPH0715821B2 (en) 1988-07-01 1988-07-01 Non-aqueous electrolyte battery
CA000582548A CA1308778C (en) 1988-07-01 1988-11-08 Non-aqueous electrolyte cell
DE3855872T DE3855872T2 (en) 1988-07-01 1988-11-15 Non-aqueous electrolyte cell
EP88119035A EP0349675B1 (en) 1988-07-01 1988-11-15 Non-aqueous electrolyte cell
US07/492,267 US5112704A (en) 1988-07-01 1990-02-28 Non-aqueous electrolyte cell
CA000616390A CA1317633C (en) 1988-07-01 1992-05-26 Non-aqueous electrolyte cell
CA000616388A CA1317631C (en) 1988-07-01 1992-05-26 Non-aqueous electrolyte cell
CA000616389A CA1317632C (en) 1988-07-01 1992-05-26 Non-aqueous electrolyte cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63165725A JPH0715821B2 (en) 1988-07-01 1988-07-01 Non-aqueous electrolyte battery

Publications (2)

Publication Number Publication Date
JPH0215567A JPH0215567A (en) 1990-01-19
JPH0715821B2 true JPH0715821B2 (en) 1995-02-22

Family

ID=15817889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63165725A Expired - Fee Related JPH0715821B2 (en) 1988-07-01 1988-07-01 Non-aqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JPH0715821B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04282563A (en) * 1991-03-08 1992-10-07 Fuji Elelctrochem Co Ltd Nonaqueous electrolyte battery and manufacture thereof
WO2003046653A1 (en) * 2001-11-29 2003-06-05 Nippon Oil Corporation Electrolyte and electrochromic device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5422520A (en) * 1977-07-21 1979-02-20 Matsushita Electric Ind Co Ltd Battery
JPS63198260A (en) * 1987-02-12 1988-08-16 Sanyo Electric Co Ltd Nonaqueous electrolyte battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5422520A (en) * 1977-07-21 1979-02-20 Matsushita Electric Ind Co Ltd Battery
JPS63198260A (en) * 1987-02-12 1988-08-16 Sanyo Electric Co Ltd Nonaqueous electrolyte battery

Also Published As

Publication number Publication date
JPH0215567A (en) 1990-01-19

Similar Documents

Publication Publication Date Title
JP2962782B2 (en) Non-aqueous electrolyte battery
JP3066126B2 (en) Non-aqueous electrolyte battery
US5112704A (en) Non-aqueous electrolyte cell
KR20060101328A (en) Non-aqueous electrolyte secondary battery
JP3291750B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JP2005268017A (en) Nonaqueous electrolyte secondary battery
US4874680A (en) Lithium secondary battery
US6255021B1 (en) Lithium battery including storage stabilized dioxolane-containing electrolyte
JP2735842B2 (en) Non-aqueous electrolyte secondary battery
JPH09213348A (en) Non-aqueous electrolyte battery
JP2771612B2 (en) Non-aqueous electrolyte battery
US6322930B1 (en) Non-aqueous electrolyte battery
JP2701327B2 (en) Non-aqueous electrolyte secondary battery
JPH0715821B2 (en) Non-aqueous electrolyte battery
JPH1154133A (en) Nonaqueous electrolyte battery
JP2760584B2 (en) Non-aqueous electrolyte battery
JPH1145724A (en) Nonaqueous electrolytic battery
JPH04104468A (en) Nonaqueous electrolyte battery
US6291108B1 (en) Non-aqueous electrolyte cell
JPH05101827A (en) Non-aqueous secondary battery
JP2975727B2 (en) Non-aqueous electrolyte battery
JPH05190205A (en) Lithium secondary battery
JP2698103B2 (en) Non-aqueous electrolyte primary battery
JP2001176486A (en) Oblate shape battery
US20030170541A1 (en) Positive electrode for lithium ion cells and rocking chair type lithium ion cell using the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees