JPH028856A - Production of electrophotographic sensitive body - Google Patents

Production of electrophotographic sensitive body

Info

Publication number
JPH028856A
JPH028856A JP16004888A JP16004888A JPH028856A JP H028856 A JPH028856 A JP H028856A JP 16004888 A JP16004888 A JP 16004888A JP 16004888 A JP16004888 A JP 16004888A JP H028856 A JPH028856 A JP H028856A
Authority
JP
Japan
Prior art keywords
layer
film
polymer
electrophotographic photoreceptor
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16004888A
Other languages
Japanese (ja)
Other versions
JPH0812432B2 (en
Inventor
Eiichiro Tanaka
栄一郎 田中
Akio Takimoto
昭雄 滝本
Koji Akiyama
浩二 秋山
Masanori Watanabe
正則 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP16004888A priority Critical patent/JPH0812432B2/en
Publication of JPH028856A publication Critical patent/JPH028856A/en
Publication of JPH0812432B2 publication Critical patent/JPH0812432B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/07Polymeric photoconductive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photoreceptors In Electrophotography (AREA)

Abstract

PURPOSE:To improve photosensitivity and printing resistance by using a high- polymer film contg. oxygen as a photoconductive layer which generates carriers transferable by light stimulation or using the same by laminating the photoconductive layer and a charge transfer layer. CONSTITUTION:The layer 2 which consists essentially of the straight chain compd. high polymer having P-phenylene and having at least one kind of group VIb elements such as S, Se and Te in the para position is formed by heating and fusing the straight chain high-polymer layer film 3 having <=30% degree of crystallization in an atmosphere essentially consisting of oxygen in the process for production of the electrophotographic sensitive body having the stages of forming the layer 2 which consists essentially of the above-mentioned straight chain compd. high polymer on a base 1 and further adding O atoms thereto. The sensitivity is enhanced and the printing resistance is improved in this way; moreover, the inexpensive production is possible.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、電子写真方式の複写機、光プリンタ等に用い
られる電子写真感光体の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for manufacturing an electrophotographic photoreceptor used in electrophotographic copying machines, optical printers, and the like.

従来の技術 電子写真感光体において、光励起によりキャリア生成を
行う光導電層と、キャリア輸送を行う電荷移動層を別々
の材料で構成する機能分離型電子写真感光体が広く用い
られている。この様に機能によって材料を選ぶことによ
って、高感度な電子写真特性を持つ優れた感光体を提供
できるのみでなく、機械的強度、熱的安定性、耐刷性、
耐環境性、製造コストといったさまざまな面に渡って幅
広い材料の中から最適の組合せを検討することができる
2. Description of the Related Art Among electrophotographic photoreceptors, functionally separated electrophotographic photoreceptors are widely used in which a photoconductive layer that generates carriers by photoexcitation and a charge transfer layer that transports carriers are made of different materials. By selecting materials according to function in this way, we can not only provide an excellent photoreceptor with highly sensitive electrophotographic properties, but also improve mechanical strength, thermal stability, printing durability,
You can consider the optimal combination from a wide range of materials in terms of environmental resistance, manufacturing cost, and other aspects.

このような材料の組合せの代表例である、何機材料を用
いた安価な電子写真感光体の例として、スクエアリック
酸メチルとトリアリールビラゾリン、ダイアンブルーと
オキサジアゾール、ペリレン顔料とオキサジアゾール、
ビスアゾ顔料とスチリアアンスラセン 等がある。
Examples of inexpensive electrophotographic photoreceptors using several mechanical materials, which are typical examples of such material combinations, include methyl squarate and triarylbirazoline, Diane blue and oxadiazole, and perylene pigment and oxadiazole. Azor,
Examples include bisazo pigments and styria anthracene.

また、無機材料を光導電層とする例としては、無定型セ
レンとポリビニルカルバゾール、特開昭54−143G
45号公報には非晶質層シリコン系光導電層と有機半導
体材料を電荷移動層に用いた機能分離型の感光体が提案
されている。
Further, examples of using inorganic materials as the photoconductive layer include amorphous selenium and polyvinyl carbazole, JP-A-54-143G
No. 45 proposes a functionally separated photoreceptor using an amorphous silicon-based photoconductive layer and an organic semiconductor material as a charge transfer layer.

しかし、前記の有機材料を用いた機能分離型感光体は、
耐刷性に乏しく寿命、信頼性といった点では解決すべき
課題も多い。
However, the functionally separated photoreceptor using the above-mentioned organic material,
There are many problems that need to be resolved in terms of printing durability, lifespan, and reliability.

このような有機材料を用いた感光体は、インパクト法等
の成形法あるいは切削法で作られた円筒状のドラム、あ
るいはエンドレスベルト等のシート基板上に、光導電層
、電荷移動・層、更に、表面の硬度を上げるため表面層
等、電子写真プロセスに応じた各種の層を均一に形成す
る必要がある。
A photoreceptor using such an organic material is a cylindrical drum made by a molding method such as an impact method or a cutting method, or a sheet substrate such as an endless belt. In order to increase the hardness of the surface, it is necessary to uniformly form various layers such as a surface layer depending on the electrophotographic process.

上記の各層を形成する方法としては、浸漬塗布法、スプ
レーガンによるスプレー塗布法あるいは超音波を用いた
USスプレー塗布法等が用いられ、大きな設備投資を必
要とする。
As a method for forming each of the above layers, a dip coating method, a spray coating method using a spray gun, a US spray coating method using ultrasonic waves, etc. are used, and a large investment in equipment is required.

また、後者では硬度の高い無機光導電層を表面に用い耐
刷性を向上させる試みがなされているが、耐刷性に優れ
た光導電層の多くは、十分な特性を維持するためには基
板加熱を必要とし、あるいはプラズマ等の実効的には表
面温度が高温となるプロセスを必要とするため、従来の
耐熱性に劣る有機電荷移動層では十分な特性の感光体が
得られていないのが現状である。
In addition, in the latter case, attempts have been made to improve printing durability by using a highly hard inorganic photoconductive layer on the surface, but many of the photoconductive layers with excellent printing durability are difficult to maintain sufficient properties. Photoreceptors with sufficient characteristics cannot be obtained with conventional organic charge transfer layers, which have poor heat resistance, because they require substrate heating or a process such as plasma that effectively raises the surface temperature. is the current situation.

この様な中で特開昭55−90954号公報、および特
開昭GO−59353号公報には、電荷移動層としてP
P5(ポリーP−フェニレンスルフィド)が、フィルム
状で電荷移動層として用いることにより安価に製造でき
る優れた材料として、あるいは高いキャリア移動度を持
つ蒸着高分子膜として提案されている。
Under these circumstances, JP-A-55-90954 and JP-A-59353 disclose P as a charge transfer layer.
P5 (poly P-phenylene sulfide) has been proposed as an excellent material that can be manufactured at low cost by using it in film form as a charge transfer layer, or as a vapor deposited polymer film with high carrier mobility.

発明が解決しようとする課題 電子写真感光体において、より高感度の実現するには、
より小さな誘電率を持ち、より大きな移動度とキャリア
寿命を有し、高い電荷発生能力を持つことが必要である
。このため、機能分離型感光体においては、より大きな
移動度とキャリア寿命を有する電荷移動層と、高い電荷
発生能力を持つ光導電層の組合せが望ましい。しかしそ
れぞれの要求される所の条件を満足しても両者の間のキ
ャリア注入が効率良く行われなければならない。
Problems to be Solved by the Invention In order to achieve higher sensitivity in electrophotographic photoreceptors,
It is necessary to have a smaller dielectric constant, higher mobility and carrier lifetime, and higher charge generation ability. For this reason, in a functionally separated photoreceptor, a combination of a charge transfer layer with greater mobility and carrier life and a photoconductive layer with a high charge generation ability is desirable. However, even if the respective required conditions are satisfied, carrier injection between the two must be performed efficiently.

また電子写真プロセスに於て要求される電荷受容能力、
耐摩耗性、耐環境性、等に十分満足するものでなければ
ならない。
In addition, the charge acceptance ability required in the electrophotographic process,
It must have sufficient wear resistance, environmental resistance, etc.

特開昭110−59353号公報においては、PPSを
真空蒸着法によって薄膜化と電荷輸送能力を向上し電荷
移動層として形成することを述べているが、一般にこの
状態では電荷輸送能力は小さく、感度、残留電位ともに
十分ではない。また、真空蒸着法を用いるため、製膜速
度も十分でなく有機材料を用いた感光体としては高価で
ある。
JP-A No. 110-59353 describes that PPS is formed as a charge transfer layer by thinning it and improving its charge transport ability by vacuum evaporation, but generally in this state the charge transport ability is small and the sensitivity is low. , residual potential is not sufficient. Furthermore, since a vacuum evaporation method is used, the film forming speed is not sufficient and the photoreceptor is expensive as a photoreceptor using an organic material.

また、膜の硬度も小さく耐刷性においても十分な特性と
は言えない。
In addition, the hardness of the film is low and the printing durability cannot be said to be sufficient.

また、特開昭55−90954号公報においては、PP
Sフィルムを電荷移動層に用いることで、安価な感光体
が提案されている。しかし、電荷輸送能力が十分ではな
いことから、光感度は全く今日の電子写真感光体の実用
レベルには至っていない。
In addition, in Japanese Patent Application Laid-open No. 55-90954, PP
An inexpensive photoreceptor has been proposed by using an S film as a charge transfer layer. However, since the charge transport ability is not sufficient, the photosensitivity has not reached the practical level of today's electrophotographic photoreceptors.

また、有機材料を用いた機能分離型感光体は負帯電極性
で使用されるため電子写真装置の小型化、オゾン発生に
伴う人体への影響等解決すべき問題も多い。
Furthermore, since functionally separated photoreceptors using organic materials are used with negative polarity, there are many problems that need to be solved, such as downsizing of electrophotographic devices and the effects of ozone generation on the human body.

本発明の主たる目的は、塗布装置も不要な、生産性に優
れた安価な電子写真感光体を提供することを目的として
いる。
The main object of the present invention is to provide an inexpensive electrophotographic photoreceptor with excellent productivity that does not require a coating device.

また、更なる目的は、感度の高い、また耐刷性に優れた
長寿命な高性能感光体を提供することを目的としている
A further object of the present invention is to provide a high-performance photoreceptor with high sensitivity, excellent printing durability, and long life.

また、正帯電で使用できる、高い感度の、低い残留電位
の電子写真感光体を、しかも安価に提供することを目的
としている。
Another object of the present invention is to provide an electrophotographic photoreceptor that can be positively charged, has high sensitivity, and has a low residual potential, at a low cost.

課題を解決するための手段 支持体上に、P−フェニレンを有し、パラ位にSl S
e1 Teの■b族元素のうち少なくとも一種を有する
直鎖状化合物高分子を主成分とする層を形成し、更に0
原子を添加する工程を有する電子写真感光体の製造方法
において、上記直鎖状化合物高分子を主成分とする層を
、結晶化度が30%以下の直鎖状高分子層フィルムを酸
素を主成分とする雰囲気中にて加熱融着する工程により
形成する。
Means for Solving the Problems Having P-phenylene on a support and having SlS in the para position
e1 Form a layer mainly composed of a linear compound polymer containing at least one of group b elements of Te, and further
In a method for manufacturing an electrophotographic photoreceptor that includes a step of adding atoms, a layer containing the above-mentioned linear compound polymer as a main component is added to a linear polymer layer film having a crystallinity of 30% or less, and a layer containing oxygen as a main component is added. It is formed by a step of heating and fusing in an atmosphere containing the components.

また、直鎖状高分子層フィルムとして2軸延伸されたフ
ィルムを用いる。
Moreover, a biaxially stretched film is used as the linear polymer layer film.

作用 PPSフィルムの、キャリア移動度およびキャリア寿命
が小さいと言う欠点を克服するため種々検討を行った結
果、PPSを代表とする、P−フェニレンを有し、且つ
パラ位(p−)にカルコゲン元素を有する直鎖状化合物
高分子層を主成分とする高分子層を、酸素原子を含む雰
囲気中で加熱処理を行うことによって、電荷輸送能力が
飛、躍的に向上することを見いだした。
As a result of various studies to overcome the shortcomings of PPS films such as low carrier mobility and carrier life, we found that PPS films contain P-phenylene and a chalcogen element at the para position (p-). It has been discovered that by heat-treating a polymer layer mainly composed of a linear compound polymer layer having the following properties in an atmosphere containing oxygen atoms, the charge transport ability can be dramatically improved.

このような効果は、酸素原子に関与するこ、とが明らか
であり、例えば、真空中あるいは、窒素等の不活性ガス
中では電荷輸送能力の向上は見られないことからも確認
されている。
It is clear that such an effect is related to oxygen atoms, and it has been confirmed that, for example, no improvement in charge transport ability is observed in a vacuum or in an inert gas such as nitrogen.

また、上記の処理後の高分子フィルムには1〜35at
m%の、好ましくは、1〜20atm%の酸素原子を含
んでいることが確認できている。
In addition, the polymer film after the above treatment has a concentration of 1 to 35 at.
It has been confirmed that it contains m% of oxygen atoms, preferably 1 to 20 atm%.

このため、押しだしで急冷された膜を2軸延伸した結晶
化度の小さいフィルムを、150〜350℃の温度で、
0.2〜50時間の、好ましくは、250〜290”C
l−12時間の処理を行うことによって、結晶性の向上
と同時に酸素原子が多く取り込まれ電荷輸送能力が飛躍
的に向上すると考えられる。
For this reason, a film with low crystallinity obtained by biaxially stretching a film rapidly cooled by extrusion is heated at a temperature of 150 to 350°C.
0.2-50 hours, preferably 250-290"C
It is thought that by performing the treatment for 1-12 hours, the crystallinity is improved and, at the same time, many oxygen atoms are taken in, thereby dramatically improving the charge transport ability.

これらの処理はもちろん、数回に分けて繰り返してもよ
い。
Of course, these processes may be repeated several times.

また、加熱処理にともない、高分子フィルムに硬化が生
じる。実際、2軸延伸によってフィルム化されたPPS
の硬度はマイクロビッカース硬度計では正確に測定でき
ないほど柔らかい。一方、上記の処理を施したフィルム
はビッカース硬度でIθ〜80と上昇し、電荷輸送能力
を向上させる酸素原子が、硬化と同時に、安定にフィル
ム中に取り込まれ、耐熱性の向上と共に、高い電荷発生
能力を得ることが宅きたものと考えられる。
Further, the polymer film is hardened due to the heat treatment. In fact, PPS filmed by biaxial stretching
Its hardness is so soft that it cannot be measured accurately with a micro Vickers hardness tester. On the other hand, the Vickers hardness of the film subjected to the above treatment increases to Iθ ~ 80, and the oxygen atoms that improve charge transport ability are stably incorporated into the film at the same time as curing, improving heat resistance and high charge. It is thought that the acquisition of the ability to generate electricity was the result.

ここで、上記のように電子写真プロセスにおいて要求さ
れる電荷受容能力、耐摩耗性、耐環境性、高い光感度、
低い残留電位等、十分満足するものである必要がある。
Here, as mentioned above, charge acceptance ability, abrasion resistance, environmental resistance, high photosensitivity, and
It is necessary to satisfy the requirements such as low residual potential.

しかし、一般にはビッカース硬度100以上高い光導電
性と硬度の亮い光導電材料は高い基板加熱、あるいはプ
ラズマを用いた製膜プロセスが必要である。このような
処理によって、得られた層は、熱にも安定で、上記の光
導電材料の製膜にも変化することなく高い感度と、耐刷
性に優れた、低い残留電位の電子写真感光体を可能とす
ることができる。
However, in general, photoconductive materials with high photoconductivity and hardness that have a Vickers hardness of 100 or more require high substrate heating or a film forming process using plasma. Through such treatment, the resulting layer is stable to heat, and has high sensitivity without changing the film formation of the photoconductive material described above, has excellent printing durability, and is an electrophotographic photosensitive material with a low residual potential. body can be made possible.

PPSに代表される高分子フィルムは、直接に電子写真
感光体の導電性支持体上に加熱融着することによって製
膜できる。このため、蒸着装置あるいは塗布装置も必要
とせず、安価な感光体が製造できる。
A polymer film typified by PPS can be formed by directly heating and fusing it onto a conductive support of an electrophotographic photoreceptor. Therefore, an inexpensive photoreceptor can be manufactured without requiring a vapor deposition device or a coating device.

実施例 第1図は、本発明における基本的な電子写真感光体の一
実施例の断面を模式的に示したものである。
Embodiment FIG. 1 schematically shows a cross section of an embodiment of a basic electrophotographic photoreceptor according to the present invention.

第1図に示す電子写真感光体は、電子写真感光体として
の支持体!上に、高分子層からなる電荷移動届2と光導
電層3とを有し、前記先導?!!層3は一方で自由表面
4を有している。
The electrophotographic photoreceptor shown in FIG. 1 is a support as an electrophotographic photoreceptor! A charge transfer layer 2 made of a polymer layer and a photoconductive layer 3 are provided on top of the charge transfer layer 2, and the photoconductive layer 3 is provided on top of the charge transfer layer 2 made of a polymer layer. ! ! Layer 3 has on the one hand a free surface 4 .

第2図に示す電子写真感光体は、電子写真感光体として
の支持体5上に、顔料あるいはCdS等の無機光導電体
を含む高分子層からなる光導電層6とを有し、前記光導
電層6は一方で自由表面7を有している。
The electrophotographic photoreceptor shown in FIG. 2 has a photoconductive layer 6 made of a polymer layer containing a pigment or an inorganic photoconductor such as CdS on a support 5 as an electrophotographic photoreceptor. The conductive layer 6 has on the one hand a free surface 7 .

本発明において、光導電層3として硬度の高いシリコン
を含有する非晶質層を用い、光導電層としては、 a−
5t(:H:X)、 a−Sll−vcv(’H’X)
(0”Y<1)、 a−Sit −yOy (:H:X
)(0<y<1)、  a−Sit−Jv (:H:X
)(0くy<1)、a−Sl、−tGet (:11:
X)(0<z<1>、  a−(Sit−zGez)+
−vNv(’旧X)(ly、z<1)、  a−(Si
t−2Gez )+−yOv(’H’X)(Oくy、Z
〈り、またはa−(Sit−zGez)+−vcv(:
H’X)(O<Y、Z(1)の単層、あるいはこれらの
積層からなる。また、yを連続的に変化させた場合も使
用できる。
In the present invention, an amorphous layer containing silicon with high hardness is used as the photoconductive layer 3, and as the photoconductive layer, a-
5t(:H:X), a-Sll-vcv('H'X)
(0”Y<1), a-Sit-yOy (:H:X
)(0<y<1), a-Sit-Jv (:H:X
)(0kuy<1), a-Sl, -tGet (:11:
X) (0<z<1>, a-(Sit-zGez)+
-vNv('old X)(ly, z<1), a-(Si
t-2Gez )+-yOv('H'X)(Okuy, Z
〈or a-(Sit-zGez)+-vcv(:
It consists of a single layer of H'X)(O<Y, Z(1), or a stack of these layers. It can also be used when y is changed continuously.

一方、有機材料の代表的なものとして、無金属フタロシ
アニン(B2Pc)、mフタロシアニン、(Cu P 
c ) 、マグネシウムフタロシアニン(MgPc)に
代表される金属フタロシアニン、インジウムフタロシア
ニン(InCIPc)、アルミニウムフタロシアニン(
AICIPc)、あるいはAlClPcC1に代表され
る金属ハロゲン化フタロシアニン、Ti0Pc等のフタ
ロシアニン系の原料を蒸着等によって形成することがで
きる。
On the other hand, typical organic materials include metal-free phthalocyanine (B2Pc), m-phthalocyanine, (CuP
c), metal phthalocyanine represented by magnesium phthalocyanine (MgPc), indium phthalocyanine (InCIPc), aluminum phthalocyanine (
AICIPc), a metal halogenated phthalocyanine represented by AlClPcC1, or a phthalocyanine-based raw material such as Ti0Pc can be formed by vapor deposition or the like.

この時の膜厚は、電荷移動層は5〜50μm好適には1
0〜25μm1 また光導電層の膜厚は0.5〜10μ
m好適には1〜5μmとすれば良い。
At this time, the thickness of the charge transfer layer is 5 to 50 μm, preferably 1 μm.
0 to 25 μm1 The thickness of the photoconductive layer is 0.5 to 10 μm.
m is preferably 1 to 5 μm.

本発明において、更に電子写真特性を向上させるために
、第1図において、支持体lと電荷移動層2との間に、
支持体!から電荷移動・層2に注入するキャリアを効果
的に阻止するため障壁層を設けてもよい。
In the present invention, in order to further improve the electrophotographic characteristics, in FIG. 1, between the support l and the charge transfer layer 2,
Support! A barrier layer may be provided to effectively block charge transfer/carriers from injecting into the layer 2.

障壁層を形成する材料としては、Al20a、BaO1
Ba02、Bed、  B120s、  Cab、Ce
nt、Ce20s、Lae03、Dy*0s1LLI*
0a1Cr201、Cub、Cu2O、FedlPbO
1Mg0、SrO,Ta2O3、Th02、 ZrO2
、)IrO2、TlO2、Tl01SIQ2、GeO2
,5IO1GeO等の金属酸化物またはTIN。
Materials for forming the barrier layer include Al20a and BaO1.
Ba02, Bed, B120s, Cab, Ce
nt, Ce20s, Lae03, Dy*0s1LLI*
0a1Cr201, Cub, Cu2O, FedlPbO
1Mg0, SrO, Ta2O3, Th02, ZrO2
,)IrO2, TlO2, Tl01SIQ2, GeO2
, 5IO1GeO or TIN.

A lN15nN1NbN1TaN、  GaN等の金
属窒化物、またはWC,5nC1T IC,等の金属炭
化物またはSIC,SIN。
AlN15nN1NbN1TaN, metal nitride such as GaN, or metal carbide such as WC, 5nC1T IC, SIC, SIN.

G eC,G eN1BC18N等の絶縁物、ポリイミ
ド、ポリアミドイミド、ポリアクリルニトリル等の耐熱
性を有する有機化合物が使用される。
Insulators such as G eC and G eN1BC18N, and heat-resistant organic compounds such as polyimide, polyamideimide, and polyacrylonitrile are used.

また、クリーニング性あるいは耐摩耗性あるいは耐コロ
ナ性を向上させるため、第1図および第2図において、
自由表面4上に表面被覆J!を形成する。表面被覆層に
好適な材料としては、Sl、O,−、,5txC+−1
ls  5l−N+−x、Gex ol −XX  G
e、 cl−X1Gex N+ −w、BXNI−X、
 BxC+−xl AlxN+−x(OくXくl)、 
カーネ゛ンおよびこれらに水素あるいはハロゲンを含有
する層等の無機物などが上げられる。
In addition, in order to improve cleaning performance, abrasion resistance, or corona resistance, in Figures 1 and 2,
Surface coating J on free surface 4! form. Suitable materials for the surface coating layer include Sl, O,-,,5txC+-1
ls 5l-N+-x, Gex ol-XX G
e, cl-X1Gex N+ -w, BXNI-X,
BxC+-xl AlxN+-x (OxXxl),
Examples include inorganic substances such as carne and layers containing hydrogen or halogen.

シリコンを含有する光導電層であるa−St(:H:X
)の作成ニハ、S I H4,512H6,513)1
e、5IFa、5IC1,,5IHFi、5IH2F2
.5IHiFs  5IHC13,5IH2C12、S
 In2O2等のSl原子の原料ガスを用いたプラズマ
CVD法、または多結晶シリコンをターゲットとし、A
rとB2(さらにF2又はC12を混合しても良い)の
混合ガス中での反応性スパッタ法が用いられる。また、
a−SI+−yCv(:H:X)(0<yくl)、 a
−S11−、O,(:H:X)(0<y〈l)、a−5
1+−、Nv(’)I’X)(O<y<1)の作成には
、更に炭素源として、CHJ、C2&、Ca HaN 
 CJ fl llh  C2Ha、Ca)16、Ca
)Is1C2&l  C3H4、CJ&、C1l■6等
の炭化水素、CLFlCllz C11CHsls C
2Hs C11Ca [5Br)等のハロゲン化アリル
、CCIFi、CFJ1CHF3、Ca Fa、Ca 
Fs等のフロンガス、CaHa−mFs (m = 1
〜[i)の弗化ヘンゼン等のC原子の原料ガスをプラズ
マCVD法に用いるシリコン原料ガスと混合して、ある
いは、反応性スパッタ法にはAr等のスパッタガスと混
合して用いる。また、酸素源としては02、C01C0
2、N01SOW等、また、窒素源としてはN2、Nl
l3、NO等を混合して用いる。
a-St (:H:X
) creation Niha, S I H4,512H6,513)1
e, 5IFa, 5IC1,, 5IHFi, 5IH2F2
.. 5IHiFs 5IHC13, 5IH2C12, S
A plasma CVD method using a raw material gas of Sl atoms such as In2O2, or using polycrystalline silicon as a target.
A reactive sputtering method is used in a mixed gas of r and B2 (F2 or C12 may also be mixed). Also,
a-SI+-yCv(:H:X)(0<ycl), a
-S11-, O, (:H:X) (0<y<l), a-5
1+-, Nv(')I'X) (O<y<1), CHJ, C2&, Ca HaN
CJ fl llh C2Ha, Ca) 16, Ca
)Is1C2&l Hydrocarbons such as C3H4, CJ&, C1l■6, CLFlCllz C11CHsls C
Allyl halides such as 2Hs C11Ca [5Br), CCIFi, CFJ1CHF3, Ca Fa, Ca
Freon gas such as Fs, CaHa-mFs (m = 1
~ [i) The raw material gas of C atoms such as Hensen's fluoride is mixed with the silicon raw material gas used in the plasma CVD method, or mixed with a sputtering gas such as Ar in the reactive sputtering method. In addition, as an oxygen source, 02, C01C0
2, N01SOW, etc. Also, as a nitrogen source, N2, Nl
A mixture of l3, NO, etc. is used.

また、a−Sl(:H:X)にGeを添加する場合もG
eL、Ge*He1Ges&、GeFa、GeCl4、
GeHF3、GeB2F2、GeHsF%Get101
3、Ge)12C12、GeHaCl等のガスを上記S
i原子の原料ガスと混合しプラズマCVD法によって形
成することも出来る。
Also, when adding Ge to a-Sl(:H:X), G
eL, Ge*He1Ges&, GeFa, GeCl4,
GeHF3, GeB2F2, GeHsF%Get101
3.Ge) 12C12, GeHaCl, etc., in the above S
It can also be formed by mixing with a raw material gas of i atoms and using a plasma CVD method.

さらに、本発明において、上記のa−SIIH:X) 
、a−5it−ycv(’H:X)(0(y(1)、 
a−Sll−、O,(:H:X)(lyくl)% a−
SI+−yN、(:■:X)(ly<1)、あるいはこ
れらにGe添加のこれらの膜中に、不純物を添加するこ
とにより伝導性を制御し、所望の電子写真特性を得るこ
とができる。p型伝導性を与えるp型不純物としては、
周期律表第■族すに属するBXAl、 、 Ga11n
等があり、好適にはB1Al、  Gaが用いられ、n
型伝導性を与えるn型不純物としては、周期律表第■族
すに属するN1P1As、  Sb等が有り、好適には
PlAsが用いられる。
Furthermore, in the present invention, the above a-SIIH:X)
, a-5it-ycv('H:X)(0(y(1),
a-Sll-, O, (:H:X) (lycl)% a-
By adding impurities to SI+-yN, (:■:X)(ly<1), or Ge-added films, conductivity can be controlled to obtain desired electrophotographic properties. . As a p-type impurity that gives p-type conductivity,
BXAl, , Ga11n, which belongs to Group II of the periodic table
etc., B1Al, Ga are preferably used, and n
Examples of n-type impurities that provide type conductivity include N1P1As and Sb, which belong to Group 1 of the periodic table, and PlAs is preferably used.

また、これらの不純物を添加する方法として、p型不純
物の場合は、B2H6、Ha Hoes  Bs He
、B6HII、B11H12、BaH+a、BFz、B
Cli、BBr2、AlC1a、(CH3)3Al、 
 (CJshAl、  (1−C4H11)3A11(
Cu5)aGa、(C2tls)30a11 n C1
3、(02H6)s Inを、n型不純物の場合は、N
a、NB2、N01N20、NO2、PH3、P21L
、PHallPFs、PF6、PClz、PCl3、P
Br3+PBr6、p13、AsH3、ASF3、As
Cl3、ASBrz、5bHi、SbF3.5bF6、
sbc+2、SbCl2等のガスを、あるいはこれらの
ガスをB2.lie、  Arで希釈したガスを、プラ
ズマCVD法では、それぞれの膜形成時において、使用
する上記のC原子。
In addition, as a method of adding these impurities, in the case of p-type impurities, B2H6, Ha Hoes Bs He
, B6HII, B11H12, BaH+a, BFz, B
Cli, BBr2, AlC1a, (CH3)3Al,
(CJshAl, (1-C4H11)3A11(
Cu5)aGa, (C2tls)30a11 n C1
3. (02H6)s In, in the case of n-type impurity, N
a, NB2, N01N20, NO2, PH3, P21L
, PHallPFs, PF6, PClz, PCl3, P
Br3+PBr6, p13, AsH3, ASF3, As
Cl3, ASBrz, 5bHi, SbF3.5bF6,
Gases such as sbc+2, SbCl2, etc., or these gases are converted into B2. In the plasma CVD method, a gas diluted with Ar is used to form each film.

Si原子等の原料ガスと混合して用いれば良く、反応性
スパッタ法では、ArまたはH2あるいはF2.011
に混合して用いれば良い。
It can be used by mixing with raw material gas such as Si atoms, and in the reactive sputtering method, Ar or H2 or F2.011
It may be used by mixing with.

他の無機光導電属として、カルコゲン元素を含む、As
2 Se1等の非晶質層を用いてもよい。As2Se。
As other inorganic photoconductive metals, including chalcogen elements, As
An amorphous layer such as 2Se1 may also be used. As2Se.

は、蒸着の際の基板加熱温度等によって硬度が異なるが
、60〜!20℃の基板温度では、ピッ・カース硬度1
00〜140を示した。また、可視光あるいは近赤外に
高い感度を持たせるため、Teを添加したAs5eTe
を、単層あるいはこれらの積層を光導電層として用いる
こともできる。この他にも、CdS、  CdSeの結
晶粉体を樹脂により結着した層を形成してもよい。後者
のような、カルコゲン元素を含む光導電性の結晶を樹脂
により結着した層の硬度を測定するのは困難であったた
め、As2Se3膜との相対比較を行った結果、若干の
脆さがあるものの硬度はAs2Se3膜以上であった。
Although the hardness varies depending on the substrate heating temperature during vapor deposition, it is 60~! At a substrate temperature of 20°C, Pickers hardness is 1
It showed 00-140. In addition, in order to have high sensitivity to visible light or near infrared light, As5eTe doped with Te is used.
A single layer or a stack of these can be used as the photoconductive layer. In addition to this, a layer may be formed in which crystal powder of CdS or CdSe is bonded with a resin. Because it was difficult to measure the hardness of the latter layer, which is a layer in which photoconductive crystals containing chalcogen elements are bonded together with resin, a relative comparison with the As2Se3 film revealed that it was slightly brittle. The hardness of the material was greater than As2Se3 film.

参考に、熱処理の進行状態を把握するため、直鎖状化合
物高分子層の硬度の測定を行った。硬度の測定にはマイ
クロビッカース硬度計を用い、ダイアモンドの圧子の加
重をlogとして測定を行うた。
For reference, in order to understand the progress of heat treatment, the hardness of the linear compound polymer layer was measured. The hardness was measured using a micro Vickers hardness meter, and the load of the diamond indenter was expressed as log.

また、光導電層6として用いる場合、フィルムに混合す
る顔料の例として、フタロシアニン系の原料を用いた。
Furthermore, when used as the photoconductive layer 6, a phthalocyanine-based raw material was used as an example of a pigment to be mixed into the film.

これには、無金属フタロシアニン(82PC)、銅フタ
ロシアニン、(Cu P c ) 、マグネシウムフタ
ロシアニン(MgPc)に代表される金属フタロシアニ
ン、インジウムフタロシアニン(InCIPc)、アル
ミニウムフタロシアニン(AICIPc)、あるいはA
lClPcC1に代表される金属ハロゲン化フタロシア
ニン、Ti0PC等が用いられる。
These include metal-free phthalocyanine (82PC), copper phthalocyanine (CuPc), metal phthalocyanine (MgPc), indium phthalocyanine (InCIPc), aluminum phthalocyanine (AICIPc), or A
Metal halogenated phthalocyanine represented by lClPcC1, Ti0PC, etc. are used.

フィルムに混合して用いる無機光導電体としては、Cd
SlCd S e等が用いられる。
As the inorganic photoconductor mixed into the film, Cd
SlCd Se etc. are used.

この時、光導電層を単層で使用する場合の膜厚は、5〜
50μm好適には10〜25μmとすることが望ましい
。また、光導電層Bを、0.5〜IOμm好適には1〜
5μmc)11!I厚として使用すれば第1図の光導電
層3として用いることも可能である。
At this time, when the photoconductive layer is used as a single layer, the film thickness is 5 to 5.
It is desirable that the thickness be 50 μm, preferably 10 to 25 μm. Further, the photoconductive layer B has a thickness of 0.5 to IO μm, preferably 1 to 10 μm.
5μmc) 11! If it is used with a thickness of I, it can also be used as the photoconductive layer 3 in FIG.

また、直鎖状化合物高分子膜の結晶性は、X線回折から
求めた。PPSでは約21℃に2θのピークが測定でき
る。この鋭い結晶ピークの面積(【kとする)と、この
ピークの裾に広がる幅広い非晶質ピークの面積(Iaと
する)の比1に/ (lk+ la)を結晶化度とした
Further, the crystallinity of the linear compound polymer film was determined from X-ray diffraction. In PPS, a 2θ peak can be measured at about 21°C. The ratio of the area of this sharp crystalline peak (denoted as [k) to the area of the broad amorphous peak extending at the foot of this peak (denoted as Ia) of 1/(lk+la) was defined as the degree of crystallinity.

実施例1 鏡面研磨したアルミニウム基板上に、■族としてSを有
するフィルム形状のPPS (ポリ p−フェニレン 
スルフィド)を、貼りつけ、フッ素樹脂シートをフィル
ムの上側より巻き付は熱処理炉において加熱し、PPS
フィルムを、アルミニウム基板上に融着させた。
Example 1 A film-shaped PPS (poly p-phenylene
sulfide), wrap the fluororesin sheet from the top of the film, heat it in a heat treatment furnace, and then
The film was fused onto an aluminum substrate.

このフィルムは融解状態の材料を押しだし急冷した非晶
質のフィルムを1.5倍に2軸延伸したものを用いた。
The film used was an amorphous film obtained by extruding a molten material and rapidly cooling it, and then biaxially stretching it to 1.5 times.

このときの結晶化度は1%以下であった。The crystallinity at this time was 1% or less.

加熱温度は、PPSの、融解温度である285℃より高
い290°Cとし、3時間の処理を行った。
The heating temperature was 290°C, which is higher than the melting temperature of PPS, 285°C, and the treatment was carried out for 3 hours.

加熱雰囲気は、大気圧の酸素中である。熱処理炉より基
板を取り出した後、フッ素樹・脂シートを取り外し、再
び熱処理炉に設置し、更に酸素雰囲気で、加熱処理を、
施した。加熱温度は、285℃〜300°Cの範囲内で
、制御し、加熱処理時間は、3時間とした。・この処理
後、PPSフィルムの膜厚は、10〜25μmとした。
The heating atmosphere is oxygen at atmospheric pressure. After taking out the substrate from the heat treatment furnace, remove the fluororesin/resin sheet, place it in the heat treatment furnace again, and further heat treat it in an oxygen atmosphere.
provided. The heating temperature was controlled within the range of 285°C to 300°C, and the heat treatment time was 3 hours. - After this treatment, the thickness of the PPS film was 10 to 25 μm.

この層を、第1図の電荷移動層2とし、光導電層3とし
てAs2 Se、を、基板加熱温度140℃にて、約0
.8μmの膜厚に真空蒸着法によって形成し、電子写真
感光体とした。
This layer is used as the charge transfer layer 2 in FIG.
.. A film having a thickness of 8 μm was formed by vacuum evaporation to obtain an electrophotographic photoreceptor.

この時、12μmの膜厚のPPSを電荷移動層とした電
子写真感光体を表面電位+500■に帯電処理を行い、
500nmの光で露光を行ったところ照度換算で、半減
電位露光量は0.51ux−secと非常に高い感度を
示した。また、残留電位も90v以下と優れた特性を示
した。
At this time, the electrophotographic photoreceptor with a charge transfer layer made of PPS with a film thickness of 12 μm was charged to a surface potential of +500 μm.
When exposed to light of 500 nm, the half-potential exposure amount was 0.51 ux-sec in terms of illuminance, showing very high sensitivity. Further, the residual potential was 90 V or less, which showed excellent characteristics.

また、25μmの膜厚のPPSを電荷移動層とした電子
写真感光体は、上記と同じ条件で評価を行ったところ、
半減電位露光量は0.71ux−secと高いものの残
留電位が100〜120Vとやや多い結果となうた。
In addition, an electrophotographic photoreceptor with a charge transfer layer made of PPS with a film thickness of 25 μm was evaluated under the same conditions as above.
Although the half-potential exposure amount was as high as 0.71 ux-sec, the residual potential was 100 to 120 V, which was somewhat large.

一方、2軸延伸後、フィルムを固定し150〜200°
Cで処理を行ったフィルムは結晶化度は30〜50%に
上昇する。このような25μmの膜厚のPPSを電荷移
動層とした電子写真感光体は、上記と同じ条件で制作し
評価を行ったところ、半減電位露光量は0.71ux・
secと同程度で高いものの、残留電位が150〜22
0Vと多い結果となった。
On the other hand, after biaxial stretching, the film was fixed at 150 to 200°.
The crystallinity of the film treated with C increases to 30-50%. When such an electrophotographic photoreceptor with a 25 μm thick PPS charge transfer layer was produced and evaluated under the same conditions as above, the half-potential exposure amount was 0.71 ux.
Although it is as high as sec, the residual potential is 150 to 22
The result was often 0V.

実施例2 インフレーション法によって15μm膜厚の円筒状のP
PSフィルムを作成した。この時のフィルムの結晶化度
は20〜30%程度で、円筒フィルムの直径は92φと
した。
Example 2 Cylindrical P with a film thickness of 15 μm was formed by the inflation method.
A PS film was created. The crystallinity of the film at this time was about 20 to 30%, and the diameter of the cylindrical film was 92φ.

電子写真感光体の作成には上記の円筒フィルムに88φ
のアルミニウムドラムを挿入し、ドラム基板上に電荷移
動層としてPPSフィルムを加熱収縮によって形成する
際、処理雰囲気に電子受容体として、TCNQ (7,
7,8,8,−テトラシアノキノジメタン)を添加した
雰囲気で加熱処理をおこなった。更に、酸素中の加熱処
理装置に設置し、265°C6時間の処理を行った。
To create an electrophotographic photoreceptor, use the above cylindrical film with an 88φ
TCNQ (7,
The heat treatment was performed in an atmosphere to which 7,8,8,-tetracyanoquinodimethane) was added. Furthermore, it was placed in a heat treatment apparatus in oxygen, and treated at 265°C for 6 hours.

同じく、硬度測定用の試料としてフィルムを同時に処理
し、石英基板上に接着し硬度を測定した。
Similarly, a film was simultaneously treated as a sample for hardness measurement, and the hardness was measured by adhering it onto a quartz substrate.

このときのフィルムのビッカース硬度は25±4であっ
た。
The Vickers hardness of the film at this time was 25±4.

また、上記ドラムをCdS光導電性粉体と、結着樹脂を
100: 20重量部加えた(結着樹脂はポリウレタン
樹脂)溶液中に浸漬し、170°Cで30分乾燥処理を
行い5μmの光導電層を形成した。
Further, the drum was immersed in a solution containing 100:20 parts by weight of CdS photoconductive powder and a binder resin (the binder resin was a polyurethane resin), and dried at 170°C for 30 minutes to form a 5 μm film. A photoconductive layer was formed.

このようにして得られた感光ドラムを、表面電位+〇0
0Vに帯電処理を行った後、白色光にて露光を行ったと
ころ、半減電位露光量は2.31ux−secと高い感
度を示し、残留電位も90V以下と十分小さい感光ドラ
ムが得られた。
The photosensitive drum thus obtained has a surface potential of +〇0
After being charged to 0V, the photosensitive drum was exposed to white light, and a photosensitive drum was obtained which exhibited high sensitivity with a half-potential exposure of 2.31 ux-sec and a sufficiently small residual potential of 90V or less.

このようにして得られた電子写真感光体は8万枚以上の
寿命を有し、長寿命で安価である。
The electrophotographic photoreceptor thus obtained has a lifespan of 80,000 sheets or more, and is long-life and inexpensive.

実施例3 表面研磨したアルミニウムドラム基板に1ラム外径より
僅かに小さい円筒状の〜20μm厚の、0.05〜20
w t%のH2Pcを混合した実施例2と同様な方法で
制作したPPSフ、イルムを用いる。
Example 3 A surface-polished aluminum drum substrate with a cylindrical shape of ~20 μm thick, slightly smaller than 1 ram outer diameter, 0.05-20
A PPS film produced in the same manner as in Example 2 in which wt% of H2Pc was mixed was used.

ドラム基板を乾燥雰囲気中で冷却し熱収縮によっテ小さ
くなった外径のドラムを上記PPS内に挿入し、常温ま
で上昇させるとフィルムと基板とが密着し、ドラム状の
基板においても初期の均一な膜厚で覆うことができる。
The drum substrate is cooled in a dry atmosphere, and the drum whose outer diameter has become smaller due to heat shrinkage is inserted into the above PPS, and when the temperature is raised to room temperature, the film and substrate come into close contact, and even in the case of a drum-shaped substrate, the initial Can be coated with a uniform film thickness.

このようなドラム基板を酸素中にて280〜260°C
にて0.5〜lθ時間加熱し融着と同時に熱処理を加え
、光導電層とした。
Such a drum substrate is heated at 280 to 260°C in oxygen.
A photoconductive layer was obtained by heating for 0.5 to lθ hours and heat treatment at the same time as fusion bonding.

この光導電層を用いた単層型感光体を+900Vに帯電
させ、白色光にて露光したところ、半減電位露光量は3
.01ux−sec以下と良好な感度を示した。
When a single-layer photoreceptor using this photoconductive layer was charged to +900V and exposed to white light, the half-potential exposure amount was 3.
.. It showed good sensitivity of 0.01 ux-sec or less.

また、表面層として、ポリイミドを0.2μm形成して
感光体とした場合には、繰り返し使用にも表面電位変化
も少なく、良好な特性が得られた。
Further, when a photoreceptor was prepared by forming a polyimide layer with a thickness of 0.2 μm as a surface layer, there was little change in surface potential even after repeated use, and good characteristics were obtained.

実施例4 表面研磨したアルミニウムドラム基板に障壁層として、
0.5μmのGe、N1−8層を形成し、光導電層とし
てa−51:H層を1μm形成した。このド九外径より
僅かに大きい実施例2と同様な方法で制作された円筒状
の〜25μm厚のPPSフィルムの内部に挿入し、全体
を150〜250℃に酸素中で加熱する。この時PPS
フィルムは熱収縮し光導電層上に密着する。
Example 4 As a barrier layer on a surface-polished aluminum drum substrate,
A 0.5 μm thick Ge, N1-8 layer was formed, and a 1 μm thick a-51:H layer was formed as a photoconductive layer. It is inserted into a cylindrical PPS film with a thickness of ~25 μm produced in the same manner as in Example 2, which is slightly larger than the outside diameter of this dome, and the whole is heated to 150 to 250° C. in oxygen. At this time PPS
The film shrinks and adheres tightly onto the photoconductive layer.

その後、さらに250〜290 ’Cに酸素雰囲気中に
て加熱し電荷移動層として形成する。
Thereafter, it is further heated to 250 to 290'C in an oxygen atmosphere to form a charge transfer layer.

このドラムを負帯電において一500〜800■の表面
電位で鮮明な画像を確認した。このドラムの半減電位露
光量は11ux−secと高い感度を示し、残留電位は
一100〜200vであった。
When this drum was negatively charged, a clear image was confirmed at a surface potential of 1,500 to 800 cm. The half-potential exposure of this drum was 11 ux-sec, which showed high sensitivity, and the residual potential was -100 to 200 V.

また、a−Sl:HにGeを添加したa−(Sl、−、
Ge、):11を用いれば更に感度の向上が計られた。
In addition, a-(Sl, -,
The sensitivity was further improved by using Ge, ):11.

また、フェニレン基の2,5位置に、あるいは3.4位
置に水素に替わる置換基を設けても大きな特性変化は見
られなかった。
Furthermore, no major changes in properties were observed even when a substituent in place of hydrogen was provided at the 2,5 or 3.4 position of the phenylene group.

また、■b族元素としてSe1 Teの少なくともいず
れか一つを含有する直鎖状化合物高分子を混合し用いて
も同様であった。
Further, the same results were obtained even when a linear compound polymer containing at least one of Se1 and Te as the b-group element was mixed and used.

発明の効果 本発明によれば、PPSに代表される主鎖に環(p−フ
ェニレン)構造を含み、パラ位に■・b族元素を有した
低い結晶化度の直鎖状化合物高分子フィルムを、酸素を
主成分とする雰囲気中で加熱処理を行うことによって、
電荷輸送能力を飛−躍1的に向上させることができる。
Effects of the Invention According to the present invention, a linear compound polymer film with a low degree of crystallinity, which has a ring (p-phenylene) structure in the main chain represented by PPS and has a group ■/b element at the para position. By performing heat treatment in an atmosphere containing oxygen as the main component,
The charge transport ability can be dramatically improved.

この酸素を含む高分子フィルムを、光励起によって移動
可能なキャリアを発生する光導電層として、あるいは、
光励起によって移動可能なキャリアを発生する光導電層
と、電荷移動1層とを積層する電子写真感光体として用
いることにより、高い光感度の、耐刷性に優れた電子写
真感光体を安価に提供することが出来る。
This oxygen-containing polymer film can be used as a photoconductive layer that generates mobile carriers by photoexcitation, or
An electrophotographic photoreceptor with high photosensitivity and excellent printing durability can be provided at a low cost by using it as an electrophotographic photoreceptor in which a photoconductive layer that generates movable carriers by photoexcitation and a charge transfer layer are laminated. You can.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は、それぞれ本発明の実施例における
電子写真感光体の断面図である。 1.5−−・支持体、2・・・電荷移動層、3.6・・
・光導電層、4.7・・・自由表面。 代理人の氏名 弁理士 栗野重孝 はか1名第1図 第2図
FIG. 1 and FIG. 2 are sectional views of an electrophotographic photoreceptor in an embodiment of the present invention, respectively. 1.5--Support, 2--Charge transfer layer, 3.6--
- Photoconductive layer, 4.7...free surface. Name of agent: Patent attorney Shigetaka Kurino (1 person) Figure 1 Figure 2

Claims (3)

【特許請求の範囲】[Claims] (1)支持体上に、P−フェニレンを有し、パラ位にS
、Se、TeのVIb族元素のうち少なくとも一種を有す
る直鎖状化合物高分子を主成分とする層を形成し、更に
O原子を添加する工程を有する電子写真感光体の製造方
法において、上記直鎖状化合物高分子を主成分とする層
を、結晶化度が30%以下の直鎖状高分子層フィルムを
酸素を主成分とする雰囲気中にて加熱融着する工程によ
り形成することを特徴とする電子写真感光体の製造方法
(1) Having P-phenylene on the support and S at the para position
In the method for manufacturing an electrophotographic photoreceptor, the method includes the step of forming a layer mainly composed of a linear compound polymer containing at least one of group VIb elements such as , Se, and Te, and further adding O atoms. A layer mainly composed of a chain compound polymer is formed by a process of heating and fusing a linear polymer layer film with a degree of crystallinity of 30% or less in an atmosphere mainly composed of oxygen. A method for manufacturing an electrophotographic photoreceptor.
(2)直鎖状高分子層フィルムとして2軸延伸されたフ
ィルムを用いる請求項1に記載の電子写真感光体の製造
方法。
(2) The method for producing an electrophotographic photoreceptor according to claim 1, wherein a biaxially stretched film is used as the linear polymer layer film.
(3)酸素を主成分とする雰囲気中における加熱処理の
加熱温度が、150〜350℃の範囲であることを特徴
とする請求項1に記載の電子写真感光体の製造方法。
(3) The method for manufacturing an electrophotographic photoreceptor according to claim 1, wherein the heating temperature of the heat treatment in an atmosphere containing oxygen as a main component is in the range of 150 to 350°C.
JP16004888A 1988-06-28 1988-06-28 Method for manufacturing electrophotographic photoreceptor Expired - Lifetime JPH0812432B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16004888A JPH0812432B2 (en) 1988-06-28 1988-06-28 Method for manufacturing electrophotographic photoreceptor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16004888A JPH0812432B2 (en) 1988-06-28 1988-06-28 Method for manufacturing electrophotographic photoreceptor

Publications (2)

Publication Number Publication Date
JPH028856A true JPH028856A (en) 1990-01-12
JPH0812432B2 JPH0812432B2 (en) 1996-02-07

Family

ID=15706794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16004888A Expired - Lifetime JPH0812432B2 (en) 1988-06-28 1988-06-28 Method for manufacturing electrophotographic photoreceptor

Country Status (1)

Country Link
JP (1) JPH0812432B2 (en)

Also Published As

Publication number Publication date
JPH0812432B2 (en) 1996-02-07

Similar Documents

Publication Publication Date Title
US4572881A (en) Printing member for electrostatic photocopying
JPS59223439A (en) Electrophotographic sensitive body
JPH028856A (en) Production of electrophotographic sensitive body
US4886719A (en) Electrophotography photosensitive member and a method for fabricating same
JP2538012B2 (en) Method for manufacturing electrophotographic photoreceptor
JP2638511B2 (en) Manufacturing method of electrophotographic photoreceptor
JPH05310949A (en) Polyphosphzene compound
JPH02157848A (en) Electrophotographic sensitive body and its preparation
JPS58194732A (en) Forming method of amorphous silicon carbide layer
JPH01133054A (en) Manufacture of electrophotographic sensitive body
JPH01133061A (en) Electrophotographic sensitive body
JPH01134461A (en) Electrophotographic sensitive body and manufacture of same
US4999270A (en) Printing member for electrostatic photocopying
JPH01142731A (en) Electrophotographic sensitive body and manufacture of same
JPH01134458A (en) Electrophotographic sensitive body
US5545503A (en) Method of making printing member for electrostatic photocopying
JPS63309961A (en) Electrophotographic sensitive body
JPS622269A (en) Electrophotographic sensitive body
JPH0823706B2 (en) Method for manufacturing electrophotographic photoreceptor
JPS63274959A (en) Electrophotographic sensitive body
US5143808A (en) Printing member for electrostatic photocopying
JPH02151869A (en) Electrophotographic sensitive body and its production
Yamazaki et al. Member for electrostatic photocopying with Si 3 N 4-x (0< x< 4)
JPS63267950A (en) Electrophotographic sensitive body and production thereof
JPH01229264A (en) Electrophotographic sensitive body and its production