JPH02155160A - Alkaline zinc storage battery - Google Patents

Alkaline zinc storage battery

Info

Publication number
JPH02155160A
JPH02155160A JP63310627A JP31062788A JPH02155160A JP H02155160 A JPH02155160 A JP H02155160A JP 63310627 A JP63310627 A JP 63310627A JP 31062788 A JP31062788 A JP 31062788A JP H02155160 A JPH02155160 A JP H02155160A
Authority
JP
Japan
Prior art keywords
zinc
thin film
electrode
battery
microporous thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63310627A
Other languages
Japanese (ja)
Other versions
JP2755634B2 (en
Inventor
Takashi Ueda
上田 高士
Yoshikazu Ishikura
石倉 良和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP63310627A priority Critical patent/JP2755634B2/en
Publication of JPH02155160A publication Critical patent/JPH02155160A/en
Application granted granted Critical
Publication of JP2755634B2 publication Critical patent/JP2755634B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/28Construction or manufacture
    • H01M10/286Cells or batteries with wound or folded electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Cell Separators (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To make the wetting of a microporous thin film uniform, to prevent ununiform electrode reaction, and to retard the dendritic deposition of zinc on a zinc electrode by specifying a liquid retention ratio of the microporous thin film in a separator in 85% of more. CONSTITUTION:In an alkaline zinc storage battery having a negative electrode 2 using zinc as the active material, a positive electrode 1, and a separator 3 comprising a microporous thin film and a nonwoven fabric interposed between the positive electrode 1 and the negative electrode 2, the liquid retention ratio of the microporous thin film as shown in formula I is specified to 85% or more. The wettability of the microporous thin film by an electrolyte is increased, and the wetting of the film is made uniform. Electrode reaction is made uniform and the dendritic deposition of zinc on the zinc electrode can be retarded.

Description

【発明の詳細な説明】 主業上91月差団 本発明は、ニッケルー亜鉛蓄電池、或いは銀−亜鉛蓄電
池等、負極活物質として亜鉛を用いるアルカリ亜鉛蓄電
池に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an alkaline zinc storage battery using zinc as a negative electrode active material, such as a nickel-zinc storage battery or a silver-zinc storage battery.

災米勿肢門 上記の如く負極活物質として亜鉛を用いた場合には、単
位重量当たりの高いエネルギ密度と、高い作動電圧と、
良好な低温特性とを有し、且つ経済性、安全性に優れて
いる等の利点がある。
As mentioned above, when zinc is used as the negative electrode active material, it has a high energy density per unit weight, a high operating voltage,
It has advantages such as good low-temperature properties, excellent economy and safety.

しかしながら、亜鉛極は可溶性電極であり放電時にアル
カリ電解液中に溶解して亜鉛酸イオンとなる。そして、
充電時に上記亜鉛酸イオンが亜鉛極表面に均一に電着せ
ず、樹枝状あるいは海綿状に電析する(以下電析亜鉛と
称する)。このため、充放電を繰り返すにともなって上
記電析亜鉛がセパレータを貫通して電池内部で短絡が生
じ、この結果、電池のサイクル寿命が短くなって、電池
性能が低下する。
However, the zinc electrode is a soluble electrode and dissolves into an alkaline electrolyte during discharge to become zincate ions. and,
During charging, the zincate ions are not uniformly electrodeposited on the surface of the zinc electrode, but are deposited in a dendritic or spongy form (hereinafter referred to as electrodeposited zinc). Therefore, as charging and discharging are repeated, the electrolytically deposited zinc penetrates the separator and a short circuit occurs inside the battery, resulting in a short cycle life of the battery and a decrease in battery performance.

そこで、上記サイクル寿命の改善のため、特公昭55−
29548号公報に示すように、実質的に遊離のものが
存在しない程度に電解液量を制限する構成の電池、或い
は特開昭57−197757号公報に示すように、負極
に接するセパレータの電解液量を正極に接する電解液量
よりも少なくするような構成の電池が提案されている。
Therefore, in order to improve the cycle life mentioned above,
As shown in Japanese Patent No. 29548, the amount of electrolyte is limited to such an extent that there is virtually no free electrolyte, or as shown in Japanese Patent Application Laid-Open No. 197757/1984, the electrolyte in the separator in contact with the negative electrode is A battery has been proposed in which the amount of electrolyte is smaller than the amount of electrolyte in contact with the positive electrode.

しかしながら、これらの電池では亜鉛が樹枝状或いは海
綿状に析出することを完全に抑制することは難しい。
However, in these batteries, it is difficult to completely suppress the precipitation of zinc in a dendritic or spongy form.

そこで、特開昭53−24541号公報等に示すように
、セパレータとして微孔性セパレータを用い、電析亜鉛
がセパレータを貫通するのを機械的に阻止するようなも
のが提案されている。
Therefore, as shown in Japanese Unexamined Patent Application Publication No. 53-24541, a method has been proposed in which a microporous separator is used as the separator to mechanically prevent the electrolyte-deposited zinc from penetrating the separator.

−口 (”しよ゛と る課題 ここで、上記微孔性セパレータとしてはポリプロピレン
或いはポリエチレン等の微孔性薄膜が一般的に用いられ
ている。ところが、この微孔性薄膜は疎水性であるため
、そのままの状態で使用した場合には電解液に対する濡
れ性が低く、膜の濡れが不均一になる。この結果、電極
反応が不均一化し、負極表面で亜鉛が樹脂状に析出する
のを促進という課題を有していた。
``Problem to be solved''Here, a microporous thin film such as polypropylene or polyethylene is generally used as the above-mentioned microporous separator. However, this microporous thin film is hydrophobic. Therefore, if used as is, the wettability of the electrolyte will be low and the membrane will become unevenly wetted.As a result, the electrode reaction will become uneven, and zinc will be deposited in a resinous state on the negative electrode surface. The challenge was to promote the project.

そこで、本発明は上記課題を考慮してなされたものであ
り、微孔性’iil nmの濡れを均一化して電極反応
が不均一となるのを防止し、亜鉛極表面で亜鉛が樹脂状
に析出するのを抑制しうるアルカリ亜鉛蓄電池の提供を
目的とする。
Therefore, the present invention was made in consideration of the above-mentioned problems, and aims to uniformize the wetting of microporous 'iIl nm to prevent uneven electrode reactions, and to prevent zinc from becoming resin-like on the surface of the zinc electrode. The purpose of the present invention is to provide an alkaline zinc storage battery that can suppress precipitation.

m  るための 上記目的を達成するため本発明は、活物質として亜鉛を
用いた負極と、正極と、これら正負極間に介装され微孔
性薄膜及び不繊布を有するセパレータと備えたアルカリ
亜鉛蓄電池において、下記式に示す前記微孔性薄膜の保
液率が、85%以上であることを特徴とするアルカリ亜
鉛蓄電池。
In order to achieve the above object, the present invention provides an alkali zinc oxide film comprising a negative electrode using zinc as an active material, a positive electrode, and a separator interposed between these positive and negative electrodes and having a microporous thin film and a nonwoven fabric. An alkaline zinc storage battery, characterized in that the microporous thin film has a liquid retention rate of 85% or more as represented by the following formula.

上記の構成であれば、微孔性薄膜の保液率が微孔性薄膜
の空間体積に対して85%以上であるので、微孔性薄膜
の電解液に対する濡れ性が向上し、膜の濡れが均一化す
る。これにより、電極反応が均一となって、負極表面で
亜鉛が樹脂状に析出するのを抑制することができる。ま
た、上記濡れ性の増加により膜抵抗が小さくなるので、
充放電サイクルの経過に伴う電池容量の低下を抑制する
ことも可能となる。
With the above configuration, the liquid retention rate of the microporous thin film is 85% or more with respect to the spatial volume of the microporous thin film, so the wettability of the microporous thin film to the electrolyte improves, and the wettability of the film increases. becomes uniform. Thereby, the electrode reaction becomes uniform, and it is possible to suppress the precipitation of zinc in the form of a resin on the surface of the negative electrode. In addition, the film resistance decreases due to the increase in wettability, so
It is also possible to suppress a decrease in battery capacity as the charge/discharge cycle progresses.

具体的に、微孔性薄膜の保液率を85%以上とするには
、疎水性のポリオレフィン系微孔性薄膜(例えばポリプ
ロピレン膜或いはポリエチレン膜)に親水性界面活性剤
を、微孔性薄膜重量に対して8重量%以上付着させるこ
とにより行う。但し、上記界面活性剤を過剰に添加した
場合には、充放電サイクルの進行に伴って界面活性剤が
分解して炭酸化合物を生成するため、電解液のイオン導
電性が低下する。したがって、界面活性剤の添加量は2
0重量%以下であることが望ましい。
Specifically, in order to increase the liquid retention rate of a microporous thin film to 85% or more, a hydrophilic surfactant is added to a hydrophobic polyolefin microporous thin film (for example, a polypropylene film or a polyethylene film), and a hydrophilic surfactant is added to the microporous thin film. This is done by attaching it in an amount of 8% by weight or more based on the weight. However, if the above-mentioned surfactant is added in excess, the surfactant decomposes and generates a carbonate compound as the charge/discharge cycle progresses, resulting in a decrease in the ionic conductivity of the electrolytic solution. Therefore, the amount of surfactant added is 2
It is desirable that the amount is 0% by weight or less.

実−詣一貫 本発明の一実施例を、第1図及び第2図に基づいて、以
下に説明する。
An embodiment of the present invention will be described below with reference to FIGS. 1 and 2.

〔実施例I〕[Example I]

第1図は公称容量500mAhの単玉サイズのニッケル
ー亜鉛蓄電池の断面図であり、公知の焼結式ニッケルか
ら成る正極1と、亜鉛を活物質とする負極2と、これら
正負両極1・2間に介挿された多層セパレータ3とから
成る電極群4は渦巻状に巻回されている。この電極群は
熱収縮チューブ11に包含されて負極端子兼用の外装罐
6内に配置されており、この外装罐6と上記負極2とは
負極用導電タブ5により接続されている。上記外装罐6
の上部開口にはバッキング7を介して封口体8が装着さ
れており、この封口体8の内部にはコイルスプリング9
が設けられている。このコイルスプリング9は電池内部
の内圧が異常上昇したときに矢印A方向に押圧されて内
部のガスが大気中に開放されるように構成されている。
Figure 1 is a cross-sectional view of a single-cell sized nickel-zinc storage battery with a nominal capacity of 500 mAh, showing a positive electrode 1 made of known sintered nickel, a negative electrode 2 made of zinc as an active material, and a gap between these positive and negative electrodes 1 and 2. An electrode group 4 consisting of a multilayer separator 3 inserted therein is spirally wound. This electrode group is enclosed in a heat-shrinkable tube 11 and placed in an outer case 6 which also serves as a negative electrode terminal, and this outer case 6 and the above-mentioned negative electrode 2 are connected by a conductive tab 5 for the negative electrode. Above exterior can 6
A sealing body 8 is attached to the upper opening of the housing via a backing 7, and a coil spring 9 is installed inside the sealing body 8.
is provided. This coil spring 9 is configured so that when the internal pressure inside the battery rises abnormally, it is pressed in the direction of arrow A and the gas inside is released to the atmosphere.

また、上記封口体8と前記正極1とは正極用導電タブ1
゜にて接続されている。
Further, the sealing body 8 and the positive electrode 1 are connected to the conductive tab 1 for the positive electrode.
It is connected at ゜.

ここで、上記微孔性フィルムとナイロン不繊布(厚さ0
. 200++n、  87 g/m” )とは、微孔
性フィルムが負極2側となるようにして正負極l・2間
に配置されている。
Here, the above microporous film and nylon nonwoven fabric (thickness 0
.. 200++n, 87 g/m'') is arranged between the positive and negative electrodes 1 and 2 with the microporous film facing the negative electrode 2 side.

上記の構成において、上記多層セパレータ3の微孔性フ
ィルムは、孔径が0.2μm以下のポリプロピレンフィ
ルムに、親水性の界面活性剤(オレイルイミダゾールと
シリコングリコールとの混合物)を16重量%付着させ
ることにより作製した。
In the above configuration, the microporous film of the multilayer separator 3 is a polypropylene film with a pore diameter of 0.2 μm or less, and 16% by weight of a hydrophilic surfactant (a mixture of olelimidazole and silicone glycol) is attached to the polypropylene film. It was made by

また、負極2は以下のようにして作製した。Moreover, negative electrode 2 was produced as follows.

先ず初めに、亜鉛活物質としての酸化亜鉛45重量部と
、金属亜鉛45重量部とに添加剤としての酸化水銀5重
量部を加えてこれらを十分に混合する。次に、この混合
物にポリテトラフルオロエチレン(PTFE)ディスバ
ージョン5重量部を加えて水で希釈した後、これを混練
しベーストを作成する。次いで、このペーストを圧延ロ
ーラで圧延して所定の厚みのカレンダーシートを作製す
る。しかる後、このカレンダーシートを集電体の両側に
貼り合わせて圧着ローラで圧着して負極2を作製した。
First, 5 parts by weight of mercury oxide as an additive is added to 45 parts by weight of zinc oxide as a zinc active material and 45 parts by weight of metal zinc, and these are thoroughly mixed. Next, 5 parts by weight of polytetrafluoroethylene (PTFE) dispersion is added to this mixture, diluted with water, and then kneaded to prepare a base. Next, this paste is rolled with a rolling roller to produce a calender sheet of a predetermined thickness. Thereafter, this calendar sheet was attached to both sides of the current collector and pressed with a pressure roller to produce a negative electrode 2.

このようにして作製した電池を、以下(A、)電池と称
する。
The battery thus produced is hereinafter referred to as (A,) battery.

〔実施例■〜■〕[Examples ■~■]

下記第1表に示すように、微孔性薄膜に対する界面活性
剤の付着量をそれぞれ8%、12%、20%、24%と
する以外は、上記実施例Iと同様にして電池を作製した
。このようにして作製した電池を、下記第2表に示すよ
うに、(A2)電池〜(A5)電池と称する。
As shown in Table 1 below, batteries were prepared in the same manner as in Example I above, except that the amount of surfactant attached to the microporous thin film was 8%, 12%, 20%, and 24%, respectively. . The batteries thus produced are referred to as (A2) batteries to (A5) batteries, as shown in Table 2 below.

第1表 第2表 〔比較例1.II) 上記第1表に示すように、微孔性薄膜に対する界面活性
剤の付着量をそれぞれ0%、4%とする以外は、上記実
施例Iと同様にして電池を作製した。このようにして作
製した電池を、上記第2表に示すように、(B、)電池
、(Bz)電池と称する。
Table 1 Table 2 [Comparative Example 1. II) As shown in Table 1 above, batteries were produced in the same manner as in Example I above, except that the amount of surfactant attached to the microporous thin film was 0% and 4%, respectively. The batteries thus produced are referred to as (B,) batteries and (Bz) batteries, as shown in Table 2 above.

〔実験■〕[Experiment■]

上記本発明の(AI)電池〜(A、)電池及び比較例の
(B1)電池、(B2)電池のサイクル特性試験を行っ
たので、その結果を第2図に示す。
Cycle characteristic tests were conducted on the (AI) batteries to (A,) batteries of the present invention and the (B1) batteries and (B2) batteries of the comparative examples, and the results are shown in FIG.

尚、サイクル条件は、1/4Cの電流で5時間充電した
後、1/4Cの電流で電池電圧が1.0■に達するまで
放電するという条件で行い、電池容量が初期容量の50
%以下になった時点で電池寿命とした。
The cycle conditions were to charge for 5 hours with a 1/4C current, then discharge with a 1/4C current until the battery voltage reached 1.0■, and the battery capacity was 50% of the initial capacity.
% or less, the battery life was reached.

また、10サイクル経過後に各電池を分解して各微孔性
薄膜の湿重量と、水洗、乾燥後の乾燥重量とを測定し、
上記湿重量から乾燥重量を減算して電解液保持量を算出
すると共に、微孔性薄膜の空間体積を計算する。そして
、下記(1)式によって保液率を調べたので、その結果
を上記第1表に併せて示す。
In addition, after 10 cycles, each battery was disassembled and the wet weight of each microporous thin film and the dry weight after washing and drying were measured.
The amount of electrolyte retained is calculated by subtracting the dry weight from the wet weight, and the spatial volume of the microporous thin film is also calculated. The liquid retention rate was investigated using the following formula (1), and the results are also shown in Table 1 above.

第2図に示すように、本発明の(A1)電池〜(A、)
電池は比較例の(B、)電池、(Bz)電池と比べて、
サイクル性能が向上していることが認められる。
As shown in FIG. 2, (A1) battery of the present invention ~ (A,)
The battery is compared to the comparative examples (B,) battery and (Bz) battery,
It is recognized that the cycle performance has improved.

これは、比較例の(B1)電池、(Bz)電池では微孔
性薄膜の保液率が低く (60〜75%)膜の濡れが不
均一であるため、電極反応が不均一化する。このため、
亜鉛の樹枝状成長が促進され、電池の内部短絡を早期に
引き起こす。これに対して、本発明の(A1)電池〜(
A、)電池では微孔性薄膜の保液率が高い(85%以上
)ため、電極反応が均一化し、亜鉛の樹枝状成長が抑制
されるということに起因するものと考えられる。
This is because in the comparative examples (B1) battery and (Bz) battery, the liquid retention rate of the microporous thin film is low (60 to 75%) and the wetting of the film is non-uniform, resulting in non-uniform electrode reactions. For this reason,
Zinc dendritic growth is promoted, leading to early internal short circuits in the battery. On the other hand, the (A1) battery of the present invention ~(
A.) This is thought to be due to the fact that in batteries, the liquid retention rate of the microporous thin film is high (85% or more), which makes the electrode reaction uniform and suppresses the dendritic growth of zinc.

したがって、微孔性薄膜に対する界面活性剤の付着量は
8重量%以上であることが望ましい。
Therefore, it is desirable that the amount of surfactant deposited on the microporous thin film is 8% by weight or more.

更に、本発明のくA、)電池〜(A4)電池は本発明の
(A、)電池と比べて、−層サイクル性能が向上してい
ることが認められる。
Furthermore, it is recognized that the batteries A,) to (A4) of the present invention have improved -layer cycle performance compared to the battery (A,) of the present invention.

これは、(A、)電池では保液率は100%であって膜
の濡れ性は均一化されているが、界面活性剤の付着量が
多いため、電解液中に溶解する界面活性剤の量が多くな
る。この電解液中に溶解した界面活性剤は、充放電サイ
クルの進行に伴って分解され、炭酸化合物を生成する。
This is because (A,) the battery has a liquid retention rate of 100% and the wettability of the membrane is uniform, but because the amount of surfactant attached is large, the amount of surfactant dissolved in the electrolyte is The amount increases. The surfactant dissolved in this electrolyte is decomposed as the charge/discharge cycle progresses, producing a carbonate compound.

この結果、電解液のイオン導電性が低下して、電池容量
が低下する。これに対して、本発明の(A1)電池〜(
A4)電池では、界面活性剤の付着量を最小限に抑制し
ているので、充放電サイクルが進行しても電解液のイオ
ン導電性が低下せず、電池容量が低下しないということ
に起因するものと考えられる。
As a result, the ionic conductivity of the electrolyte decreases, resulting in a decrease in battery capacity. On the other hand, the (A1) battery of the present invention ~(
A4) In batteries, the amount of surfactant attached is kept to a minimum, so the ionic conductivity of the electrolyte does not decrease even as the charge/discharge cycle progresses, and the battery capacity does not decrease. considered to be a thing.

したがって、微孔性薄膜に対する界面活性剤の付着量は
20重量%以下であることが望ましい。
Therefore, it is desirable that the amount of surfactant attached to the microporous thin film is 20% by weight or less.

これらのことから、微孔性薄膜に対する界面活性剤の付
着量は8重量%〜20重量%であることが望ましい。
For these reasons, it is desirable that the amount of surfactant attached to the microporous thin film is 8% by weight to 20% by weight.

尚、上記実施例では微孔性薄膜としてポリプロピレン膜
を用いたが、これに限定するものではなく、例、えばポ
リエチレン膜を用いた場合であっても同様の効果を奏す
る。
In the above embodiment, a polypropylene membrane was used as the microporous thin membrane, but the present invention is not limited to this. For example, even if a polyethylene membrane is used, the same effect can be obtained.

生班立靭来 以上説明したように本発明によれば、微孔性薄膜の電解
液に対する濡れ性が向上し、膜の濡れが均一化する。こ
れにより、電極反応が均一となっ4゜ て、亜鉛極表面で亜鉛が樹脂状に析出するのを抑制する
ことができる。また、上記濡れ性の増加により膜抵抗が
小さくなるので、充放電サイクルの経過に伴う電池容■
の低下を抑制することも可能となる。
As explained above, according to the present invention, the wettability of the microporous thin film to the electrolytic solution is improved, and the wetting of the film is made uniform. Thereby, the electrode reaction becomes uniform, and it is possible to suppress the precipitation of zinc in the form of a resin on the surface of the zinc electrode. In addition, as the membrane resistance decreases due to the increase in wettability, the battery capacity decreases as the charge/discharge cycle progresses.
It also becomes possible to suppress a decrease in

これらのことから、アルカリ亜鉛蓄電池のサイクル特性
を飛躍的に向上させることができるという効果を奏する
For these reasons, it is possible to dramatically improve the cycle characteristics of the alkaline zinc storage battery.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のアルカリ亜鉛蓄電池の断面図、第2図
は本発明の(A1)電池〜(A、)電池及び比較例の(
B1)電池、(Bz)電池のサイクル特性を示すグラフ
である。 第1図 1・・・正極、2・・・負極、3・・・セパレータ。 特許出願人:三洋電機 株式会社
FIG. 1 is a cross-sectional view of the alkaline zinc storage battery of the present invention, and FIG. 2 is a cross-sectional view of the (A1) battery to (A,) battery of the present invention and the (A,) battery of the comparative example.
It is a graph showing the cycle characteristics of B1) battery and (Bz) battery. Fig. 1 1... Positive electrode, 2... Negative electrode, 3... Separator. Patent applicant: Sanyo Electric Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] (1)活物質として亜鉛を用いた負極と、正極と、これ
ら正負極間に介装され微孔性薄膜及び不繊布を有するセ
パレータと備えたアルカリ亜鉛蓄電池において、 下記式に示す前記微孔性薄膜の保液率が、85%以上で
あることを特徴とするアルカリ亜鉛蓄電池。
(1) In an alkaline zinc storage battery comprising a negative electrode using zinc as an active material, a positive electrode, and a separator interposed between these positive and negative electrodes and having a microporous thin film and a nonwoven fabric, the microporous An alkaline zinc storage battery characterized in that the liquid retention rate of the thin film is 85% or more.
JP63310627A 1988-12-07 1988-12-07 Alkaline zinc storage battery Expired - Fee Related JP2755634B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63310627A JP2755634B2 (en) 1988-12-07 1988-12-07 Alkaline zinc storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63310627A JP2755634B2 (en) 1988-12-07 1988-12-07 Alkaline zinc storage battery

Publications (2)

Publication Number Publication Date
JPH02155160A true JPH02155160A (en) 1990-06-14
JP2755634B2 JP2755634B2 (en) 1998-05-20

Family

ID=18007534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63310627A Expired - Fee Related JP2755634B2 (en) 1988-12-07 1988-12-07 Alkaline zinc storage battery

Country Status (1)

Country Link
JP (1) JP2755634B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023038033A1 (en) * 2021-09-09 2023-03-16 エナジーウィズ株式会社 Zinc battery

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5324541A (en) * 1976-08-18 1978-03-07 Tokyo Shibaura Electric Co Zinc alkali secondary cell
JPS55146873A (en) * 1979-05-01 1980-11-15 Hitachi Maxell Ltd Organic electrolyte battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5324541A (en) * 1976-08-18 1978-03-07 Tokyo Shibaura Electric Co Zinc alkali secondary cell
JPS55146873A (en) * 1979-05-01 1980-11-15 Hitachi Maxell Ltd Organic electrolyte battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023038033A1 (en) * 2021-09-09 2023-03-16 エナジーウィズ株式会社 Zinc battery

Also Published As

Publication number Publication date
JP2755634B2 (en) 1998-05-20

Similar Documents

Publication Publication Date Title
EP0354966A1 (en) Alkaline secondary battery and process for its production
KR920007381B1 (en) Making method of akaline battery
JP2815566B2 (en) Alkaline zinc secondary battery
JP3515286B2 (en) Electrodes for secondary batteries
JPH02155160A (en) Alkaline zinc storage battery
JP3653410B2 (en) Sealed alkaline zinc storage battery
JPH02155159A (en) Alkaline zinc storage battery
JP2926732B2 (en) Alkaline secondary battery
JPH11250908A (en) Electrode for alkaline secondary battery and alkaline secondary battery
JP3558082B2 (en) Nickel-cadmium secondary battery
KR100287122B1 (en) Alkali-zinc secondary battery
JPH02216757A (en) Alkaline zinc storage battery
KR100287123B1 (en) Alkali-zinc secondary battery
JP3550228B2 (en) Negative electrode active material for secondary battery, electrode using the same, and secondary battery
JPS63126164A (en) Alkali zinc storage battery
KR20230044876A (en) Electrode plate manufacturing method of lead-acid battery using carbon paper
JP2975640B2 (en) Sealed alkaline storage battery with hydrogen storage alloy negative electrode
JP2564176B2 (en) Cadmium negative electrode plate for sealed alkaline secondary battery and sealed alkaline secondary battery using the negative electrode plate
JP2564172B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JPS63124367A (en) Alkaline zinc storage battery
JP2559593B2 (en) Sealed nickel-cadmium battery and its charging method
JPH071733Y2 (en) Zinc electrode for alkaline zinc storage battery
JPH01294353A (en) Alkaline zinc storage battery
JPH0765814A (en) Alkaline zinc storage battery
JPH07254410A (en) Zinc alkaline secondary battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees