JPH02151869A - Electrophotographic sensitive body and its production - Google Patents

Electrophotographic sensitive body and its production

Info

Publication number
JPH02151869A
JPH02151869A JP30736688A JP30736688A JPH02151869A JP H02151869 A JPH02151869 A JP H02151869A JP 30736688 A JP30736688 A JP 30736688A JP 30736688 A JP30736688 A JP 30736688A JP H02151869 A JPH02151869 A JP H02151869A
Authority
JP
Japan
Prior art keywords
transport layer
charge transport
electrophotographic photoreceptor
oxygen
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30736688A
Other languages
Japanese (ja)
Inventor
Chisato Sakahara
阪原 千里
Akio Takimoto
昭雄 滝本
Eiichiro Tanaka
栄一郎 田中
Koji Akiyama
浩二 秋山
Masanori Watanabe
正則 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP30736688A priority Critical patent/JPH02151869A/en
Publication of JPH02151869A publication Critical patent/JPH02151869A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/07Polymeric photoconductive materials

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photoreceptors In Electrophotography (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)

Abstract

PURPOSE:To obtain an electrophotographic sensitive body having high sensitivity and low residual potential, and improved charge receiving capacity, wear resistance, and resistance to environmental changes by incorporating a specified p-phenylene compd. into a charge transfer layer. CONSTITUTION:The electrophotographic sensitive body is constituted of a charge transfer layer consisting of a layer of a high molecular linear compd. contg. p-phenylene residues and a group IIb element in the p-position of the p-phenylene compd. Suitable group IIb element is at least one among S, Se, Te, having >=280 deg.C m.p. Thus, an electrophotographic sensitive body having high sensitivity and low residual potential is obtd. Moreover, the film of the charge transfer layer is attained by the melt-sticking, coating, or vapor-deposition of the polymer, so an inexpensive electrophotographic sensitive body having high stability and high printing resistance is obtd.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、電子写真方式の複写機、光プリンタ等に用い
られる電子写真感光体に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an electrophotographic photoreceptor used in electrophotographic copying machines, optical printers, and the like.

従来の技術 電子写真感光体において、光励起によるキャリア生成と
、キャリア輸送を別々の材料で構成する機能分離型電子
写真感光体が広く用いられている。
2. Description of the Related Art Among electrophotographic photoreceptors, functionally separated electrophotographic photoreceptors are widely used in which carrier generation by photoexcitation and carrier transport are made of different materials.

このように機能によって月利を選ぶことによって高感度
な電子写真特性を持つ優れた感光体を提供している。ま
た機械的強度、熱的安定性、耐刷性、耐環境性、製造コ
ストといった様ざま な面に渡って幅広い材料の中から最適の組合せが検討さ
れてきた。このような材料の組合せの代表例として、無
定型セレンとポリビニルカルバゾール、スクエアリック
酸メチルとトリアリールピラゾリン、ダイアンブルーと
オキサジアゾール、ペリレン顔料とオキサジアゾール、
ビスアゾ顔料とスチリアアンスラセン 等がある。
In this way, by selecting the monthly yield according to the function, an excellent photoreceptor with high sensitivity electrophotographic properties is provided. In addition, the optimal combination of materials has been studied from a wide variety of aspects, including mechanical strength, thermal stability, printing durability, environmental resistance, and manufacturing cost. Typical examples of such material combinations include amorphous selenium and polyvinylcarbazole, methyl squarate and triarylpyrazoline, Diane blue and oxadiazole, perylene pigment and oxadiazole,
Examples include bisazo pigments and styria anthracene.

また非晶質層を利用するものとして特開昭54−143
845号公報には有機半導体材料を用いた機能分離型の
感光体が、また特開昭58−24355号公報に材無機
半導体材料を用いた機能分離型感光体が提案されている
。また我々は、電荷輸送層として非晶質カーボンを主成
分とする層を用い、電荷発生層を非晶質クリコンで構成
する機能分離型感光体を提案している。
Also, as a method using an amorphous layer, JP-A-54-143
No. 845 proposes a functionally separated photoreceptor using an organic semiconductor material, and JP-A-58-24355 proposes a functionally separated photoreceptor using an inorganic semiconductor material. Furthermore, we have proposed a functionally separated photoreceptor in which the charge transport layer is a layer mainly composed of amorphous carbon, and the charge generation layer is made of amorphous cricon.

このような材料の中で電荷輸送層としてPP5(ポリー
P−フェニレンスルフィド)が高い正孔移動度を持つ耐
熱性に優れた材料として提案されている。 (特開昭1
id−59353号)しかし、通常PPSは、高抵抗で
あり何等かの方法で移動度を向上させる工夫が必要であ
る。我々は、PPSを酸素雰囲気で加熱処理することで
正孔移動度が向上し、良好な特性を持つ電子写真感光体
を得た。
Among such materials, PP5 (poly P-phenylene sulfide) has been proposed as a material with high hole mobility and excellent heat resistance for the charge transport layer. (Unexamined Japanese Patent Publication No. 1
(No. id-59353) However, PPS usually has a high resistance, and it is necessary to find some way to improve its mobility. We have obtained an electrophotographic photoreceptor with improved hole mobility and good characteristics by heat-treating PPS in an oxygen atmosphere.

発明が解決しようとする課題 機能分離型電子写真感光体において、より高感度の実現
するには、より小さな誘電率を持ち、より大きな移動度
を有する電荷輸送層と、高い電荷発生能力を持つ電荷発
生層の組合せが望ましい。
Problems to be Solved by the Invention In order to achieve higher sensitivity in a function-separated electrophotographic photoreceptor, it is necessary to create a charge transport layer with a smaller dielectric constant and greater mobility, and a charge transport layer with a higher charge generation ability. A combination of generation layers is desirable.

しかしそれぞれ要求される所潰条件を満足しても両者の
間のキャリア注入が効率良く行われなければならない。
However, even if the required collapsing conditions are satisfied, carrier injection between the two must be performed efficiently.

また電子写真プロセスに於て要求される電荷受容能力、
耐摩耗性、耐環境性、等に十分満足するものでなければ
ならない。
In addition, the charge acceptance ability required in the electrophotographic process,
It must have sufficient wear resistance, environmental resistance, etc.

PPSは耐熱性、機械的強度に優れ、高い電気抵抗を有
する絶縁体として知られ、プラスチック剤、封止用材料
として活用されている。一方導電性材料止しても注目さ
れており、電子受容性材料を添加することで著しく導電
性が向上するこきはよく知られている。この時移動度も
共に向上し電子写真感光体の電荷輸送層への応用が期待
されたが、キャリア濃度の増加によって電気抵抗が低下
するために、要求されるだけの電荷受容能力を持たず改
良が望まれた。
PPS is known as an insulator with excellent heat resistance, mechanical strength, and high electrical resistance, and is used as a plastic agent and a sealing material. On the other hand, the use of conductive materials is also attracting attention, and it is well known that conductivity can be significantly improved by adding electron-accepting materials. At this time, the mobility also improved and it was expected that it could be applied to the charge transport layer of electrophotographic photoreceptors, but as the electrical resistance decreased due to the increase in carrier concentration, it did not have the required charge-accepting ability and was not improved. was desired.

特開昭H−59353号においては、ppsの真空蒸着
法によって薄膜化と輸送層、形成を述べているが、一般
にこの状態では移動度は小さく、感度、′残留電位共に
悪い。
JP-A-59353 describes thinning and forming a transport layer by a pps vacuum deposition method, but in this state, mobility is generally low and both sensitivity and residual potential are poor.

また電荷発生層として電荷発生能の高いことは、言うに
及ばず電荷輸送層へのキャリアの注入効率も良くなけれ
ばならない。更にその形成方法が安価におこなわれるこ
とが望ましい。
In addition to having a high charge generation ability as a charge generation layer, it must also have good carrier injection efficiency into the charge transport layer. Furthermore, it is desirable that the method for forming it be inexpensive.

これらの問題を解決する方法としてPPSの酸素雰囲気
中野か熱処理を提案した。しかし処理温度一定の加熱で
は処理時間に対し・て電子写真特性は飽和□傾向にあり
、特性改善□の工夫が必要である。
As a method to solve these problems, we proposed heat treatment of PPS in an oxygen atmosphere. However, when heating at a constant processing temperature, the electrophotographic properties tend to be saturated with respect to the processing time, and it is necessary to take measures to improve the properties.

課題を解決するための手段 本発明は上記の問題点に鑑みされものであって、請求項
1の発明は光励起によってキャリアを発生する光導電層
と、そのキャリア゛を輸送する電荷輸送層からなる機能
分離型電子写真感光体において、前記電荷輸送層がP−
フェニレンををし、かつパラ位にIIb族元素を有する
直鎖状化合物高分子層からなり、前記IIb′族元素と
してSr ’s’e1’r・elの少なくともいずれか
一つを含有・し、その融点が280℃以上であることを
特徴とする請求項5の発明は請求項′2記載の電子写真
感光体の製造方法であって、電荷輸送層を形成する工程
□に酸素を含む雰囲気中における・1回以上の加熱処理
工程を含み、各処理工程で処理温度を時間的に゛増加□
させ゛るかあるいは後段の処理温度が前段に較べ高いこ
とを特徴とする。
Means for Solving the Problems The present invention has been made in view of the above problems, and the invention according to claim 1 comprises a photoconductive layer that generates carriers by photoexcitation, and a charge transport layer that transports the carriers. In the functionally separated electrophotographic photoreceptor, the charge transport layer is P-
consisting of a linear compound polymer layer containing phenylene and having a group IIb element at the para position, containing at least one of Sr's'el'r and el as the group IIb'element; The invention according to claim 5, characterized in that the melting point is 280° C. or higher, is the method for producing an electrophotographic photoreceptor according to claim 2, wherein the charge transport layer is formed in an atmosphere containing oxygen in the step □ of forming the charge transport layer.・Includes one or more heat treatment steps, and the treatment temperature is increased over time in each treatment step□
It is characterized by the fact that the processing temperature in the latter stage is higher than that in the former stage.

作用 高分子におけるキャリアの移動は、高分子の主鎖方向に
沿っての電子軌道間のホッピング伝導で行われるが、そ
のキャリアの移動度は、隣合う軌道の重なりの大きいほ
どホッピング確率□がゞ増し′助加する。主鎖方向にP
−フェニレンとパラ位にIIb族元素を有する構造の高
分子において、“その結晶構造解析より隣合”う□ベン
1ゼン環□゛は−空間的にπ電子軌道の直行する配位状
態にあり、□移動度は小さい。従って、高分子軸に垂直
な方向にキャリアは移動しやすいと考えられる。よって
高分子の配位が揃った結晶部ではキャリアの移動は良く
、配向性の劣った非晶部領域の減少と、非晶部から結晶
部へのキャリア伝達を容易にする構造をもたらすことが
重要である。
Carrier movement in active polymers is carried out by hopping conduction between electron orbits along the main chain direction of the polymer, and the carrier mobility increases as the hopping probability □ increases as the overlap between adjacent orbitals increases. increase 'help'; P in the main chain direction
- In a polymer with a structure containing phenylene and a Group IIb element at the para position, the □benzene ring □゛, which is “neighboring” according to its crystal structure analysis, is in a coordination state in which the π electron orbitals are spatially perpendicular to each other. , □Mobility is small. Therefore, it is considered that carriers tend to move in the direction perpendicular to the polymer axis. Therefore, in the crystalline part where the polymer coordination is uniform, carrier movement is good, reducing the amorphous region with poor orientation and creating a structure that facilitates carrier transfer from the amorphous part to the crystalline part. is important.

第1の結晶領域の拡大は熱処理を施すことで、第2の構
造変化は膜中に酸素分子を導入することで解決されるこ
とを見いたした。酸素雰囲気中の加熱で膜内に取り込ま
れた酸素分子は膜内非晶部に存在し、高分子と弱く結び
つくことてこの領域のキャリアの分子間ホビングを向上
させると考える。この弱く結合する膜中酸素の量を増加
させる加熱処理方法は加熱温度を段階的に或は連続的に
増加させると良い。弱結合酸素の増加は、高分子の融点
増加をもたらす。これは融点以上の高温に加熱して始め
て有効に酸素の結合が進むと考えられる。しかし各分子
がその位置を大きく変化するほど高温に加熱すると逆に
酸素との強い結合、すなわち化学変化が発生する。よっ
て融点上昇に伴って徐々に加熱温度を上昇させることで
より晶い融点を持つ高分子を得ることができる。
It has been found that the expansion of the first crystal region can be solved by heat treatment, and the second structural change can be solved by introducing oxygen molecules into the film. It is thought that oxygen molecules taken into the film by heating in an oxygen atmosphere exist in the amorphous region within the film and weakly bond with the polymer, thereby improving intermolecular hobbing of carriers in this region. The heat treatment method for increasing the amount of weakly bonded oxygen in the film is preferably performed by increasing the heating temperature stepwise or continuously. An increase in weakly bound oxygen results in an increase in the melting point of the polymer. It is thought that the effective bonding of oxygen progresses only after heating to a high temperature above the melting point. However, if each molecule is heated to a high enough temperature that its position changes significantly, a strong bond with oxygen, or a chemical change, occurs. Therefore, by gradually increasing the heating temperature as the melting point increases, a polymer having a crystalline melting point can be obtained.

酸素が介在する熱処理による高分子の融点変化を第1表
〜第4表に示す。第1表〜第4表はPPSフィルムを酸
素中、真空中で加熱処理したときの融点の変化を表した
ものである。第1表では酸素中加熱温度285℃で12
時間の後、約25°C増加し300 ’Cとなる。一方
真空中熱処理では増加はな(、酸素介在によって始めて
融点増加することが分かる。第2表より酸素中、真空中
熱処理によって融点は可逆的に変化し、膜中酸素の可逆
的な増減と相関があることがわかる。第3表は酸素中の
、第4表は真空中の熱処理温度による融点の変化を示す
。酸素介在の熱処理はその処理温度が融点近傍以下では
増加させ、融点以」二では大幅な減少をもたらす。よっ
て285〜290 ’Cの近傍で大きな変化をみせる。
Tables 1 to 4 show changes in melting points of polymers due to heat treatment in the presence of oxygen. Tables 1 to 4 show changes in melting point when PPS films are heat treated in oxygen and vacuum. In Table 1, at a heating temperature of 285℃ in oxygen, 12
After an hour it increases by about 25°C to 300'C. On the other hand, heat treatment in vacuum does not increase the melting point (it can be seen that the melting point increases only with the presence of oxygen.Table 2 shows that the melting point changes reversibly by heat treatment in oxygen and vacuum, and it correlates with the reversible increase and decrease of oxygen in the film. Table 3 shows changes in melting point depending on heat treatment temperature in oxygen, and Table 4 shows changes in melting point depending on heat treatment temperature in vacuum. Oxygen-mediated heat treatment increases the temperature when the treatment temperature is near the melting point or below, and increases when the temperature exceeds the melting point. Therefore, there is a large change in the vicinity of 285 to 290'C.

実施例 第1図は、本発明における基本的な電子写真感光体の一
実施例の断面を模式的に示したものてあ第1図に示す電
子写真感光体は、電子写真感光体としての支持体1上に
、本発明の高分子層からなる電荷輸送層2と電荷発生層
3とを有し、前記電荷発生層3は一方で自由表面4を有
している。
Embodiment FIG. 1 schematically shows a cross section of an embodiment of a basic electrophotographic photoreceptor according to the present invention. The electrophotographic photoreceptor shown in FIG. On the body 1 there is provided a charge transport layer 2 consisting of a polymer layer according to the invention and a charge generation layer 3, said charge generation layer 3 having a free surface 4 on one side.

この時の膜厚は、電荷輸送層は5〜50μm好適には1
0〜25μm1  また光導電層の膜厚は0.2〜10
μm好適には0.5〜5μmとすれば良い。
At this time, the thickness of the charge transport layer is 5 to 50 μm, preferably 1 μm.
0~25μm1 The film thickness of the photoconductive layer is 0.2~10μm1.
[mu]m is preferably 0.5 to 5 [mu]m.

第2図は本発明の酸素雰囲気熱処理方法における加熱温
度のプロフィールを表したものである。
FIG. 2 shows the heating temperature profile in the oxygen atmosphere heat treatment method of the present invention.

第2図(a)は3回のステップで各処理中温度−定で段
階的に処理温度を上げる場合を、第2図(b)は1回の
処理で昇温速度一定とし熱処理温度を上げる場合を示す
Figure 2 (a) shows the case in which the treatment temperature is increased stepwise in three steps with a constant temperature during each treatment, and Figure 2 (b) shows the case in which the heat treatment temperature is increased in one treatment with a constant temperature increase rate. Indicate the case.

本発明において導電性支持体は、金属材料、例えばアル
ミニウム、或は金属材料で被覆されたものであってもよ
い。
In the present invention, the conductive support may be made of a metal material, such as aluminum, or may be coated with a metal material.

本発明において、更に電子写真特性を向上させるために
、第1図において、支持体1と電荷輸送層2との間に、
支持体1から電荷輸送層2に注入するキャリアを効果的
に阻止するため障壁層を設けてもよい。
In the present invention, in order to further improve the electrophotographic properties, in FIG. 1, between the support 1 and the charge transport layer 2,
A barrier layer may be provided to effectively prevent carriers from being injected from the support 1 into the charge transport layer 2.

障壁層を形成する材料としては、例えば、Al□03、
BaO1Ba02、Be01Bj20a、CaO1Ce
02、Ce2O3、La2O3、Dy2O3、Lu2O
3、Cr2O3、CuO1Cu20、Fe01P bO
Examples of materials forming the barrier layer include Al□03,
BaO1Ba02, Be01Bj20a, CaO1Ce
02, Ce2O3, La2O3, Dy2O3, Lu2O
3, Cr2O3, CuO1Cu20, Fe01P bO
.

MgO1SrO1Ta203、Th02、ZrO2、H
fO2、TiO2、Ti0l−5j02、GeO2、S
10、GeO等の金属酸化物またはTiN。
MgO1SrO1Ta203, Th02, ZrO2, H
fO2, TiO2, Ti0l-5j02, GeO2, S
10. Metal oxides such as GeO or TiN.

A lN15nN、  NbN、  TaN1GaN等
の金属窒化物、またはWC,SnC,Ticl  等の
金属炭化物またはSiC,5IN1G eClG eN
1BC18N等の絶縁物、ポリイミド、ポリアミドイミ
ド、ポリアクリルニトリル等の耐熱性を有する有機化合
物が使用される。
Metal nitrides such as AlN15nN, NbN, TaN1GaN, or metal carbides such as WC, SnC, TiCl, or SiC, 5IN1G eClG eN
Insulators such as 1BC18N and heat-resistant organic compounds such as polyimide, polyamideimide, and polyacrylonitrile are used.

また、クリーニング性あるいは耐摩耗性あるいは耐コロ
ナ性を向上させるため、第1図および第2図において、
自由表面4上に表面被覆層を形成する。表面被覆層とし
て好適な材料としては、例えば、S+xO+−x、 S
L、CI−x、  5IxN+−1G”x O+ −X
N  Ge、 CI−x、  GexN+−xs   
BXNI−XN   BXCI−X、  A1.N+−
−(Oぐxく1)、カーホ゛ンおよびこれらに水素ある
いはハロゲンを含仔する層等の無機物などが」二げられ
る。
In addition, in order to improve cleaning performance, abrasion resistance, or corona resistance, in Figures 1 and 2,
A surface coating layer is formed on the free surface 4. Examples of suitable materials for the surface coating layer include S+xO+-x, S
L, CI-x, 5IxN+-1G"x O+ -X
N Ge, CI-x, GexN+-xs
BXNI-XN BXCI-X, A1. N+-
-(Oxx1), carbon, and inorganic substances such as layers containing hydrogen or halogen.

電荷輸送層の主原料であるPPSは粉末からの真空蒸着
法、イオンクラスタビーム法、等で直接基板面に形成し
ても良いし、又粉末を押し出し形成によるフィルム化し
たのち、基板面へ融着する方法であってもよい。
PPS, which is the main raw material for the charge transport layer, can be formed directly on the substrate surface by vacuum evaporation from powder, ion cluster beam method, etc., or it can be formed into a film by extrusion from powder and then melted onto the substrate surface. It may also be a method of wearing.

この時、予め電子受容性の添加物を所定量混在させてお
いてもよい。また第3図に示すように酸素熱処理と電子
受容体の気相ドープ法による添加を交互に行ってもよい
At this time, a predetermined amount of an electron-accepting additive may be mixed in advance. Further, as shown in FIG. 3, the oxygen heat treatment and the addition of electron acceptors by vapor phase doping may be performed alternately.

添加する電荷受容体としては、例えば、I2、Br2、
C12、■C1、lBr1(NO2)BF4、(NO2
) P Fll、(NO2) S b Fs、HC10
a、H2SO4、HN  O’a、  H3O4−1A
gCl0n、  Fe(ClO2)、BF3、FeCl
3、FeBr3、AlCl3、InCl3、InI3、
ZrCl4、HfCl4、TeCl4、TeBr4、T
eI4、SnC14、S n I4N  S e C1
4、T i C1a、T i I4、F e CI 4
−1A I Cl 4−1A s FE、SbF6、N
bC1G、NbFe、TaC16、Ta I6、MOC
15、ReFe、■rC16、工nF6、UF6.08
=11− Fe、 XeF6、 TeFe、 SF6、 SeF6
、 WF6、WCle、Re F7  等がある。叉有
機系の電荷受容体として、例えば、TCNQl TCN
El DDQ等もある。電荷発生層の有機半導体として
は、(イ)フタロシアニン顔料(Pcと称す)例えば無
金属PC1XPC(X=Cu1 Nis  Co1 T
10、M gz  S 1 (OH) 2、等)、AI
CIPcCL  Ti0CIPcC1,InClPcC
111nCIPc1 InBrPcBr等がある。更に
、(ロ)モノアゾ色素、ジスアゾ色素、等のアゾ系色素
、(ハ)ペニレン酸無水物およびペニレン酸イミド等の
ペニレン系顔料、 (ニ)インジゴイド染料、 (ホ)
キナクリドン顔料、 (へ)アントラキノン類、ピレン
キノン類等の多環キノン類、 (ト)シアニン色素、 
(チ)キサンチン染料、(す)PVK/TNF等の電荷
移動錯体、 (ヌ)ビIJ IJウム塩染料とポリカー
ボネイト樹脂から形成される共晶錯体、 (ル)アズレ
ニウム塩化合物等かある。
Examples of the charge acceptor to be added include I2, Br2,
C12, ■C1, lBr1(NO2)BF4, (NO2
) P Flll, (NO2) S b Fs, HC10
a, H2SO4, HN O'a, H3O4-1A
gCl0n, Fe(ClO2), BF3, FeCl
3, FeBr3, AlCl3, InCl3, InI3,
ZrCl4, HfCl4, TeCl4, TeBr4, T
eI4, SnC14, S n I4N S e C1
4, T i C1a, T i I4, F e CI 4
-1A ICl 4-1A s FE, SbF6, N
bC1G, NbFe, TaC16, Ta I6, MOC
15, ReFe, ■ rC16, Eng nF6, UF6.08
=11- Fe, XeF6, TeFe, SF6, SeF6
, WF6, WCl, Re F7, etc. As an organic charge acceptor, for example, TCNQl TCN
There are also El DDQ etc. As the organic semiconductor of the charge generation layer, (a) phthalocyanine pigment (referred to as Pc), for example, metal-free PC1XPC (X=Cu1 Nis Co1 T
10, M gz S 1 (OH) 2, etc.), AI
CIPcCL Ti0CIPcC1, InClPcC
111nCIPc1 InBrPcBr, etc. Furthermore, (b) azo dyes such as monoazo dyes and disazo dyes, (c) penylene pigments such as penylene acid anhydride and penylene acid imide, (d) indigoid dyes, (e)
Quinacridone pigments, (f) polycyclic quinones such as anthraquinones and pyrenequinones, (g) cyanine dyes,
(l) xanthine dyes, (l) charge transfer complexes such as PVK/TNF, (l) eutectic complexes formed from vinyl salt dyes and polycarbonate resins, and (r) azulenium salt compounds.

これらの有機半導体の製膜には、真空蒸着法、デイツプ
法、イオンクラスタビーム法、電着法等が用いられる。
A vacuum evaporation method, a dip method, an ion cluster beam method, an electrodeposition method, etc. are used to form films of these organic semiconductors.

電荷発生層で非単結晶層としては、カルコゲン元素を成
分として有するS eX ’s eTe1As2Se 
3+  Cd S+  等、非晶質層としてはシリコン
、ゲルマニウム、カーボンの少なくともいずれかひとつ
を主成分とし9局在基位密度を減少させる修飾物(例え
ば水素、ハロゲン)を含有するものである。
As a charge generation layer and a non-single crystal layer, S eX 's eTe1As2Se having a chalcogen element as a component is used.
The amorphous layer, such as 3+ Cd S+, has at least one of silicon, germanium, and carbon as a main component and contains a modification (eg, hydrogen, halogen) that reduces the density of 9 localized groups.

これらの製膜にはプラズマを利□用したプラズマCVD
法、ECR法、また通常のスパッタ法、真空蒸着法等が
利用される。
Plasma CVD using plasma is used to form these films.
method, ECR method, ordinary sputtering method, vacuum evaporation method, etc. are used.

次に、本発明をより具体的な実施例をあげて説明する。Next, the present invention will be explained by giving more specific examples.

実施例1 鏡面研磨したアルミニウム基板上に、■族としてイオウ
を有するフィルム形状のPPS (ポリ p−フェニレ
ン スルフィド)を貼りつケ、フッ素樹脂シートをフィ
ルムの上側より巻き付は熱処理炉において加熱し、’P
PSフィルムをアルミニウム基板上に融着させた。加熱
温度はPPSの融解温度である285℃より高い290
°Cとし、加熱雰囲気は大気中である。熱処理炉より基
板を取り出し・た後フッ素樹脂シートを取りタトシ、再
び熱処理炉に設置し酸素雰囲気で加熱処理を施した。加
熱処理は第2図(a)にある方法で行い、各ステップの
加熱処理時間は3時間一定とした。検討した各ステップ
の処理温度を第5表にまとめた。表の工程1は1回ステ
ップ、工程2は2回ステップ、工程31.32.33は
3回ステップである。処理後PPSフィルムの膜厚は、
10〜25μmとした。
Example 1 A film-shaped PPS (poly p-phenylene sulfide) containing sulfur as the group (■) was pasted on a mirror-polished aluminum substrate, a fluororesin sheet was wrapped from above the film, and the film was heated in a heat treatment furnace. 'P
A PS film was fused onto an aluminum substrate. The heating temperature is 290°C, which is higher than the melting temperature of PPS, 285°C.
°C, and the heating atmosphere was air. After taking out the substrate from the heat treatment furnace, the fluororesin sheet was removed and placed in the heat treatment furnace again, and heat treatment was performed in an oxygen atmosphere. The heat treatment was performed by the method shown in FIG. 2(a), and the heat treatment time for each step was constant for 3 hours. Table 5 summarizes the processing temperatures for each step studied. Process 1 in the table is a one-time step, process 2 is a two-time step, and processes 31, 32, and 33 are a three-time step. The thickness of the PPS film after treatment is
The thickness was 10 to 25 μm.

これらの層を電荷輸送層とし、電荷発生層としてフタロ
シアニン系化合物Ti0Pcを塗布法によって0.05
〜5.0μm積層した。第6表に各工程で製□作した感
光体の電子写真特性を、表面電位800vに設定し白色
光で照射した時の半減露光量(E+721x、’5ec
)、残留電位(VreS”’V)で系す。
These layers are used as a charge transport layer, and a phthalocyanine compound Ti0Pc is coated with 0.05% by coating method as a charge generation layer.
The layers were laminated to a thickness of ~5.0 μm. Table 6 shows the electrophotographic characteristics of the photoreceptors manufactured in each process, when the surface potential was set at 800 V and the exposure amount was halved (E+721x, '5ec
) and the residual potential (VreS'''V).

実施例2 実施例4と同様に□アルミニウム基板上にPPSフィル
ムを融着した後、酸素中熱処理を第2図(b)に示す方
法で行った。加熱開始温度280℃、最終温度295°
Cとなるように 0に5(°C/時間)、C2=1.7
(°C/時間)、C3”1.1(’C/時間) の昇温
速度で処理した。この後、電荷発生層として真空蒸着法
によりフタロ7アニン系化合物A]ClPcClを成膜
した。実施例1と同様の電子写真特性を評価した結果、
C2プロセスの感光体は半減露光量0.7 lx 、5
ec1  残留電位50v以下と良好な特性を得た。
Example 2 After a PPS film was fused onto a □ aluminum substrate in the same manner as in Example 4, heat treatment in oxygen was performed by the method shown in FIG. 2(b). Heating start temperature 280°C, final temperature 295°
0 to 5 (°C/hour) so that C2=1.7
(°C/hour) and C3''1.1 ('C/hour). Thereafter, a phthalo7-anine compound A]ClPcCl was formed as a charge generation layer by vacuum evaporation. As a result of evaluating the electrophotographic characteristics similar to Example 1,
The C2 process photoreceptor has a half-life exposure of 0.7 lx, 5
ec1 Good characteristics were obtained with a residual potential of 50 V or less.

実施例3 電荷輸送層を形成する際、融着処理後に電子受容体とし
て、T’CNQ (7,7,8,8,−テトラシアノキ
ノジメタン)を添加した。添加方法は融着PPSフィル
ムに直接TCNQ気体をさらし、フィルム上面より膜中
に拡散させる気相ドープ法とした。
Example 3 When forming a charge transport layer, T'CNQ (7,7,8,8,-tetracyanoquinodimethane) was added as an electron acceptor after the fusion treatment. The addition method was a vapor phase doping method in which TCNQ gas was directly exposed to the fused PPS film and diffused into the film from the upper surface of the film.

酸素中熱処理と気相ドープは第3図に示すように交互に
行い、膜中にTCNQに有効に取り込まれ且つ融点が増
加するように酸素熱処理は増加する温度プロフィールと
した。第3図(a、 )ではT + =270°C1T
2= 275°C1T3=280°Cとし、第3図(b
)では昇温速度1.7(’C/時間)一定の条件で行っ
た。
The heat treatment in oxygen and the vapor phase doping were performed alternately as shown in FIG. 3, and the temperature profile of the heat treatment with oxygen was set to increase so that the TCNQ was effectively incorporated into the film and the melting point increased. In Figure 3 (a, ), T + =270°C1T
2 = 275°C1T3 = 280°C, Figure 3 (b
), the heating rate was kept constant at 1.7 ('C/hour).

電荷発生層には、アズレニウム塩化合物を採用した。1
.4−ジメチル−7−イツプロビルアズレンとPジメチ
ルアミノシンナムアルデヒドをテトラヒドロフランに溶
解し、酸(HXl X=Cl0.l、BFa、BrtI
)を10’C以下に冷却しながら反応させて、この溶液
をe o ’cで乾燥さゼアスレニウム塩化合物 1−
’(P−ジメチルアミノンンナミリデン)5−イソプロ
ピル−3,8−ジメチルアズレニウム塩をえた。これを
ブチラール樹脂と混ぜ合わせ酢酸ブチル中で分散させた
のち電荷輸送層上に0.1〜5.0μm塗布したのち7
0°Cで乾燥させた。
An azulenium salt compound was used for the charge generation layer. 1
.. 4-dimethyl-7-itsuprobyl azulene and P dimethylaminocinnamaldehyde were dissolved in tetrahydrofuran, and acid (HXl X=Cl0.l, BFa, BrtI
) was reacted while cooling to below 10'C, and this solution was dried at e o'c to form a zeathrenium salt compound 1-
'(P-dimethylaminannaylidene) 5-isopropyl-3,8-dimethylazulenium salt was obtained. This was mixed with butyral resin and dispersed in butyl acetate, and then coated on the charge transport layer to a thickness of 0.1 to 5.0 μm.
Dry at 0°C.

アズレニウム塩は、400〜900nmに至る波長領域
で光導電性に優れ、特に700nm以」−の長波長に感
度ピークを持ち半導体レーザーを光源とするプリンタに
適応し得る。」二記4種類のアズレニウム塩の中でも酸
として■(ヨウ素)を含有したものは、白色光に対して
0.821xsec、  800nmの赤色光に対して
、0.551xsecと良好な感度を示した。
Azulenium salts have excellent photoconductivity in the wavelength range of 400 to 900 nm, and have a peak sensitivity at long wavelengths of 700 nm or more, making them suitable for printers using semiconductor lasers as light sources. Among the four types of azulenium salts described in Section 2, the one containing ■ (iodine) as an acid showed good sensitivity of 0.821 x sec to white light and 0.551 x sec to red light of 800 nm.

発明の効果 本発明によれば、高感度、低残留電位の電子写真感光体
を得ることができ、更に電荷輸送層の製膜が、高分子の
融着、塗布、蒸着で行え、安価な電子写真感光体を提供
できる。また電荷輸送層が耐熱性の熱硬化型高分子であ
るため安定性に優れると共に耐刷性も良好でなる効果が
ある。
Effects of the Invention According to the present invention, it is possible to obtain an electrophotographic photoreceptor with high sensitivity and low residual potential, and furthermore, the charge transport layer can be formed by polymer fusing, coating, or vapor deposition, and is an inexpensive electronic photoreceptor. We can provide photographic photoreceptors. Furthermore, since the charge transport layer is made of a heat-resistant thermosetting polymer, it has excellent stability and printing durability.

第1表 第4表 第3表 第2表 第5表 多段階酸素熱処理工程の設定温度 (°C) 第5表 (つづき) 第6表 第6表 (つづき)Table 1 Table 4 Table 3 Table 2 Table 5 Set temperature for multi-stage oxygen heat treatment process (°C) Table 5 (continued) Table 6 Table 6 (continued)

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例における電子写真感光体の断面
図、第2図は本発明の実施例1.2の酸素中加熱処理の
加熱温度の時間プロフィ−ルを表した図、第3図は酸素
加熱上電荷受容体の添加を交互に行う場合(実施例3)
の加熱温度の時間プロフィールを表した図である。 1・拳−支持体、2・拳・電荷輸送層、3・・・電荷発
生層、4・・・自由表面。 代理人の氏名 弁理士 粟野重孝 ほか1名第 図 一拍−3 第 図 (αン H H H 処理待 聞 どb) 6理時間
FIG. 1 is a cross-sectional view of an electrophotographic photoreceptor in an example of the present invention, FIG. 2 is a diagram showing a time profile of the heating temperature of the heat treatment in oxygen in Example 1.2 of the present invention, and FIG. The figure shows the case of alternating oxygen heating and charge acceptor addition (Example 3)
It is a figure showing the time profile of the heating temperature. 1. Fist-support, 2. Fist-charge transport layer, 3. Charge generation layer, 4. Free surface. Name of agent: Patent attorney Shigetaka Awano and one other person Fig. 1 beat-3 Fig. (αn H H H processing waiting b) 6 hours

Claims (6)

【特許請求の範囲】[Claims] (1)光励起によってキャリアを発生する光導電層と、
そのキャリアを輸送する電荷輸送層からなる機能分離型
電子写真感光体において、前記電荷運送層がP−フェニ
レンを有し、かつパラ位にIIb族元素を有する直鎖状化
合物高分子層からなり、前記IIb族元素としてS、Se
、Te、の少なくともいずれか一つを含有し、その融点
が280℃以上であることを特徴とする電子写真感光体
(1) A photoconductive layer that generates carriers by photoexcitation;
In a functionally separated electrophotographic photoreceptor comprising a charge transport layer for transporting carriers, the charge transport layer comprises a linear compound polymer layer having P-phenylene and a group IIb element at the para position, The group IIb elements include S, Se
, Te, and has a melting point of 280° C. or higher.
(2)電荷輸送層に酸素原子を含有する請求項1記載の
電子写真感光体。
(2) The electrophotographic photoreceptor according to claim 1, wherein the charge transport layer contains oxygen atoms.
(3)電荷輸送層中の酸素原子の炭素原子に対する原子
数比率が、1〜35atm%である請求項2記載の電子
写真感光体。
(3) The electrophotographic photoreceptor according to claim 2, wherein the atomic ratio of oxygen atoms to carbon atoms in the charge transport layer is 1 to 35 atm %.
(4)電荷輸送層に電子受容体を添加することを特徴と
する請求項2記載の電子写真感光体。
(4) The electrophotographic photoreceptor according to claim 2, wherein an electron acceptor is added to the charge transport layer.
(5)電荷輸送層を形成する工程に、酸素を含む雰囲気
中における1回以上の加熱処理工程を含み、各処理工程
で処理温度を時間的に増加させるか、あるいは後段の処
理温度が前段に較べ高い請求項2記載の電子写真感光体
の製造方法。
(5) The step of forming the charge transport layer includes one or more heat treatment steps in an oxygen-containing atmosphere, and the treatment temperature is increased over time in each treatment step, or the treatment temperature of the latter step is higher than that of the earlier step. The method for producing an electrophotographic photoreceptor according to claim 2, wherein the electrophotographic photoreceptor is relatively expensive.
(6)酸素を含む雰囲気中における加熱処理の加熱温度
が、260〜300℃の範囲である請求項5記載の電子
写真感光体の製造方法。
(6) The method for producing an electrophotographic photoreceptor according to claim 5, wherein the heating temperature of the heat treatment in an oxygen-containing atmosphere is in the range of 260 to 300°C.
JP30736688A 1988-12-05 1988-12-05 Electrophotographic sensitive body and its production Pending JPH02151869A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30736688A JPH02151869A (en) 1988-12-05 1988-12-05 Electrophotographic sensitive body and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30736688A JPH02151869A (en) 1988-12-05 1988-12-05 Electrophotographic sensitive body and its production

Publications (1)

Publication Number Publication Date
JPH02151869A true JPH02151869A (en) 1990-06-11

Family

ID=17968211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30736688A Pending JPH02151869A (en) 1988-12-05 1988-12-05 Electrophotographic sensitive body and its production

Country Status (1)

Country Link
JP (1) JPH02151869A (en)

Similar Documents

Publication Publication Date Title
JPH02151869A (en) Electrophotographic sensitive body and its production
JPS59121050A (en) Electrophotographic sensitive body
JPS59133551A (en) Electrophotographic sensitive body
JPH01134461A (en) Electrophotographic sensitive body and manufacture of same
JP2661073B2 (en) Photoconductive layer and manufacturing method thereof
JP3014713B2 (en) Photoconductive material and manufacturing method thereof
JPH01134460A (en) Electrophotographic sensitive body and manufacture of same
JPH05310949A (en) Polyphosphzene compound
JPH02157848A (en) Electrophotographic sensitive body and its preparation
JPS58194732A (en) Forming method of amorphous silicon carbide layer
JP2538012B2 (en) Method for manufacturing electrophotographic photoreceptor
JPH0814705B2 (en) Method for manufacturing electrophotographic photoreceptor
JPH0264551A (en) Electrophotographic sensitive body
JPH02251858A (en) Photoconductive material
JPH028856A (en) Production of electrophotographic sensitive body
JPH01133054A (en) Manufacture of electrophotographic sensitive body
JPS616654A (en) Electrophotographic sensitive body and its manufacture
JPH0786691B2 (en) Electrophotographic photoreceptor and manufacturing method
JPH01134458A (en) Electrophotographic sensitive body
JPS6381436A (en) Production of electrophotographic sensitive body
JPS6381432A (en) Production of electrophotographic sensitive body
JPS63267950A (en) Electrophotographic sensitive body and production thereof
JPH0823706B2 (en) Method for manufacturing electrophotographic photoreceptor
JPS63274959A (en) Electrophotographic sensitive body
JPH02213853A (en) Electrophotographic sensitive body