JPH05190205A - Lithium secondary battery - Google Patents

Lithium secondary battery

Info

Publication number
JPH05190205A
JPH05190205A JP4001924A JP192492A JPH05190205A JP H05190205 A JPH05190205 A JP H05190205A JP 4001924 A JP4001924 A JP 4001924A JP 192492 A JP192492 A JP 192492A JP H05190205 A JPH05190205 A JP H05190205A
Authority
JP
Japan
Prior art keywords
lithium
secondary battery
electrode
lithium secondary
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4001924A
Other languages
Japanese (ja)
Inventor
Kenichi Morigaki
健一 森垣
Shigeo Kobayashi
茂雄 小林
Takahiro Teraoka
孝浩 寺岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP4001924A priority Critical patent/JPH05190205A/en
Publication of JPH05190205A publication Critical patent/JPH05190205A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To suppress the generation of dendrite to a lithium electrode at the charging time so as to improve charge-discharge efficiency by mixing diester phosphite into an organic solvent to use this as an electrolytic solvent. CONSTITUTION:A lithium secondary battery is formed of a negative electrode 3 with lithium metal or a lithium alloy as active material, and a positive electrode 5 with a metallic oxide, a metallic sulfide, or the like as active material through an organic electrolyte and a separator 4. In this lithium secondary battery, diester phosphite is mixed into an organic solvent such as ethylene carbonate, propylene carbonate or dimetoxiethane so as to be used as an electrolytic solvent. The content ratio of diester phosphite to the electrolyte is 1-20vol.%. The lithium-electrolyte interface different from the case of having only the organic solvent is thereby formed to suppress the generation of dendrite to the lithium electrode and thereby to improve charge-discharge efficiency.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、リチウムなどのアルカ
リ金属を負極活物質とするリチウム二次電池に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium secondary battery using an alkali metal such as lithium as a negative electrode active material.

【0002】[0002]

【従来の技術】電解液として有機電解液を用い、リチウ
ムなどのアルカリ金属を負極活物質とするリチウム二次
電池は、水溶液系の二次電池に比べてエネルギー密度が
高く、かつ低温特性が優れていることから注目を集めて
いる。
2. Description of the Related Art A lithium secondary battery using an organic electrolyte as an electrolyte and an alkali metal such as lithium as a negative electrode active material has a higher energy density and excellent low temperature characteristics than an aqueous secondary battery. It's getting a lot of attention.

【0003】しかしながら、充電によって生ずる活性な
リチウムが電解液の有機溶媒と反応することや、析出し
たリチウムがデンドライト状に成長し、析出リチウムと
溶媒との反応により絶縁層が形成されるために電子伝導
性のないリチウムが生成すること(R.Selim a
nd Bro,J.Electrochem.Soc,
121,1457(1974)など)により、リチウム
極の充放電効率が悪いという問題点がある。また、デン
ドライト状に成長したリチウムにより電池の内部短絡が
発生することなどの問題点もあり、実用的に十分なリチ
ウム二次電池は得られていない。
However, the active lithium generated by charging reacts with the organic solvent of the electrolytic solution, and the deposited lithium grows in the form of dendrites, and the reaction between the deposited lithium and the solvent forms an insulating layer. Generation of non-conductive lithium (R. Selim a
nd Bro, J.D. Electrochem. Soc,
121, 1457 (1974)), there is a problem that the charge and discharge efficiency of the lithium electrode is poor. In addition, there is a problem that an internal short circuit of the battery occurs due to lithium grown in a dendrite shape, and a practically sufficient lithium secondary battery has not been obtained.

【0004】従来、このようなリチウム二次電池におけ
るリチウム極の問題点を解決するために、リチウム極に
種々の合金、例えばLi−Al合金(特開昭63−11
4062号、63−285878号公報など)を用いる
ことや、電解液に種々の添加物、例えば有機Li化合物
(特開平1−286262号公報)、ノニオン系界面活
性剤(特開平2−12776号公報)、燐酸トリエチル
(特開平1−102862号公報)などを添加すること
が提案されている。
Conventionally, in order to solve the problem of the lithium electrode in such a lithium secondary battery, various alloys such as Li-Al alloys have been added to the lithium electrode (Japanese Patent Laid-Open No. 63-11).
No. 4062, 63-285878, etc.), various additives to the electrolytic solution, such as an organic Li compound (JP-A-1-286262), and a nonionic surfactant (JP-A-2-12776). ), Triethyl phosphate (JP-A-1-102862) and the like have been proposed.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、前記提
案のリチウム二次電池においても、充電時にリチウム負
極上にデンドライト状のリチウムが析出し、セパレータ
を貫通して正極側に達し内部短絡が発生する課題や、充
電時に析出した活性なリチウムが電解液と反応すること
や、反応によって生じた絶縁性被膜のために析出したリ
チウムが電気的に孤立し、次の放電に用いられず充放電
効率が低下するという課題を有している。
However, also in the above-mentioned proposed lithium secondary battery, dendrite-like lithium is deposited on the lithium negative electrode during charging, penetrates the separator and reaches the positive electrode side, and an internal short circuit occurs. Also, the active lithium deposited during charging reacts with the electrolytic solution, and the lithium deposited due to the insulating film formed by the reaction is electrically isolated and is not used for the next discharge, resulting in reduced charge / discharge efficiency. There is a problem of doing.

【0006】本発明は上記従来の課題を解決するもの
で、充電時のリチウム極のデンドライト発生を抑制し、
リチウム極の充放電効率の良いリチウム二次電池を提供
することを目的とする。
The present invention solves the above-mentioned conventional problems by suppressing the generation of dendrites at the lithium electrode during charging,
An object of the present invention is to provide a lithium secondary battery having a high charge / discharge efficiency of a lithium electrode.

【0007】[0007]

【課題を解決するための手段】この目的を達成するため
に、本発明のリチウム二次電池は、リチウム金属または
リチウム合金を活物質とする負極と、有機電解液とセパ
レータを介して、金属酸化物、金属硫化物などを活物質
とする正極とからなるリチウム二次電池において、エチ
レンカーボネイト、プロピレンカーボネイト、ジメトキ
シエタンなどの有機溶媒に亜燐酸ジエステルを混合して
電解質の溶媒として用いたものである。
In order to achieve this object, a lithium secondary battery of the present invention comprises a negative electrode using a lithium metal or a lithium alloy as an active material, an organic electrolytic solution and a separator, and a metal oxide. In a lithium secondary battery composed of a positive electrode containing a metal sulfide as an active material, a mixture of an organic solvent such as ethylene carbonate, propylene carbonate, or dimethoxyethane with a diester of phosphite is used as a solvent for the electrolyte. ..

【0008】[0008]

【作用】亜燐酸ジエステルをエチレンカーボネイト、プ
ロピレンカーボネイトなどの有機溶媒と混合して電解液
の溶媒として用いることにより、カーボネイト系などの
従来の有機溶媒だけの場合とは異なったリチウムと電解
液の界面が形成され、リチウム極のデンドライト発生を
抑制し、析出リチウムと有機溶媒との反応を阻害するこ
とによりリチウム極の充放電効率を改善するものと考え
られる。リチウム二次電池を得ることができる。
[Function] By mixing the phosphite diester with an organic solvent such as ethylene carbonate or propylene carbonate and using it as a solvent for the electrolytic solution, an interface between lithium and the electrolytic solution which is different from the case where only a conventional organic solvent such as a carbonate type is used. It is considered that the formation of the lithium electrode suppresses the generation of dendrites in the lithium electrode and inhibits the reaction between the deposited lithium and the organic solvent, thereby improving the charge / discharge efficiency of the lithium electrode. A lithium secondary battery can be obtained.

【0009】[0009]

【実施例】以下本発明の実施例について、図を参照しな
がら説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0010】(実施例1)図1は、本発明の実施例に用
いた直径20mm、高さ1.6mmのコイン形電池の断
面図である。図中、1はステンレス製ケース、2はステ
ンレス製封口板、3は金属リチウムを活物質とする負極
で、封口板2の内面に圧着されている。4はポリプロピ
レン製セパレータである。5は二酸化マンガンを活物質
とする正極で、二酸化マンガンと、導電材のカーボンブ
ラックと、結着剤のフッ素樹脂を重量比80:10:1
0の配合比で混合し、直径14.5mm、高さ0.8m
mのペレット状に成型したものである。6はポリプロピ
レン製ガスケットである。電解液はエチレンカーボネイ
ト(EC)と、ジメトキシエタン(DME)と、亜燐酸
ジエステルの一種である亜燐酸ジエチルを体積比60:
39:1の配合比で混合した混合溶媒に、電解質として
過塩素酸リチウム(LiClO4 )を1モル/lの濃度
に溶解したものである。
(Embodiment 1) FIG. 1 is a sectional view of a coin type battery used in an embodiment of the present invention and having a diameter of 20 mm and a height of 1.6 mm. In the figure, 1 is a case made of stainless steel, 2 is a sealing plate made of stainless steel, 3 is a negative electrode whose active material is metallic lithium, and is pressure-bonded to the inner surface of the sealing plate 2. 4 is a polypropylene separator. Reference numeral 5 is a positive electrode using manganese dioxide as an active material. Manganese dioxide, carbon black as a conductive material, and fluororesin as a binder are in a weight ratio of 80: 10: 1.
Mixing at a compounding ratio of 0, diameter 14.5 mm, height 0.8 m
m pellets. 6 is a polypropylene gasket. The electrolytic solution contained ethylene carbonate (EC), dimethoxyethane (DME), and diethyl phosphite, which is a kind of phosphorous acid diester, in a volume ratio of 60:
Lithium perchlorate (LiClO 4 ) as an electrolyte was dissolved at a concentration of 1 mol / l in a mixed solvent mixed at a compounding ratio of 39: 1.

【0011】(実施例2)電解液として、混合溶媒をエ
チレンカーボネイト(EC)と、ジメトキシエタン(D
ME)と、亜燐酸ジエチルを体積比60:30:10の
配合比で混合したものを用いたこと以外は実施例1と同
一の構成とした。
Example 2 As an electrolytic solution, a mixed solvent of ethylene carbonate (EC) and dimethoxyethane (D) was used.
ME) and diethyl phosphite were mixed at a volume ratio of 60:30:10, and the same constitution as in Example 1 was used.

【0012】(実施例3)電解液として、混合溶媒をエ
チレンカーボネイト(EC)と、ジメトキシエタン(D
ME)と、亜燐酸ジエチルを体積比60:20:20の
配合比で混合したものを用いたこと以外は実施例1と同
一の構成とした。
Example 3 As an electrolytic solution, a mixed solvent of ethylene carbonate (EC) and dimethoxyethane (D) was used.
ME) and diethyl phosphite were mixed at a volume ratio of 60:20:20, and the same configuration as in Example 1 was used.

【0013】(従来例)電解液として、混合溶媒をエチ
レンカーボネイト(EC)と、ジメトキシエタン(DM
E)を体積比60:40の配合比で混合したものを用い
たこと以外は実施例1と同一の構成とした。
(Conventional example) As an electrolytic solution, a mixed solvent of ethylene carbonate (EC) and dimethoxyethane (DM)
The same configuration as in Example 1 was used, except that E) was mixed at a mixing ratio of 60:40 by volume.

【0014】図2は、上記実施例1〜3と従来例の電池
を20°C、0.5mAの定電流で充放電サイクルを行
った際の放電容量(カット電圧2.0V)と充放電サイ
クルの関係を示したものである。図2から明らかなよう
に、亜燐酸ジエチルを混合した本発明の実施例はいずれ
も、充放電サイクルによる放電容量の劣化が従来例より
も改良されていること、即ち、リチウム極の充放電効率
が向上していることが分かる。
FIG. 2 shows the discharge capacity (cut voltage 2.0 V) and charge / discharge when the batteries of Examples 1 to 3 and the conventional example were subjected to a charge / discharge cycle at a constant current of 20 ° C. and 0.5 mA. It shows the relationship of cycles. As is clear from FIG. 2, in all the examples of the present invention in which diethyl phosphite was mixed, the deterioration of the discharge capacity due to the charge / discharge cycle was improved as compared with the conventional example, that is, the charge / discharge efficiency of the lithium electrode. It can be seen that has improved.

【0015】亜燐酸ジエチルを混合することによって、
リチウム極の充放電効率が向上する理由はまだ不明であ
るが、リチウム極が電解液と接する界面の状態、あるい
はリチウムと電解液が反応して形成されるリチウムの表
面被膜の状態が従来例の場合と異なっているためと考え
られる。
By mixing with diethyl phosphite,
Although the reason why the charge and discharge efficiency of the lithium electrode is improved is still unknown, the state of the interface where the lithium electrode contacts the electrolytic solution or the state of the surface coating film of lithium formed by the reaction between the lithium electrode and the electrolytic solution is not known. This is probably because it is different from the case.

【0016】また、図2から明らかなように、亜燐酸ジ
エチルを混合することによるリチウム極の充放電効率を
向上させる効果は、1〜20体積%の範囲が好ましく、
5〜15体積%の範囲がより好ましいことが分かる。
As is apparent from FIG. 2, the effect of improving the charge / discharge efficiency of the lithium electrode by mixing diethyl phosphite is preferably in the range of 1 to 20% by volume,
It can be seen that the range of 5 to 15% by volume is more preferable.

【0017】なお、本実施例では亜燐酸ジエステルとし
て亜燐酸ジエチルを用いたが、亜燐酸ジメチル、亜燐酸
ジブチル、亜燐酸ジイソプロピル、亜燐酸ジフェニルな
どを用いてもよい。また、混合溶媒としても本実施例の
エチレンカーボネイト、ジメトキシエタン以外のプロピ
レンカーボネイト、2−メチルテトラハイドロフラン、
ジエチレンカーボネイト、γ−ブチロラクトン、1,3
−ジオキソランなどを用いてもよい。また同様に電解質
も本実施例の過塩素酸リチウム(LiClO4 )以外の
6フッ化リン酸リチウム(LiPF6 ),トリフロロメ
タンスルホン酸リチウム(LiCF3 SO3 )などを用
いてもよい。さらに、Li−Alなどの合金を負極活物
質とし、LiCoO2 やMoS2 などを正極活物質とし
て用いることも可能である。
Although diethyl phosphite is used as the phosphite diester in this embodiment, dimethyl phosphite, dibutyl phosphite, diisopropyl phosphite, diphenyl phosphite, etc. may be used. Further, as a mixed solvent, ethylene carbonate of the present example, propylene carbonate other than dimethoxyethane, 2-methyltetrahydrofuran,
Diethylene carbonate, γ-butyrolactone, 1,3
-Dioxolane or the like may be used. Similarly, as the electrolyte, lithium hexafluorophosphate (LiPF 6 ) other than lithium perchlorate (LiClO 4 ) of the present embodiment, lithium trifluoromethanesulfonate (LiCF 3 SO 3 ) or the like may be used. Further, an alloy such as Li-Al can be used as the negative electrode active material, and LiCoO 2 , MoS 2 or the like can be used as the positive electrode active material.

【0018】[0018]

【発明の効果】このように本発明は、リチウム金属また
はリチウム合金からなる負極と有機電解液とセパレータ
を介して、金属酸化物または金属硫化物を活物質とする
正極とからなるリチウム二次電池において、上記有機電
解液に亜燐酸ジエステルを含有させることにより、リチ
ウム極の充放電効率を向上させ、充放電サイクル特性の
優れたリチウム二次電池を得ることができるものであ
る。
As described above, the present invention provides a lithium secondary battery comprising a negative electrode made of lithium metal or a lithium alloy, an organic electrolyte and a positive electrode having a metal oxide or a metal sulfide as an active material via a separator. In the above, by adding phosphite diester to the above-mentioned organic electrolytic solution, the charge / discharge efficiency of the lithium electrode can be improved and a lithium secondary battery having excellent charge / discharge cycle characteristics can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明リチウム二次電池の一実施例の断面図FIG. 1 is a sectional view of an embodiment of a lithium secondary battery of the present invention.

【図2】本発明の実施例と従来例によるリチウム二次電
池の充放電サイクル特性図
FIG. 2 is a charge / discharge cycle characteristic diagram of lithium secondary batteries according to an example of the present invention and a conventional example.

【符号の説明】[Explanation of symbols]

1 ケース 2 封口板 3 負極 4 セパレータ 5 正極 6 ガスケット 1 Case 2 Sealing Plate 3 Negative Electrode 4 Separator 5 Positive Electrode 6 Gasket

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 リチウム金属またはリチウム合金を活物
質とする負極と、有機電解液とセパレータを介して、金
属酸化物、金属硫化物などを活物質とする正極とからな
るリチウム二次電池において、上記電解液は亜燐酸ジエ
ステルを含有していることを特徴とするリチウム二次電
池。
1. A lithium secondary battery comprising a negative electrode using lithium metal or a lithium alloy as an active material, and a positive electrode using a metal oxide, a metal sulfide or the like as an active material via an organic electrolytic solution and a separator, The lithium secondary battery, wherein the electrolytic solution contains a phosphorous acid diester.
【請求項2】 上記電解液に対する亜燐酸ジエステルの
含有率は1〜20体積%であることを特徴とする請求項
1記載のリチウム二次電池。
2. The lithium secondary battery according to claim 1, wherein the content of the phosphite diester in the electrolytic solution is 1 to 20% by volume.
JP4001924A 1992-01-09 1992-01-09 Lithium secondary battery Pending JPH05190205A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4001924A JPH05190205A (en) 1992-01-09 1992-01-09 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4001924A JPH05190205A (en) 1992-01-09 1992-01-09 Lithium secondary battery

Publications (1)

Publication Number Publication Date
JPH05190205A true JPH05190205A (en) 1993-07-30

Family

ID=11515150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4001924A Pending JPH05190205A (en) 1992-01-09 1992-01-09 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JPH05190205A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0917224A1 (en) * 1997-11-05 1999-05-19 Wilson Greatbatch Ltd. Phosphonate additives for non-aqueous electrolyte in alkali metal electrochemical cells
US6200701B1 (en) 1999-01-25 2001-03-13 Wilson Greatbatch Ltd. Phosphonate additives for nonaqueous electrolyte in rechargeable cells
US6495285B2 (en) 1999-01-25 2002-12-17 Wilson Greatbatch Ltd. Phosphonate additives for nonaqueous electrolyte in rechargeable electrochemical cells
US6537698B2 (en) 2001-03-21 2003-03-25 Wilson Greatbatch Ltd. Electrochemical cell having an electrode with a phosphonate additive in the electrode active mixture
JP2008041635A (en) * 2006-07-13 2008-02-21 Sony Corp Nonaqueous electrolyte composition, and nonaqueous electrolyte secondary battery

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0917224A1 (en) * 1997-11-05 1999-05-19 Wilson Greatbatch Ltd. Phosphonate additives for non-aqueous electrolyte in alkali metal electrochemical cells
US6096447A (en) * 1997-11-05 2000-08-01 Wilson Greatbatch Ltd. Phosphonate additives for nonaqueous electrolyte in alkali metal electrochemical cells
US6200701B1 (en) 1999-01-25 2001-03-13 Wilson Greatbatch Ltd. Phosphonate additives for nonaqueous electrolyte in rechargeable cells
US6495285B2 (en) 1999-01-25 2002-12-17 Wilson Greatbatch Ltd. Phosphonate additives for nonaqueous electrolyte in rechargeable electrochemical cells
US6537698B2 (en) 2001-03-21 2003-03-25 Wilson Greatbatch Ltd. Electrochemical cell having an electrode with a phosphonate additive in the electrode active mixture
JP2008041635A (en) * 2006-07-13 2008-02-21 Sony Corp Nonaqueous electrolyte composition, and nonaqueous electrolyte secondary battery

Similar Documents

Publication Publication Date Title
US20130224597A1 (en) NONAQUEOUS ELECTROLYTE SECONDARY BATTERY HAVING A LITHIUM-CONTAINING TRANSITION METAL OXIDE COATED WITH A FILM CONTAINING Li, B and C AS A POSITIVE ACTIVE MATERIAL
US20120301760A1 (en) Nonaqueous electrolyte secondary battery with an electrolyte including a lithium boron compound
JP2005521220A (en) Lithium secondary battery containing overdischarge inhibitor
JP2007234565A (en) Nonaqueous electrolyte secondary battery
JP2003282055A (en) Non-aqueous electrolyte secondary battery
JPH0574486A (en) Nonaqueous electrolyte battery
JPH07122296A (en) Non-aqueous electrolyte secondary battery
JP2000011996A (en) Nonaqueous electrolyte secondary battery
CN108717977A (en) A kind of lithium ion battery with excellent zero volt storage performance
JP2000021442A (en) Nonaqueous electrolyte secondary battery
US20240186490A1 (en) Battery positive electrode material, preparation method therefor, and application thereof
JPH07254436A (en) Lithium secondary battery and manufacture thereof
JPH0896849A (en) Nonaqueous electrolytic secondary battery
JP3050885B2 (en) Non-aqueous solvent secondary battery and method of manufacturing the same
JP3054829B2 (en) Manufacturing method of non-aqueous electrolyte secondary battery
JP2002025609A (en) Lithium secondary battery
KR102063821B1 (en) Electrolyte system and lithium metal battery comprising the same
JPH05190205A (en) Lithium secondary battery
JP4176435B2 (en) Non-aqueous electrolyte battery
CN114520370A (en) Lithium ion battery electrolyte and lithium ion battery
JPH05190204A (en) Lithium secondary battery
JP2002042890A (en) Nonaqueous electrolyte battery
JPH0778632A (en) Lithium secondary battery
JP3044812B2 (en) Non-aqueous electrolyte secondary battery
JPH08162155A (en) Nonaqueous electrolytic battery