JPH071733Y2 - Zinc electrode for alkaline zinc storage battery - Google Patents

Zinc electrode for alkaline zinc storage battery

Info

Publication number
JPH071733Y2
JPH071733Y2 JP1985143270U JP14327085U JPH071733Y2 JP H071733 Y2 JPH071733 Y2 JP H071733Y2 JP 1985143270 U JP1985143270 U JP 1985143270U JP 14327085 U JP14327085 U JP 14327085U JP H071733 Y2 JPH071733 Y2 JP H071733Y2
Authority
JP
Japan
Prior art keywords
zinc
electrode
storage battery
peripheral portion
alkaline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1985143270U
Other languages
Japanese (ja)
Other versions
JPS6251656U (en
Inventor
良和 石倉
修弘 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP1985143270U priority Critical patent/JPH071733Y2/en
Publication of JPS6251656U publication Critical patent/JPS6251656U/ja
Application granted granted Critical
Publication of JPH071733Y2 publication Critical patent/JPH071733Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • Y02E60/124

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

【考案の詳細な説明】 〈産業上の利用分野〉 この考案は、ニッケル−亜鉛蓄電池や銀−亜鉛蓄電池等
のように、陰極活物質として酸化亜鉛または金属亜鉛を
用いるアルカリ亜鉛蓄電池用の亜鉛極に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION <Industrial field of application> The present invention is directed to a zinc electrode for an alkaline zinc storage battery, such as a nickel-zinc storage battery or a silver-zinc storage battery, which uses zinc oxide or metallic zinc as a cathode active material. It is about.

〈従来の技術〉 上記のようなアルカリ亜鉛蓄電池で亜鉛極の陰極活物質
として用いられている亜鉛は、単位重量あたりのエネル
ギー密度が大きく且つ安価である等といった利点を有す
る反面、放電時に亜鉛がアルカリ電解液に溶出して生じ
た亜鉛酸イオンZn(0H)4 2-が充電時に亜鉛極表面に樹枝
状あるい海綿状結晶(以下「デンドライト」という)と
なって電析し成長するので、充放電を繰り返すと、この
電析亜鉛がセパレータを貫通し対極に接触して内部短絡
を引き起こすことから、電池のサイクル寿命が短くなる
等という不都合がある。
<Prior Art> Zinc used as a cathode active material of a zinc electrode in an alkaline zinc storage battery as described above has advantages such as high energy density per unit weight and low cost, but zinc is not The zincate ion Zn (0H) 4 2- eluting from the alkaline electrolyte is deposited and grows as dendrites or spongy crystals (hereinafter referred to as "dendrites") on the zinc electrode surface during charging. When charge and discharge are repeated, the electrodeposited zinc penetrates the separator and contacts the counter electrode to cause an internal short circuit, which disadvantageously shortens the cycle life of the battery.

上記したような電析亜鉛に起因する不都合を解消し、亜
鉛極並びに電池のサイクル寿命を改善するため、電池内
の電解液量を実質的に遊離のものがない程度に規制する
ことで亜鉛酸イオンの拡散を防止している亜鉛のデンド
ライトの成長を抑制する(例えば特公昭56-19710号公報
に開示されている)と共に、複数枚の有機セパレータあ
るいは無機セパレータを積重したりあるいは一体化した
ものを電池用セパレータとして使用することでセパレー
タ強度を高めること等が提案されており、このような構
成とすればサイクル寿命のかなりの向上が期待できる。
In order to eliminate the above-mentioned inconveniences caused by electrodeposited zinc and improve the cycle life of the zinc electrode and the battery, the amount of electrolytic solution in the battery is regulated to a level where there is substantially no zinc oxide. Suppresses the growth of zinc dendrites that prevent the diffusion of ions (for example, disclosed in Japanese Patent Publication No. 56-19710), and stacks or integrates a plurality of organic separators or inorganic separators. It has been proposed to increase the strength of the separator by using one as a battery separator, and such a structure can be expected to significantly improve the cycle life.

〈考案が解決しようとする問題点〉 しかしながら、放電時に亜鉛酸イオンとして溶出した亜
鉛は充電時に元の位置に電析することは殆んどなく、充
放電の繰り返しによって亜鉛極の極板変形が著しくな
る。このため、上記の如き構成を採った場合でも長期サ
イクル後における亜鉛極の容量低下が大きく、より長期
にわたる充放電に耐えられなくなるという問題がある。
<Problems to be solved by the device> However, zinc that is eluted as zincate ions during discharge hardly deposits at the original position during charging, and the electrode plate of the zinc electrode is not deformed by repeated charging and discharging. It will be noticeable. Therefore, even when the above-mentioned configuration is adopted, there is a problem that the capacity of the zinc electrode after a long-term cycle is greatly reduced, and it becomes impossible to endure long-term charge / discharge.

このような極板変形は極板周縁部において最も著しい。
これは、所謂エッジ効果によって極板周縁部に電流が流
れ易く、更に極板周縁部に余分な電解液が溜り易いこと
から、放電時における溶出亜鉛量並びに充電時における
電析亜鉛量が多いことに起因している。また、このよう
に溶出亜鉛量や電析亜鉛量が多いことから極板周縁部に
おける亜鉛のデンドライトの成長が他部よりも大きく、
セパレータ外周に沿って成長した亜鉛のデンドライトが
対極周縁部と接触して内部短絡してしまう原因となると
いう問題もある。特に、陽極およ陰極をセパレータを介
して巻回してなる発電要素を電池缶内に収納する構造を
採っている円筒形電池の場合、電極及びセパレータに含
液された電解液の発電要素中央部への拡散が十分になさ
れてないために電解液が極板周縁部に多く存在する傾向
にあり、上記の如き問題の度合もその分大きい。
Such electrode plate deformation is most remarkable at the periphery of the electrode plate.
This is because an electric current easily flows to the peripheral edge of the electrode plate due to the so-called edge effect, and excess electrolytic solution easily accumulates on the peripheral edge of the electrode plate.Therefore, the amount of zinc eluted during discharging and the amount of electrodeposited zinc during charging are large. Due to. Further, since the amount of eluted zinc and the amount of electrodeposited zinc are large in this way, the growth of zinc dendrites in the peripheral portion of the electrode plate is larger than in other portions,
There is also a problem that zinc dendrites grown along the outer circumference of the separator come into contact with the peripheral edge of the counter electrode to cause an internal short circuit. In particular, in the case of a cylindrical battery having a structure in which a power generation element formed by winding an anode and a cathode through a separator is housed in a battery can, the central portion of the power generation element of the electrolyte solution contained in the electrode and the separator. The electrolytic solution tends to be present in a large amount in the peripheral portion of the electrode plate due to insufficient diffusion into the electrode plate, and the degree of the above-mentioned problem is correspondingly large.

〈問題点を解決するための手段〉 本考案者は、上記のような亜鉛極周縁部における変形並
びに亜鉛のデンドライトの成長を抑制することによっ
て、亜鉛極及び電池にサイクル寿命を図らんと研究し考
察したところ、次の手段を用いた場合には所期の目的を
達成できることを知得してこの考案を完成した。
<Means for Solving Problems> The inventors of the present invention have studied to improve the cycle life of the zinc electrode and the battery by suppressing the deformation in the zinc electrode peripheral portion and the growth of zinc dendrite as described above. As a result of consideration, they realized that the intended purpose could be achieved by using the following means, and completed the present invention.

即ち、この考案のアルカリ亜鉛蓄電池用亜鉛極は、酸化
亜鉛及び金属亜鉛の少なくとも一種を主成分とする活物
質を集電体に添着してなり、集電体の周縁部の少なくと
も一部分が、焼結されたフッ素樹脂によって被覆されて
いることを要旨とする。
That is, the zinc electrode for an alkaline zinc storage battery of the present invention has an active material containing at least one of zinc oxide and metallic zinc as a main component attached to a current collector, and at least a part of a peripheral portion of the current collector is burned. The gist is that it is covered with a bonded fluororesin.

〈作用〉 上記手段のように、電気絶縁体であり、且つ撥水性に富
むフッ素樹脂を焼結させて強固に集電体周縁部に被覆す
ることにより、長期サイクルに亘って、亜鉛極周縁部に
おけるエッジ効果をなくし、同周縁部における亜鉛活物
質の電解液中への溶出が抑えられる。
<Function> Like the above-mentioned means, by sintering the fluorocarbon resin, which is an electrical insulator and is rich in water repellency, and firmly covering the peripheral portion of the current collector, the peripheral portion of the zinc electrode is extended over a long cycle. The edge effect is eliminated, and the elution of the zinc active material into the electrolytic solution at the peripheral portion is suppressed.

〈実施例〉 以下、添付図面を用いて本考案の実施例を説明する。<Embodiment> An embodiment of the present invention will be described below with reference to the accompanying drawings.

酸化亜鉛粉末45重量部と亜鉛粉末45重量部とに、添加剤
として酸化水銀5重量部を加え、これらを十分に混合し
た後、ポリテトラフルオロエチレン(PTFE)ディスパー
ジョン5重量部を加え、次いでこれを水で稀釈し混練し
てペースト状活物質を作り、このペースト状活物質を圧
延ローラで所定の厚みのカレンダーシートとなした。
5 parts by weight of mercury oxide as an additive was added to 45 parts by weight of zinc oxide powder and 45 parts by weight of zinc powder, and after thoroughly mixing them, 5 parts by weight of polytetrafluoroethylene (PTFE) dispersion was added, and then This was diluted with water and kneaded to prepare a paste-like active material, and this paste-like active material was made into a calendar sheet having a predetermined thickness with a rolling roller.

一方、鉄板に開孔を多数個設けたパンチング板の表面に
ニッケルメッキを施し、所定の寸法に切断したものを陰
極集電体とした。この陰極集電体の周縁部にPTFEディス
パージョンやFEPディスパージョン等の未焼結フッ素樹
脂ディスパージョンを塗布し、塗布後は温度60〜80℃で
10時間乾燥してディスパージョン中の水分を除去した。
そして、このように未焼結フッ素樹脂層を周縁部に形成
した陰極集電体を、窒素−水素の混合ガス雰囲気中で熱
処理(PTFE塗布の場合は320℃で30分間、FEPの場合は28
0℃で30分間)を施して未焼結フッ素樹脂を焼結フッ素
樹脂にし、陰極集電体周縁部に強固な焼結フッ素樹脂被
膜を形成した。このようにして形成した焼結フッ素樹脂
被膜処理済集電体の両面に、上記のようにして得たカレ
ンダーシートを貼り合わせた後、圧着ローラで圧着して
第1図(A),(B)に示した本考案に係る亜鉛極を作
った。尚、これらの図面において、1は陰極集電体、2
は焼結フッ素樹脂被膜、3はカレンダーシートを陰極集
電体1に圧着してなる亜鉛活物質である。
On the other hand, the surface of a punching plate having a large number of openings formed in an iron plate was plated with nickel and cut into a predetermined size to obtain a cathode current collector. Apply unsintered fluororesin dispersion such as PTFE dispersion or FEP dispersion to the peripheral portion of this cathode current collector, and after applying at a temperature of 60 to 80 ° C.
Water was removed from the dispersion by drying for 10 hours.
Then, the cathode current collector having the unsintered fluororesin layer formed on the peripheral portion in this manner is heat-treated in a mixed gas atmosphere of nitrogen-hydrogen (320 ° C. for 30 minutes in the case of PTFE coating, 28 in the case of FEP).
(0 ° C. for 30 minutes) to transform the unsintered fluororesin into a sintered fluororesin to form a strong sintered fluororesin coating on the peripheral edge of the cathode current collector. The calendered sheet obtained as described above is attached to both surfaces of the thus-formed current collector treated with the fluorocarbon resin coating, and then pressure-bonded with a pressure-bonding roller, as shown in FIGS. The zinc electrode according to the present invention shown in FIG. In these drawings, 1 is a cathode current collector, 2
Is a sintered fluororesin coating, and 3 is a zinc active material formed by pressing a calendar sheet onto the cathode current collector 1.

そして、以上のようにして形成した亜鉛極4をセパレー
タ5を介して公知の焼結式ニッケル極6と組合せ、第2
図に示すような本考案に係るアルカリ亜鉛蓄電池(本考
案品A)を作製した。同図において7〜10は夫々電槽、
電槽蓋、陰極端子、陽極端子を示す。
Then, the zinc electrode 4 formed as described above is combined with the known sintered nickel electrode 6 via the separator 5,
An alkaline zinc storage battery (product A of the present invention) according to the present invention as shown in the figure was produced. In the figure, 7 to 10 are battery cases,
The battery case lid, cathode terminal, and anode terminal are shown.

また、第4図に示すように周縁部の焼結フッ素樹脂処理
をしない以外は同じ陰極集電体1の両面にカレンダーシ
ート状の亜鉛活物質3を圧着して作った従来の亜鉛極を
用いた他は同様にして従来のアルカリ亜鉛蓄電池(従来
品B)を作製した。
Also, as shown in FIG. 4, a conventional zinc electrode made by pressing calender sheet-shaped zinc active material 3 on both surfaces of the same cathode current collector 1 except that the peripheral portion is not treated with sintered fluororesin is used. A conventional alkaline zinc storage battery (conventional product B) was manufactured in the same manner except that it was used.

以上の2つのアルカリ亜鉛蓄電池を、150mAで6時間充
電した後に150mA電池電圧が1.0Vになるまで放電すると
いう一連の充放電サイクルを繰り返した時の電池容量
(%)のサイクル変化を調べた。結果は第3図に示す通
りであり、例えば電池容量が初期容量の50%以下に低下
した時を電池のサイクル寿命とした場合、本考案品Aの
サイクル寿命が従来品Bのサイクル寿命より著しく優れ
ていることがわかる。
A cycle change in battery capacity (%) was examined when a series of charge and discharge cycles were repeated, in which the above two alkaline zinc batteries were charged at 150 mA for 6 hours and then discharged until the 150 mA battery voltage became 1.0 V. The results are as shown in Fig. 3. For example, when the battery life is 50% or less of the initial capacity, the cycle life of the device A is significantly higher than that of the conventional product B. It turns out to be excellent.

この理由としては次のことが考えられる。即ち、従来品
Bでは、亜鉛極周縁部に余分の電解液が存在し易いため
に亜鉛極中央部に較べて亜鉛極周縁部において活物質で
ある亜鉛の溶解反応が起こり易い状態に加えて、エッジ
効果によって陰極集電体周縁部の電流が流れ易くなって
いるため、充放電サイクルにおける陰極周縁部の変形が
大きく、また、サイクルの進行に伴って陰極周縁部から
亜鉛のデンドライトが成長し、これがニッケル極と接触
して内部短絡を引き起こし易く、これらが電池特性を大
きく低下させる一因となっている。一方、本考案品Aで
は陰極集電体周縁部が焼結フッ素樹脂で強固に被覆され
ているため、亜鉛極周縁部に余分の電解液が存在する状
態であっても、焼結フッ素樹脂が撥水性に富み且つ電気
絶縁体であるために、長期サイクルに亘ってエッジ効果
が抑制されて亜鉛極周縁部において電流は実質的には全
く流れず亜鉛の溶解反応も抑えられる。このため、亜鉛
極周縁部の変形並びに亜鉛のデンドライトの成長防止が
図れ、結果として優れたサイクル特性が得られたものと
考えられる。
The reason for this is as follows. That is, in the case of the conventional product B, in addition to the state in which the excess electrolytic solution is likely to exist at the zinc electrode peripheral portion, the dissolution reaction of zinc as the active material is more likely to occur in the zinc electrode peripheral portion than in the zinc electrode central portion, Since the electric current in the peripheral portion of the cathode current collector easily flows due to the edge effect, the deformation of the peripheral portion of the cathode in the charge / discharge cycle is large, and the dendrite of zinc grows from the peripheral portion of the cathode as the cycle progresses, This is likely to come into contact with the nickel electrode and cause an internal short circuit, which is one of the factors that significantly deteriorate the battery characteristics. On the other hand, in the product A of the present invention, since the peripheral portion of the cathode current collector is firmly coated with the sintered fluororesin, the sintered fluororesin will not be removed even if excess electrolyte is present in the peripheral portion of the zinc electrode. Since it is rich in water repellency and is an electric insulator, the edge effect is suppressed over a long period of time, and substantially no current flows at the periphery of the zinc electrode, and the dissolution reaction of zinc is also suppressed. Therefore, it is considered that the deformation of the zinc electrode peripheral edge portion and the growth of zinc dendrites were prevented, and as a result, excellent cycle characteristics were obtained.

尚、焼結フッ素樹脂を亜鉛極表面、すなわち亜鉛活物質
層表面の周縁部を被覆するよう形成することも考えられ
るが、未焼結フッ素樹脂を亜鉛極表面に塗着した後焼結
する必要があり、焼結の際高温となって亜鉛活物質が変
質するおそれがあるため好ましくない。また未焼結フッ
素樹脂を用いることも考えられるが、焼結フッ素樹脂に
較べ被膜強度が小さく、且つフッ素樹脂ディスパージョ
ンには界面活性剤に付与されており、被膜に界面活性剤
が付着して撥水性が小さくなるため充分な効果が得られ
ない。
It is possible to form the sintered fluororesin so as to cover the zinc electrode surface, that is, the peripheral edge of the zinc active material layer surface, but it is necessary to apply the unsintered fluororesin to the zinc electrode surface and then sinter it. However, there is a possibility that the temperature of the zinc active material may change during sintering and the zinc active material may be deteriorated. It is also possible to use unsintered fluororesin, but the coating strength is lower than that of sintered fluororesin, and the fluororesin dispersion is provided with a surfactant, so that the surfactant may adhere to the coating. Since the water repellency becomes small, a sufficient effect cannot be obtained.

〈考案の効果〉 以上のように構成されるこの考案のアルカリ亜鉛蓄電池
用亜鉛極によれば、亜鉛極周縁部の変形防止並びにこの
周縁部からの亜鉛のデンドライトの成長防止を効果的に
図ることができ、より長期にわたる充放電サイクルに耐
え得る亜鉛極を提供でき、アルカリ亜鉛蓄電池の長寿命
化を図ることができるという効果を奏する。
<Effect of device> According to the zinc electrode for alkaline zinc storage battery of the present invention configured as described above, it is possible to effectively prevent deformation of the peripheral portion of the zinc electrode and also prevent growth of dendrite of zinc from the peripheral portion. It is possible to provide a zinc electrode that can withstand a longer-term charge / discharge cycle, and it is possible to extend the life of the alkaline zinc storage battery.

【図面の簡単な説明】[Brief description of drawings]

第1図(A)は本考案の実施例を示した部分断面図、第
1図(B)は第1図(A)のI−I線断面図、第2図は
実施例を用いてなるアルカリ亜鉛蓄電池を示した断面
図、第3図は実施例並びに従来例を用いてなるアルカリ
亜鉛蓄電池のサイクル特性を示したグラフ、第4図は従
来例を示した部分断面図である。 1……陰極集電体、2……焼結フッ素樹脂被膜、3……
亜鉛活物質、4……亜鉛極。
1 (A) is a partial sectional view showing an embodiment of the present invention, FIG. 1 (B) is a sectional view taken along the line II of FIG. 1 (A), and FIG. FIG. 4 is a sectional view showing an alkaline zinc storage battery, FIG. 3 is a graph showing cycle characteristics of alkaline zinc storage batteries using the embodiment and the conventional example, and FIG. 4 is a partial sectional view showing the conventional example. 1 ... Cathode current collector, 2 ... Sintered fluororesin coating, 3 ...
Zinc active material, 4 ... Zinc electrode.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】酸化亜鉛及び金属亜鉛の少なくとも一種を
主成分とする活物質を集電体に添着してなり、集電体の
周縁部の少なくとも一部分が、焼結されたフッ素樹脂に
よって被覆されていることを特徴とするアルカリ亜鉛蓄
電池用亜鉛極。
1. An active material containing at least one of zinc oxide and metallic zinc as a main component is attached to a current collector, and at least a part of a peripheral portion of the current collector is covered with a sintered fluororesin. A zinc electrode for an alkaline zinc storage battery, which is characterized in that
JP1985143270U 1985-09-19 1985-09-19 Zinc electrode for alkaline zinc storage battery Expired - Lifetime JPH071733Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1985143270U JPH071733Y2 (en) 1985-09-19 1985-09-19 Zinc electrode for alkaline zinc storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1985143270U JPH071733Y2 (en) 1985-09-19 1985-09-19 Zinc electrode for alkaline zinc storage battery

Publications (2)

Publication Number Publication Date
JPS6251656U JPS6251656U (en) 1987-03-31
JPH071733Y2 true JPH071733Y2 (en) 1995-01-18

Family

ID=31052794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1985143270U Expired - Lifetime JPH071733Y2 (en) 1985-09-19 1985-09-19 Zinc electrode for alkaline zinc storage battery

Country Status (1)

Country Link
JP (1) JPH071733Y2 (en)

Also Published As

Publication number Publication date
JPS6251656U (en) 1987-03-31

Similar Documents

Publication Publication Date Title
US5863676A (en) Calcium-zincate electrode for alkaline batteries and method for making same
US4552821A (en) Sealed nickel-zinc battery
US4307164A (en) Rechargeable electrical storage battery with zinc anode and aqueous alkaline electrolyte
US3438812A (en) Rechargeable alkaline cell
JP2743416B2 (en) Zinc plate for rechargeable batteries
JP3515286B2 (en) Electrodes for secondary batteries
JPH071733Y2 (en) Zinc electrode for alkaline zinc storage battery
JPS59501521A (en) sealed nickel-zinc battery
JPH07130389A (en) Nonaqueous electrolyte secondary battery
JP3533032B2 (en) Alkaline storage battery and its manufacturing method
JP3185244B2 (en) Zinc negative electrode plate for alkaline batteries
JPS5931177B2 (en) Zinc electrode for alkaline storage battery
JPS5832362A (en) Alkaline zinc secondary battery
JP7197250B2 (en) secondary battery
JPH0250585B2 (en)
JP3267156B2 (en) Nickel hydride rechargeable battery
JPH0241817Y2 (en)
JPH0582022B2 (en)
JPH0251874A (en) Alkaline zinc lead-acid battery
JP2755634B2 (en) Alkaline zinc storage battery
JPH06101331B2 (en) Alkaline zinc storage battery
JP3627433B2 (en) Sealed nickel-cadmium storage battery
KR100287123B1 (en) Alkali-zinc secondary battery
JPH0252386B2 (en)
JPH0564419B2 (en)