JPH07254410A - Zinc alkaline secondary battery - Google Patents

Zinc alkaline secondary battery

Info

Publication number
JPH07254410A
JPH07254410A JP6070251A JP7025194A JPH07254410A JP H07254410 A JPH07254410 A JP H07254410A JP 6070251 A JP6070251 A JP 6070251A JP 7025194 A JP7025194 A JP 7025194A JP H07254410 A JPH07254410 A JP H07254410A
Authority
JP
Japan
Prior art keywords
electrode
nonwoven fabric
battery
electrolyte
zinc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6070251A
Other languages
Japanese (ja)
Inventor
Masao Kurosaki
将夫 黒崎
Tadashi Sakon
正 佐近
Masao Sakashita
雅雄 坂下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP6070251A priority Critical patent/JPH07254410A/en
Publication of JPH07254410A publication Critical patent/JPH07254410A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To elongate cycle life by supplying electrolyte through nonwoven fabric A provided on the surface of a positive and a negative electrodes, and supplying for a reduced part of the electrolyte by electrode reaction through nonwoven fabric B provided in contact with the nonwoven fabric A under the electrodes. CONSTITUTION:Mix comprising zinc oxide powder by 70 weight %, zinc powder by 25 weight %, and fluorine resin binder by 5% is kneaded, and it is rolled 0.8mm thick to obtain a sheet of negative electrode active material. In this active material, a mesh collector of copper coated with lead is embedded to form a zinc electrode 1, and nonwoven fabric 4 of cellulose, and a micro-pole film separator 3 of polylene are provided like bags around the electrode 1 respectively. In the meanwhile, a nickel electrode 2 is covered with the nonwoven fabric 4 similarly, it is slightly pressed to both sides of the electrode 1 to be fixed, and it is inserted into a case having the nonwoven fabric 4 for holding electrolyte at a bottom. Battery electrolyte is then injected into the case until the nonwoven fabric 4 at the case bottom part is immersed. Form change of the electrodes during long use of a battery can thus be restricted, and its service life can be elongated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ニッケル―亜鉛電池
や、空気―亜鉛電池などのように、負極活物質として亜
鉛を、電解液としてアルカリ性水溶液を用いる亜鉛アル
カリ二次電池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a zinc-alkaline secondary battery, such as a nickel-zinc battery or an air-zinc battery, which uses zinc as a negative electrode active material and an alkaline aqueous solution as an electrolytic solution.

【0002】[0002]

【従来の技術】従来より、負極活物質として亜鉛を用い
たアルカリ電池は、エネルギー密度が高く安価であり、
しかも鉛蓄電池に比べると、低温領域での作動特性に優
れているため電気自動車用バッテリーとして注目されて
いる。
2. Description of the Related Art Conventionally, alkaline batteries using zinc as a negative electrode active material have a high energy density and are inexpensive.
Moreover, it is attracting attention as a battery for an electric vehicle because it has excellent operating characteristics in a low temperature range as compared with a lead storage battery.

【0003】しかし反面、放電時に生成する酸化亜鉛
(ZnO)がジンケートイオン(Zn(OH)4 2-)と
して電解質中に溶解し、充電時に不均一な金属亜鉛とし
て析出するため、充放電サイクルの繰り返しとともに電
極形状変化が進行し、極端な場合には樹枝状に成長した
亜鉛がセパレーターを貫通して正極に達し、内部短絡を
起こしてしまうといった欠点があった。
On the other hand, however, zinc oxide (ZnO) produced during discharge dissolves in the electrolyte as zincate ions (Zn (OH) 4 2− ) and precipitates as non-uniform metallic zinc during charge, resulting in charge / discharge cycle The electrode shape changes with repetition, and in extreme cases, there is a drawback that zinc grown in a dendritic manner penetrates the separator to reach the positive electrode, causing an internal short circuit.

【0004】このデンドライト成長を防止するため、正
負極間に数十〜数百オングストロームの細孔を有するポ
リエチレン、あるいはポリプロピレン多孔性膜を袋状に
加工して、その中に正負極を挿入するのが一般的な対応
策である。
In order to prevent this dendrite growth, a polyethylene or polypropylene porous film having pores of several tens to several hundreds of angstroms between the positive and negative electrodes is processed into a bag shape, and the positive and negative electrodes are inserted therein. Is a general countermeasure.

【0005】この方法により、ある程度の改善はできる
ものの、サイクル繰り返しによる亜鉛デンドライトの多
孔性膜貫通を完全に回避することは出来ず、抜本的対策
には至らなかった。
Although this method can be improved to some extent, it cannot completely avoid the permeation of zinc dendrite through the porous membrane due to repeated cycles, and a drastic countermeasure cannot be obtained.

【0006】さらには、電解液を外部ポンプ等で循環し
デンドライトの発生を抑えようとする試みもなされた
が、バッテリー自身が大きくなり電気自動車等には適用
出来ず、またコストが上昇してしまうといった問題が生
じた。
Further, attempts have been made to circulate the electrolytic solution with an external pump or the like to suppress the generation of dendrites, but the battery itself becomes large and cannot be applied to electric vehicles and the cost increases. Such a problem occurred.

【0007】また、かかる問題に対し少量の電解液を不
織物に染み込ませ密閉型とした、いわゆるシール型バッ
テリーが市販されているが、充放電の繰り返しと共に電
極反応で電解液が消耗し、また反応熱で電解液が蒸発・
減少するため最終的には電極の不働態化反応が生じ、著
しい容量低下を生じてしまうため実用に耐えうる製品に
はならなかった。
In order to solve this problem, a so-called sealed type battery is commercially available, which is a sealed type in which a small amount of electrolytic solution is impregnated into a non-woven fabric, but the electrolytic solution is consumed due to electrode reaction with repeated charging and discharging. Electrolyte evaporates due to heat of reaction
Finally, the passivation reaction of the electrode occurs due to the decrease, and the capacity is remarkably decreased, so that the product cannot be put to practical use.

【0008】[0008]

【発明が解決しようとする課題】本発明は上記問題点に
鑑みてなされたもので、セルロース等の不織物を介して
電解液を供給することにより、電解液の流動を必要最小
限にとどめ、溶解したZn(OH)4 2-イオンの拡散を
抑制し、さらには充放電に伴い減少する電解液を効率良
く補給することにより、亜鉛電極のサイクル寿命を向上
させることを目的とするものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and by supplying the electrolytic solution through a non-woven fabric such as cellulose, the flow of the electrolytic solution can be minimized. The purpose of the present invention is to improve the cycle life of a zinc electrode by suppressing the diffusion of dissolved Zn (OH) 4 2− ions and efficiently replenishing an electrolyte solution that decreases with charge and discharge. .

【0009】[0009]

【課題を解決するための手段】本発明は、正極と亜鉛を
活物質とする負極と正負極間に設置されるセパレーター
と、電解液とからなるアルカリ亜鉛電池において、正負
電極表面に不織物等を設置しそれを介して電解質を供給
しかつ、電極反応に伴う電解液減少分を電極下部に前記
不織物と接触するよう設置された不織物を介して供給す
ることを特徴とするアルカリ亜鉛電池である。
The present invention provides an alkaline zinc battery comprising a positive electrode, a separator disposed between a negative electrode using zinc as an active material, and a positive and negative electrodes, and an electrolyte solution. Alkaline zinc battery, characterized in that a non-woven fabric is installed, and an electrolyte is supplied through the Is.

【0010】[0010]

【作用】亜鉛電極の充放電反応は次式で示されるが[Function] The charge / discharge reaction of the zinc electrode is expressed by the following equation.

【0011】[0011]

【化1】 Zn(OH)4 2-+2e-=ZnO+2OH-+H2Embedded image Zn (OH) 4 2− + 2e = ZnO + 2OH + H 2 O

【0012】[0012]

【化2】Zn+4OH-=Zn(OH)4 2-+2e- Embedded image Zn + 4OH = Zn (OH) 4 2− + 2e

【0013】放電生成物であるジンケートイオン(Zn
(OH)4 2-)濃度の高い電解液の比重は大きくそのま
までは電池の下方に移動していくが、セルロース等の不
織物を電極表面に設置しそれを介して電解液を供給する
ことによりZn(OH)4 2-イオンの拡散を抑制し、充
電時のデンドライト成長あるいは電極形状変化を効率良
く防止できる。
The discharge product, zincate ions (Zn
The specific gravity of the electrolytic solution having a high (OH) 4 2- ) concentration is large and moves to the lower side of the battery as it is, but by installing a non-woven fabric such as cellulose on the electrode surface and supplying the electrolytic solution through it. The diffusion of Zn (OH) 4 2− ions can be suppressed, and dendrite growth or electrode shape change during charging can be efficiently prevented.

【0014】また電極反応、あるいは充放電に伴う発熱
反応で減少した電解液を電極下部に設置した不織物から
毛細管現象を利用し電極表面に設置した不織物に補給す
ることにより、活性に富んだ亜鉛電極を長時間持続する
ことが出来、結果として従来にはない長寿命のアルカリ
亜鉛電池が実現できる。
Further, the electrolytic solution reduced by the electrode reaction or the exothermic reaction due to charging / discharging is replenished from the non-woven fabric placed on the lower part of the electrode to the non-woven fabric placed on the electrode surface by utilizing the capillary phenomenon, which is highly active. The zinc electrode can be maintained for a long time, and as a result, an unprecedented long-life alkaline zinc battery can be realized.

【0015】[0015]

【実施例1】図1に本発明によるニッケル―亜鉛電池の
構造図を示す。酸化亜鉛粉末70重量%、亜鉛粉末25
重量%、フッ素樹脂バインダー5%からなる混合物を混
練した後、圧延ロールを用い、厚み0.8mmのシート
状に圧延した負極活物質に、鉛でコーティングした銅の
網状集電体を埋め込んだ亜鉛電極1を用いた。
Example 1 FIG. 1 shows a structural diagram of a nickel-zinc battery according to the present invention. Zinc oxide powder 70% by weight, zinc powder 25
After kneading a mixture consisting of 5% by weight and a fluororesin binder of 5%, and then using a rolling roll, a negative electrode active material rolled into a sheet having a thickness of 0.8 mm was embedded with lead-coated copper net current collector zinc. The electrode 1 was used.

【0016】この電極の周りにセルロース不織物4を袋
状に設置した後、ポリプロピレン製微孔膜セパレーター
(商品名:セルガード)3で袋状に覆い亜鉛電極として
用いた。
A cellulosic non-woven fabric 4 was placed around the electrode in a bag shape and then covered with a polypropylene microporous membrane separator (trade name: Celgard) 3 in a bag shape to be used as a zinc electrode.

【0017】一方ニッケル電極2も同様に不織物で袋状
に覆い亜鉛極の両側に設置したのち塩化ビニール製のホ
ルダーで両者を軽く押しつけるように固定した。
On the other hand, the nickel electrode 2 was likewise covered with a non-woven cloth in a bag shape, placed on both sides of the zinc electrode, and then fixed by a vinyl chloride holder so as to lightly press both.

【0018】しかる後、この組み合わせた電極を電池ケ
ースに入れ、ケース底部に補給用電解液を保持するため
の不織物を設置した。
Then, the combined electrode was put in a battery case, and a non-woven fabric for holding a replenishing electrolyte was placed at the bottom of the case.

【0019】最後に電池電解液である、水酸化カリウム
30重量%,水酸化リチウム1重量%含んだ水溶液をケ
ース底部不織物が浸漬する高さまで入れ電池とした。以
下、このようにして作成した電池をA電池と呼ぶ。
Finally, a battery electrolyte was prepared by adding an aqueous solution containing 30% by weight of potassium hydroxide and 1% by weight of lithium hydroxide to a height at which the nonwoven fabric at the bottom of the case was immersed. Hereinafter, the battery thus created will be referred to as a battery A.

【0020】[0020]

【実施例2】実施例1に改良を加えたものとして図2に
実施例2を示す。電池ケースの側面に電解液の補給が可
能な別室5を設置し、ケース底部に設置されたの電解液
補給用不織物を通して更に多量の電解液を補給出来る仕
組みを有する以外は実施例1と同様の構造を有した電池
で、このようにして作成した電池をB電池と呼ぶ。
Second Embodiment FIG. 2 shows a second embodiment as a modification of the first embodiment. Same as Example 1 except that a separate chamber 5 capable of replenishing the electrolytic solution is installed on the side surface of the battery case, and a further large amount of electrolytic solution can be replenished through the non-woven cloth for replenishing the electrolytic solution installed at the bottom of the case. The battery having the above structure and thus prepared is called a B battery.

【0021】[0021]

【比較例】図3は正負電極表面に設置した不織物を介し
て電解液を供給する代わりに、電極全体を電解液6に浸
漬する以外は前記実施例2と同様にして電池を作成し
た。以下、このようにして作成した電池をC電池と呼
ぶ。
COMPARATIVE EXAMPLE A battery was prepared in the same manner as in Example 2 except that the whole electrode was immersed in the electrolytic solution 6 instead of supplying the electrolytic solution through the non-woven fabric placed on the positive and negative electrode surfaces. Hereinafter, the battery thus created will be referred to as a C battery.

【0022】また図4に示す様に、正負電極表面に設置
した不織物を介して電解液を供給するが、充放電に伴う
電解液減少分を補給できるしくみを有しない電池、いわ
ゆるシール型電池をD電池と呼ぶ。
As shown in FIG. 4, the electrolyte is supplied through a non-woven fabric placed on the surface of the positive and negative electrodes, but has no mechanism for replenishing the decrease in the electrolyte due to charging and discharging, a so-called sealed battery. Is called D battery.

【0023】さらに図5に示す様に、電解液減少分を補
給するためD電池を少畳の電解液に浸漬したものをE電
池と呼ぶ。
Further, as shown in FIG. 5, a battery in which the D battery is immersed in a small amount of electrolyte for replenishing the reduced electrolyte is called an E battery.

【0024】図6は、ニッケル―亜鉛電池の充放電サイ
クル特性を示し、Aは本発明実施例1の構造のA電池、
Bは本発明実施例2の構造のB電池、Cは比較例のC電
池、Dは比較例のD電池、Eは比較例のE電池である。
FIG. 6 shows charge-discharge cycle characteristics of a nickel-zinc battery, where A is the A battery having the structure of Example 1 of the present invention,
B is the B battery having the structure of Example 2 of the present invention, C is the C battery of the comparative example, D is the D battery of the comparative example, and E is the E battery of the comparative example.

【0025】電池初期容量は何れも30Ahで、電流
4.5Aで端子電圧2.0Vまで充電した後、電流10
Aで端子電圧1.0Vまで放電するサイクルを繰り返し
た。
The initial capacity of each battery was 30 Ah, the current was 4.5 A, the terminal voltage was 2.0 V, and the current was 10
The cycle of discharging the terminal voltage at A to 1.0 V was repeated.

【0026】[0026]

【発明の効果】図から明らかな様に、不織物を通じて電
解液を供給し電極反応に伴う電解液減少分を補給出来る
仕組みを有することにより、ジンケートイオンの溶解/
拡散に伴う亜鉛デンドライトのニッケル極への貫通、お
よび充放電サイクルの繰り返しとともに生じる電極形状
変化を完全に防止し、また減少した電解液をジンケート
イオンの拡散を抑制した状態で効率良く補給出来るた
め、亜鉛活物質の利用率の低下が生じないアルカリ亜鉛
電池の製造が可能となった。
As is apparent from the figure, the electrolyte solution is supplied through the non-woven fabric so that the decrease in the electrolyte solution due to the electrode reaction can be replenished.
Penetration of the zinc dendrite into the nickel electrode due to diffusion, and complete prevention of electrode shape change that occurs with repeated charge and discharge cycles, and since the reduced electrolyte can be efficiently replenished while suppressing the diffusion of zincate ions, It has become possible to manufacture an alkaline zinc battery in which the utilization rate of the zinc active material does not decrease.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1のアルカリ亜鉛電池の断面図。FIG. 1 is a cross-sectional view of an alkaline zinc battery of Example 1.

【図2】実施例2のアルカリ亜鉛電池の断面図。FIG. 2 is a cross-sectional view of an alkaline zinc battery of Example 2.

【図3】比較例Cのアルカリ亜鉛電池の断面図。FIG. 3 is a sectional view of an alkaline zinc battery of Comparative Example C.

【図4】比較例Dのアルカリ亜鉛電池の断面図。FIG. 4 is a sectional view of an alkaline zinc battery of Comparative Example D.

【図5】比較例Eのアルカリ亜鉛電池の断面図。5 is a sectional view of an alkaline zinc battery of Comparative Example E. FIG.

【図6】本発明のアルカリ亜鉛電池の充放電サイクル特
性図。
FIG. 6 is a charge / discharge cycle characteristic diagram of the alkaline zinc battery of the present invention.

【符号の説明】[Explanation of symbols]

1 亜鉛電極 2 ニッケル電極 3 セパレーター 4 不織物 5 電解液供給用別室 6 電解液 A 実施例1による電池 B 実施例2による電池 C 比較例c D 比較例d E 比較例e 1 Zinc Electrode 2 Nickel Electrode 3 Separator 4 Nonwoven 5 Electrolyte Supply Separate Room 6 Electrolyte A A Battery according to Example 1 B Battery according to Example 2 C Comparative Example c D Comparative Example d E Comparative Example e

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 正極と亜鉛を活物質とする負極と正負極
間に設置されるセパレーターと、電解液とからなるアル
カリ亜鉛電池において、正負電極表面に不織物等を設置
しそれを介して電解質を供給し、かつ電極反応に伴う電
解液減少分を電極下部に前記不織物と接触するよう設置
された不織物を介して供給することを特徴とするアルカ
リ亜鉛電池。
1. In an alkaline zinc battery comprising a positive electrode, a separator provided between a negative electrode using zinc as an active material and a positive and negative electrodes, and an electrolyte solution, a non-woven fabric or the like is provided on the positive and negative electrode surfaces, and an electrolyte is provided therethrough. The alkaline zinc battery is characterized in that a reduced amount of the electrolytic solution due to the electrode reaction is supplied through a non-woven fabric arranged so as to contact the non-woven fabric at the lower part of the electrode.
【請求項2】 請求項1において、下部不織物へ電解液
を供給する別室を備えたアルカリ亜鉛電池。
2. The alkaline zinc battery according to claim 1, comprising a separate chamber for supplying the electrolytic solution to the lower nonwoven fabric.
JP6070251A 1994-03-16 1994-03-16 Zinc alkaline secondary battery Withdrawn JPH07254410A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6070251A JPH07254410A (en) 1994-03-16 1994-03-16 Zinc alkaline secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6070251A JPH07254410A (en) 1994-03-16 1994-03-16 Zinc alkaline secondary battery

Publications (1)

Publication Number Publication Date
JPH07254410A true JPH07254410A (en) 1995-10-03

Family

ID=13426163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6070251A Withdrawn JPH07254410A (en) 1994-03-16 1994-03-16 Zinc alkaline secondary battery

Country Status (1)

Country Link
JP (1) JPH07254410A (en)

Similar Documents

Publication Publication Date Title
JP3097347B2 (en) Nickel-metal hydride battery
US5863676A (en) Calcium-zincate electrode for alkaline batteries and method for making same
US20120018669A1 (en) Pasted nickel hydroxide electrode for rechargeable nickel-zinc batteries
US3516862A (en) Rechargeable alkaline-zinc cell with porous matrix containing trapping material to eliminate zinc dendrites
EP1218957A1 (en) Rechargeable nickel-zinc cells
JP2512019B2 (en) Electrochemical battery
JP3287367B2 (en) Sealed nickel zinc battery
JP3533032B2 (en) Alkaline storage battery and its manufacturing method
JPH0787102B2 (en) Sealed nickel-zinc battery
JPH04206468A (en) Sealed alkali-zinc storage battery
JPH07254410A (en) Zinc alkaline secondary battery
JPH0150063B2 (en)
EP1146582A1 (en) Active material for positive electrode of alkaline storage battery and method for producing the same, and alkaline storage battery using the same
JP2987873B2 (en) Alkaline storage battery
JP3156485B2 (en) Nickel electrode for alkaline storage battery
JP2926732B2 (en) Alkaline secondary battery
JP2001283902A (en) Alkaline battery
JP2755634B2 (en) Alkaline zinc storage battery
JPH06310116A (en) Zinc alkaline secondary battery
JP2589750B2 (en) Nickel cadmium storage battery
JP3118812B2 (en) Alkaline storage battery
JP2762730B2 (en) Nickel-cadmium storage battery
JP3287215B2 (en) Manufacturing method of nickel positive plate for alkaline storage battery
JPH09213363A (en) Manufacture of alkali storage battery
JP2771584B2 (en) Manufacturing method of non-sintering type sealed alkaline storage battery

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010605