JPH01133054A - Manufacture of electrophotographic sensitive body - Google Patents

Manufacture of electrophotographic sensitive body

Info

Publication number
JPH01133054A
JPH01133054A JP29105887A JP29105887A JPH01133054A JP H01133054 A JPH01133054 A JP H01133054A JP 29105887 A JP29105887 A JP 29105887A JP 29105887 A JP29105887 A JP 29105887A JP H01133054 A JPH01133054 A JP H01133054A
Authority
JP
Japan
Prior art keywords
layer
film
electrophotographic photoreceptor
charge transport
transport layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29105887A
Other languages
Japanese (ja)
Inventor
Eiichiro Tanaka
栄一郎 田中
Akio Takimoto
昭雄 滝本
Koji Akiyama
浩二 秋山
Masanori Watanabe
正則 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP29105887A priority Critical patent/JPH01133054A/en
Publication of JPH01133054A publication Critical patent/JPH01133054A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/043Photoconductive layers characterised by having two or more layers or characterised by their composite structure
    • G03G5/047Photoconductive layers characterised by having two or more layers or characterised by their composite structure characterised by the charge-generation layers or charge transport layers

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photoreceptors In Electrophotography (AREA)

Abstract

PURPOSE:To manufacture an electrophotographic sensitive body high in sensitivity and low in residual potential at low cost in a manufacturing process for forming an electric charge transfer layer through heating and melt attaching treatment by forming a charge transfer film biaxially stretched in a specified draw ratio. CONSTITUTION:The electrophotographic sensitive body to be formed is functionally separated into a photoconductive layer 3 for generating carriers on light excitement and the charge transfer layer 2 for transferring those carriers and composed essentially of a straight chain polymer having p-phenylene units each substituted by an element of group VIb of the periodic table on the para position. This layer 2 is formed by using the charge transfer film biaxially stretched at least in one axis in a draw ratio of 5-50 and melt attaching this film by heat treatment, thus permitting all the requirements for the electrophotographic process, such as electrostatic charge acceptance, abrasion resistance, environment resistance, high photosensitivity, and low residual potential to be sufficiently satisfied, and a photosensitive body to be produced at low cost.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、電子写真方式の複写機、光プリンタ等に用い
られる電子写真感光体に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an electrophotographic photoreceptor used in electrophotographic copying machines, optical printers, and the like.

従来の技術 電子写真感光体において、光励起によりキャリア生成を
行う光導電層と、キャリア輸送を行う電荷輸送層を別々
の材料で構成する機能分離型電子写真感光体が広く用い
られている。この様に機能によって材料を選ぶことによ
って、高感度な電子写真特性を持つ優れた感光体を提供
できるのみでなく、機械的強度、熱的安定性、耐刷性、
耐環境性、製造コストといったさまざまな面に渡って幅
広い材料の中から最適の組合せを検討することができる
2. Description of the Related Art Among electrophotographic photoreceptors, functionally separated electrophotographic photoreceptors are widely used in which a photoconductive layer that generates carriers by photoexcitation and a charge transport layer that transports carriers are made of different materials. By selecting materials according to function in this way, we can not only provide an excellent photoreceptor with highly sensitive electrophotographic properties, but also improve mechanical strength, thermal stability, printing durability,
You can consider the optimal combination from a wide range of materials in terms of environmental resistance, manufacturing cost, and other aspects.

このような材料の組合せの代表例として、有機材料を用
いた安価な電子写真感光体の例として、スクエアリック
酸メチルとトリアリールピラゾリン、ダイアンブルーと
オキサジアゾール、ペリレン顔料とオキサジアゾール、
ビスアゾ顔料とスチリアアンスラセン 等がある。
Typical examples of such material combinations include methyl squarate and triarylpyrazoline, Diane blue and oxadiazole, perylene pigment and oxadiazole, and examples of inexpensive electrophotographic photoreceptors using organic materials.
Examples include bisazo pigments and styria anthracene.

また、無機材料を光導電層とする例としては、貴定型セ
レンとポリビニルカルバゾール、特閏昭54−1436
45号公報には非晶質層シリコン系光導電層と有機半導
体材料を電荷輸送層に用いた機能分離型の感光体が、ま
た特閑昭56−24355号公報には無機半導体材料を
電荷輸送層に用いた機能分離型感光体が提案されている
In addition, examples of using inorganic materials as the photoconductive layer include Kiyoshi type selenium and polyvinyl carbazole,
No. 45 discloses a functionally separated photoreceptor using an amorphous silicon-based photoconductive layer and an organic semiconductor material as a charge transport layer, and Tokuhan No. 56-24355 discloses a photoreceptor using an inorganic semiconductor material as a charge transport layer. A functionally separated photoreceptor using layers has been proposed.

しかし、前記の有機材料を用いた機能分離型感光体は、
安価に製造できる反面、耐刷性に乏しく寿命、信頼性と
いった点ては解決すべき課題も多い。
However, the functionally separated photoreceptor using the above-mentioned organic material,
Although it can be manufactured at low cost, it has poor printing durability and many issues need to be resolved in terms of lifespan and reliability.

また、後者では硬度の高い$機先導電層を表面に用い耐
刷性を向上させる試みがなされているが、耐刷性に優れ
た光導電層の多くは、十分な特性を維持するためには基
板加熱を必要とし、あるいはプラズマ等の実効的には表
面温度が高温となるプロセスを必要とするため、従来の
耐熱性に劣る有機電荷輸送層では十分な特性の感光体が
得られていないのが現状である。
In addition, in the latter case, attempts have been made to improve printing durability by using a highly hard photoconductive layer on the surface, but many photoconductive layers with excellent printing durability are difficult to maintain sufficient characteristics. requires substrate heating, or requires a process such as plasma that effectively raises the surface temperature, so conventional organic charge transport layers with poor heat resistance cannot provide photoreceptors with sufficient characteristics. is the current situation.

この様な中て特閏昭55−90954号公報、および特
閏昭60−59353号公報には、電荷輸送層としてP
P5(ポリーP−フェニレンスルフィド)が高いキャリ
ア移動度を持ち、あるいは、フィルムとじて電荷輸送層
として用いることにより安価に製造できる優れた材料と
して提案されている。
In such a situation, in Tokusho No. 55-90954 and Toku No. 60-59353, P is used as a charge transport layer.
P5 (poly P-phenylene sulfide) has been proposed as an excellent material that has high carrier mobility or can be manufactured at low cost by being used as a charge transport layer in the form of a film.

発明が解決しようとする問題点 機能分離型電子写真感光体において、より高感度の実現
するには、より小さな誘電率を持ち、より大きな移動度
とキャリア寿命を有する電荷輸送層と、高い電荷発生能
力を持つ光導電層の組合せが望ましい。しかしそれぞれ
の要求される所の条件を満足しても両者の間のキャリア
注入が効率良く行われなければならない。また電子写真
プロセスに於て要求される型面受容能力、耐摩耗性、耐
環境性、等に十分満足するものでなければならない。
Problems to be Solved by the Invention In order to achieve higher sensitivity in a function-separated electrophotographic photoreceptor, a charge transport layer with a smaller dielectric constant, greater mobility and carrier life, and a higher charge generation are required. A combination of capable photoconductive layers is desirable. However, even if the respective required conditions are satisfied, carrier injection between the two must be performed efficiently. It must also fully satisfy the mold surface acceptance ability, abrasion resistance, environmental resistance, etc. required in the electrophotographic process.

特閏昭60−59353号公報においては、PPSを真
空蒸着法によって薄膜化と電荷輸送能力を向上し電荷輸
送層として形成することを述べているが、一般にこの状
態では電荷輸送能力は小さく、感度、残留電位ともに十
分てはない。また、真空蒸着法を用いるため、製膜速度
も十分でなく有機材料を用いた感光体としては高価であ
る。
In Japanese Patent Publication No. 60-59353, it is stated that PPS is formed as a charge transport layer by thinning it and improving its charge transport ability by vacuum evaporation, but generally in this state the charge transport ability is small and the sensitivity is low. , the residual potential is not sufficient. Furthermore, since a vacuum evaporation method is used, the film forming speed is not sufficient and the photoreceptor is expensive as a photoreceptor using an organic material.

また、特閏昭55−90954号公報においては、PP
Sフィルムを電荷輸送層に用いることで、安価な感光体
が提案されている。しかし、電荷輸送能力が十分てはな
いことから、光感度は全く今日の電子写真感光体の実用
レベルには至っていない。
In addition, in Tokuho No. 55-90954, PP
An inexpensive photoreceptor has been proposed by using an S film as a charge transport layer. However, since the charge transport ability is not sufficient, the photosensitivity has not reached the practical level of today's electrophotographic photoreceptors.

以上のように、表面硬度が高く長寿命な、高い感度で低
い残留電位の電子写真感光体が、しかも安価で製造でき
ることが困雅であった。
As described above, it has been difficult to manufacture an electrophotographic photoreceptor with high surface hardness, long life, high sensitivity, and low residual potential at a low cost.

問題点を解決するための手段 光励起によってキャリアを発生する光導電層と、そのキ
ャリアを転送する電荷輸送層を有する機能分離型電子写
真感光体の製造方法において、P−フェニレンを有しパ
ラ位にvtb族元素を有する直鎖状化合物高分子層を主
成分とする前記電荷輸送層を形成するに際して、前記電
荷輸送層を形成するフィルムを加熱処理により融着し形
成する工程を有すし、延伸倍率の少なくとも1軸が5〜
50倍に2軸延伸によって形成された前記電荷輸送層フ
ィルムを用いる。
Means for Solving the Problems In a method for manufacturing a functionally separated electrophotographic photoreceptor having a photoconductive layer that generates carriers by photoexcitation and a charge transport layer that transfers the carriers, a photoreceptor containing P-phenylene at the para position is used. When forming the charge transport layer mainly composed of a linear compound polymer layer containing a VTB group element, there is a step of fusing and forming the film forming the charge transport layer by heat treatment, and the stretching ratio is At least one axis of
The charge transport layer film formed by biaxial stretching 50 times is used.

作用 PPSフィルムの、キャリア移動度およびキャリア寿命
が小さいと言う欠点を克服するため種々検討を行った結
果、PPSを代表とする、P−フェニレンを有し、且つ
パラ位にカルコゲン元素を有する直鎖状化合物高分子層
を主成分とするフィルムを、酸素原子を含む雰囲気中で
260〜320℃の温度で、0.2〜50時閑の、好ま
しくは、260〜290℃1〜12時間の処理を行うこ
とによって、電荷輸送能力が飛躍的に向上することを見
いだした。
As a result of various studies to overcome the shortcomings of PPS films such as low carrier mobility and carrier life, we found that a linear film containing P-phenylene and a chalcogen element at the para position, represented by PPS, was developed. A film containing a compound polymer layer as a main component is treated in an atmosphere containing oxygen atoms at a temperature of 260 to 320°C for 0.2 to 50 hours, preferably at 260 to 290°C for 1 to 12 hours. We found that by doing this, the charge transport ability can be dramatically improved.

上記の高分子フィルムには1〜35atmzの、好まし
くは、1〜20atmXの酸素原子を含んでいることが
確認できた。
It was confirmed that the above polymer film contained oxygen atoms of 1 to 35 atmz, preferably 1 to 20 atmX.

このようなPPSに代表される主鎖方向にP−フェニレ
ンを有し、パラ位にカルコゲン元素を有する構造の高分
子において、酸素を含む雰囲気で加熱処理を行うことに
より電荷輸送能力が著しく向上することは現在では十分
に解析が行われていない。しかし、現時点では以下のよ
うに考えることができる。
In a polymer with a structure such as PPS that has P-phenylene in the main chain direction and a chalcogen element in the para position, the charge transport ability is significantly improved by heat treatment in an oxygen-containing atmosphere. This has not been sufficiently analyzed at present. However, at this point, we can think of the following.

一般には高分子におけるキャリアの移動は、高分子の主
鎖方向に沿っての電子軌道間のホッピング伝導で行われ
るが、そのキャリアの移動度は、隣合う軌道の重なりの
大きいほどポツピング確率が増し、増加する。P−フェ
ニレンのパラ位にあるカルコゲン元素が中性の状態であ
ると、隣合うP−フェニレンは、空間的にπ電子軌道が
、直交する配位状態にあり、移動度は小さい。しかしカ
ルコゲン元素が添加させたO原子により正に荷電し、イ
オン化した場合P−フェニレンの空間的ねじれは解消し
、π電子軌道は同一平面内に配置され、ホッピング確率
の増加とともに移動度の向上が図られると考えられる。
Generally, carrier movement in polymers occurs through hopping conduction between electron orbits along the main chain direction of the polymer, but the carrier mobility increases as the overlap between adjacent orbitals increases. ,To increase. When the chalcogen element at the para position of P-phenylene is in a neutral state, the π electron orbits of adjacent P-phenylenes are in a spatially orthogonal coordination state, and the mobility is small. However, when the chalcogen element is positively charged and ionized by the added O atoms, the spatial twist of P-phenylene is resolved and the π electron orbitals are arranged in the same plane, resulting in an increase in hopping probability and an improvement in mobility. It is thought that this will be achieved.

また、加熱処理にともない、高分子フィルムに硬化が生
じる。実際、延伸倍率の少なくとも1軸が5〜50倍に
2軸延伸によってフィルム化されたPPSの硬度は、未
処理ではマイクロビッカース硬度計では正確に測定でき
ないほど柔らかい。
Further, the polymer film is hardened due to the heat treatment. In fact, the hardness of PPS formed into a film by biaxial stretching with at least one stretching ratio of 5 to 50 times is so soft that it cannot be accurately measured with a micro-Vickers hardness meter in the untreated state.

一方、上記の処理を施したフィルムはビッカース硬度で
10〜80と上昇し、電荷輸送能力を向上させる酸素原
子が安定にフィルム中に取り込まれ、あるいはP−フェ
ニレンの空間的ねじれは解消した状態で安定化し、光導
電層を形成する際の基板加熱、あるいはプラズマを用い
た製膜プロセスにも安定で、高い感度と、低い残留電位
の電子写真感光体を可能とすることができたと考えられ
る。
On the other hand, the Vickers hardness of the film subjected to the above treatment increased to 10 to 80, indicating that oxygen atoms that improve charge transport ability were stably incorporated into the film, or that the spatial twist of P-phenylene was resolved. It is considered that the electrophotographic photoreceptor is stabilized, is stable to substrate heating during the formation of a photoconductive layer, or is stable to a film forming process using plasma, and has high sensitivity and low residual potential.

一方、延伸しないPPS粉体を直接加熱溶融し、支持体
上に製膜したフィルムは、酸素中の熱処理にも電荷輸送
能力の著しい向上が見られない。このことから、延伸に
よりPPSのP−フェニレンの空間的ねじれが幾分緩和
された状態で、酸素を含む雰囲気で加熱処理を行うこと
によりカルコゲン元素が添加させた0原子により正に荷
電し、容易にP−フェニレンの空間的ねじれは解消し、
移動度が向上すると考えられる。
On the other hand, a film formed on a support by directly heating and melting unstretched PPS powder does not show any significant improvement in charge transport ability even after heat treatment in oxygen. From this, when the spatial twist of P-phenylene in PPS is somewhat relaxed by stretching, by heat treatment in an oxygen-containing atmosphere, the chalcogen element is positively charged by the added 0 atoms, and easily The spatial twist of P-phenylene is resolved,
It is thought that mobility is improved.

ここで、上記のように電子写真プロセスにおいて要求さ
れる電荷受容能力、耐摩耗性、耐環境性、高い光感度、
低い残留電位等、十分満足するものである必要がある。
Here, as mentioned above, charge acceptance ability, abrasion resistance, environmental resistance, high photosensitivity, and
It is necessary to satisfy the requirements such as low residual potential.

また、PPSに代表される高分子フィルムは、直接に電
子写真感光体の導電性支持体上に加熱融着することによ
って製膜できるため、安価な感光体が製造できる。
In addition, since polymer films typified by PPS can be formed by directly heating and fusing onto a conductive support of an electrophotographic photoreceptor, an inexpensive photoreceptor can be manufactured.

また、硬化によって硬度が増すことにより、耐。In addition, hardness increases through hardening, making it more resistant.

剛性においても向上する。Rigidity is also improved.

実施例 図は、本発明における最も基本的な電子写真感光体の一
実施例の断面を模式的に示したものである。
The embodiment diagram schematically shows a cross section of one embodiment of the most basic electrophotographic photoreceptor of the present invention.

図に示す電子写真感光体は、電子写真感光体としての支
持体l上に、少なくとも主鎖方向にP−フェニレンを有
し、パラ位にカルコゲン元素を有する構造の高分子層を
、酸素を含む雰囲気で加熱処理を行なった高分子層から
なる電荷輸送N2と光導電N3とを有し、前記光導電層
3は一方で自由表面4を有している。
The electrophotographic photoreceptor shown in the figure includes a polymer layer having a structure having P-phenylene at least in the main chain direction and a chalcogen element at the para position on a support l as an electrophotographic photoreceptor, and a polymer layer containing oxygen. It has a charge transport layer N2 and a photoconductor N3 consisting of a polymer layer heat-treated in an atmosphere, the photoconductor layer 3 having a free surface 4 on the one hand.

本発明において、光導電層としては、以下のようなシリ
コンを含む非晶質層、例えばa−5i(:tl:X)、
a−5it−vc、、(:Il”、X)(0〈yくl)
、 a−5it−VlOv(:1IX)(Oy〈l)、
  a−5i+−vNy(:tl:X)(0〈yくt)
、 a−5i+−zGez(:H:X)(0<z<1)
、 a−(Si+−zGez)+−vN、(:H:X)
(0<y、z<I)、 a−(Sit−zGez)+−
Jy(:H:XXO<y、z<1)、またはa−(Si
t −zGez)+−vc、(:n:x)(o<y 、
z<1)の単層、あるいはこれらの積層からなる層を用
いることができる。また、yを連続的に変化させた場合
も使用できる。
In the present invention, the photoconductive layer is an amorphous layer containing silicon such as a-5i (:tl:X),
a-5it-vc,, (:Il”,X) (0<ycl)
, a-5it-VlOv(:1IX)(Oy<l),
a-5i+-vNy(:tl:X)(0<ykut)
, a-5i+-zGez(:H:X)(0<z<1)
, a-(Si+-zGez)+-vN, (:H:X)
(0<y, z<I), a-(Sit-zGez)+-
Jy (:H:XXO<y, z<1), or a-(Si
t −zGez)+−vc, (:n:x)(o<y,
A single layer with z<1) or a stack of these layers can be used. It can also be used when y is changed continuously.

カルコゲン元素を含む光導電層としては、AS2Se3
.5e(Teを含む)、GeSe等の非晶質層を用いて
もよい。また、この他にも、CdS、  CdSe、 
CdTeの結晶粉体を樹脂により結着した層を形成して
もよい。
As a photoconductive layer containing a chalcogen element, AS2Se3
.. An amorphous layer such as 5e (containing Te) or GeSe may also be used. In addition to this, CdS, CdSe,
A layer may be formed by binding CdTe crystal powder with a resin.

この時の膜厚は、電荷輸送層は5〜50μm好適には1
0〜257zm、また光導電層の膜厚は0.1〜10μ
m好適には0.2〜511 mとすれば良い。
At this time, the thickness of the charge transport layer is 5 to 50 μm, preferably 1 μm.
0~257zm, and the film thickness of the photoconductive layer is 0.1~10μ
m is preferably 0.2 to 511 m.

本発明において、更に電子写真特性を向上させるために
、図において、支持体lと電荷輸送N2との間に、支持
体1から電荷輸送N2に注入するキャリアを効果的に阻
止するため障壁層を設けてもよい。
In the present invention, in order to further improve the electrophotographic properties, a barrier layer is provided between the support l and the charge transport N2 in order to effectively prevent carriers from being injected from the support 1 into the charge transport N2. It may be provided.

障壁層を形成する材料としては、A I 203、Ba
O1Ba02、  Be01  B12(h、 CaO
1CeO2、Ce2O3、しa203、 Dy2O3、
LLJ203、Cr2(13、CuO1CU20、Fe
05pbo、MgO1SrO,Ta2O3、Th02、
z「02、HfO2、TiO2、Ti01Si02、G
eO2,5iO1GeO等の金属酸化物またはTiN、
  AIN、 SnN、 NbN、 TaN、 GaN
等の金属窒化物、または匪、SnC,TiC1等の金属
炭化物またはSiC,SiN、GeC,GeN、  8
C,ON等の絶縁物、ポリエチレン、ポリカーボネート
、ポリウレタン、ポリパラキシレン等の有機化合物が使
用される。
Materials for forming the barrier layer include A I 203, Ba
O1Ba02, Be01 B12(h, CaO
1CeO2, Ce2O3, Shia203, Dy2O3,
LLJ203, Cr2(13, CuO1CU20, Fe
05pbo, MgO1SrO, Ta2O3, Th02,
z"02, HfO2, TiO2, Ti01Si02, G
Metal oxides such as eO2, 5iO1GeO or TiN,
AIN, SnN, NbN, TaN, GaN
Metal nitrides such as SiC, SiN, GeC, GeN, etc., or metal carbides such as SnC, TiC1, etc., 8
Insulators such as C and ON, and organic compounds such as polyethylene, polycarbonate, polyurethane, and polyparaxylene are used.

また、クリーニング性あるいは耐摩耗性あるいは耐コロ
ナ性を向上させるため、図において、自由表面4上に表
面被覆層を形成する。表面被覆層として好適な材料とし
ては、S1アOI−い S!xc+−*、5ixNI−
xx  GexO+−xs (+exC+−x−Gex
N+−x、BtN+−r、88C!−1、AlxN+−
X(O<X<1)、およびこれらに水素あるいはハロゲ
ンを含有する層等の無機物、あるいはポリエチレンテレ
フタレート、ポリカーボネート、ポリプロピレン、ポリ
塩化ビニル、ポリビニルアルコール、ポリスチレン、ポ
リアミド、ポリ四弗化エチレン、ポリ三弗化塩化エチレ
ン、ポリ弗化ビニリデン、ポリウレタン等の合成樹脂な
どが上げられる。
Furthermore, in order to improve cleaning properties, abrasion resistance, or corona resistance, a surface coating layer is formed on the free surface 4 in the figure. Suitable materials for the surface coating layer include S1, OI, and S! xc+-*, 5ixNI-
xx GexO+-xs (+exC+-x-Gex
N+-x, BtN+-r, 88C! -1, AlxN+-
X (O < Examples include synthetic resins such as ethylene fluoride, polyvinylidene fluoride, and polyurethane.

さらに、本発明において、上記のa−5i(:I:X)
、a−5i+ −、C,(二H:XXO<y<1)、 
a−5it−JyCH:XXOく/〈l)、a−5i+
−vNv(二H:X)(0<y<1)、あるいはこれら
にGe添加のこれらの膜中に、不純物を添加することに
より伝導性を制御し、所望の電子写真特性を得ることが
できる。p型伝導性を与えるn型不純物としては、周期
律表第■族すに属するB、ALGa、Tn等があり、好
適にはB、ALGaが用いられ、n型伝導性を与えるn
型不純物としては、周期律表第■族すに属するN、  
P、  As、  Sb等が有り、好適にはP、Asが
用いられる。
Furthermore, in the present invention, the above a-5i(:I:X)
, a-5i+ −, C, (2H:XXO<y<1),
a-5it-JyCH: XXOku/<l), a-5i+
-vNv(2H:X) (0<y<1), or by adding impurities to these Ge-added films, conductivity can be controlled and desired electrophotographic properties can be obtained. . Examples of n-type impurities that provide p-type conductivity include B, ALGa, and Tn, which belong to Group Ⅰ of the periodic table. B and ALGa are preferably used;
Type impurities include N, which belongs to Group II of the periodic table;
There are P, As, Sb, etc., and P and As are preferably used.

また、これらの不純物を添加する方法として、n型不純
物の場合、82116、BaH+e、B5H9、BsH
++、861112 、 86HI4 、  BF3 
、  BC13、BBr2、  AlCl3 、  (
CH3)3A1、(C2)15)3A1、(ic4H9
)3AI、(CH3)3Ga、  (C2)15)3G
a、I nCI3、(C2tls )31 nを、n型
不純物の場合、N2、NHi、N01N20、NO2、
PH3、P2H4、PHal、PFt、PFs、PCl
3、PCl5、PBr3.PBrs、PI3、ASH3
、ASF3、AsC13、AsBr3.5b)I3、S
bF3.5BFs、5bCI3.5bCI5等のガスを
、あるいはこれらのガスをH2,)Ie、 Arで希釈
したガスを、プラズマCVD法では、それぞれの膜形成
時において、使用する上記のSi原子等の原料ガスと混
合して用いれば良い。あるいは、反応性スパッタ法には
Ar等のスパッタガスと混合して用いる。
In addition, as a method of adding these impurities, in the case of n-type impurities, 82116, BaH+e, B5H9, BsH
++, 861112, 86HI4, BF3
, BC13, BBr2, AlCl3, (
CH3)3A1, (C2)15)3A1, (ic4H9
)3AI, (CH3)3Ga, (C2)15)3G
a, I nCI3, (C2tls)31 n, in the case of n-type impurity, N2, NHi, N01N20, NO2,
PH3, P2H4, PHal, PFt, PFs, PCl
3, PCl5, PBr3. PBrs, PI3, ASH3
, ASF3, AsC13, AsBr3.5b) I3, S
In the plasma CVD method, gases such as bF3.5BFs, 5bCI3.5bCI5, or these gases diluted with H2, )Ie, and Ar are used as raw materials such as the above-mentioned Si atoms when forming each film. It can be used by mixing it with gas. Alternatively, in the reactive sputtering method, it is used in combination with a sputtering gas such as Ar.

また、先導ftrMとしては以下の有機半導体が用いる
ことができる、(1)フタロシアニン顔料(PCと称す
)例えば 無金属Pc、  XPc (X =Cu、N
i、Co、  T io、Mg、  S 1(OHル、
等)、AlClPcC1、Ti0CIPcCI、InC
lPcC1,InClPc、InBrPcBr等である
。更に(2)モノアゾ色素、ジスアゾ色素等のアゾ系色
素 (3)ペニレン酸無水物およびベニレン酸イミド等
のペニレン系顔料 (4)インジゴイド染料 (5)キ
ナクリドン顔料 (6)アントラキノン類、ピレンキノ
ン類 等の多環キノン類 (7)シアニン色素 (8)
キサンチン染料 (9)PVK/TNF等の電荷移動錯
体 (10)ビリリウム塩染料とポリカーボネイト樹脂
から形成される共晶錯体 (11)アズレニウム塩化合
物 等がある。
In addition, the following organic semiconductors can be used as the leading ftrM, (1) phthalocyanine pigments (referred to as PC), such as metal-free Pc, XPc (X = Cu, N
i, Co, T io, Mg, S 1 (OH le,
etc.), AlClPcC1, Ti0CIPcCI, InC
lPcC1, InClPc, InBrPcBr, etc. Furthermore, (2) azo dyes such as monoazo dyes and disazo dyes, (3) penylene pigments such as penylene acid anhydride and benylene imide, (4) indigoid dyes, (5) quinacridone pigments, (6) anthraquinones, pyrenequinones, etc. Polycyclic quinones (7) Cyanine dyes (8)
Examples include xanthine dyes (9) charge transfer complexes such as PVK/TNF, (10) eutectic complexes formed from biryllium salt dyes and polycarbonate resins, and (11) azulenium salt compounds.

これらの有機半導体の製膜には、真空蒸着法、デイプ塗
工法、イオンクラスタビーム法、電着法等が用いられる
A vacuum evaporation method, a deep coating method, an ion cluster beam method, an electrodeposition method, etc. are used to form films of these organic semiconductors.

電荷輸送層である高分子層は2軸延伸によって配向され
たフィルムを用い、以下に述べるように石英ガラス基板
上に、あるいは電子写真感光体の導電性支持体上に酸素
を含む雰囲気中で加熱融着し形成し、必要に応じて更に
酸素中にて加熱処理を行った。
The polymer layer, which is the charge transport layer, uses a film oriented by biaxial stretching, and as described below, it is heated in an oxygen-containing atmosphere on a quartz glass substrate or on a conductive support of an electrophotographic photoreceptor. They were fused and formed, and further heat-treated in oxygen if necessary.

一方、加熱処理の進行状態を監視するため、製膜後、高
分子層の硬度を求めるためた。このため、石英ガラス基
板を使用し、基板上にlOμrn以上の厚さの膜を形成
し評価を行った。
On the other hand, in order to monitor the progress of the heat treatment, the hardness of the polymer layer was determined after film formation. For this reason, a quartz glass substrate was used, and a film having a thickness of 10 μrn or more was formed on the substrate and evaluated.

硬度の測定にはマイクロビッカース硬度計を用い、ダイ
アモンドの圧子の加重をlOgとして測定を行った。
The hardness was measured using a micro Vickers hardness meter, and the load of the diamond indenter was set to lOg.

また、未処理のPPSフィルムのような硬度の小さい膜
では、マイクロビッカース硬度計では、硬度の測定が困
難な程柔らかい。
Furthermore, a film with low hardness such as an untreated PPS film is so soft that it is difficult to measure the hardness with a micro-Vickers hardness meter.

以下実施例について述べる。Examples will be described below.

実施例1 石英ガラス基板上に、延伸倍率を変化させた16μmの
膜厚を持つPPSフィルムを重ね、更に均一性の向上を
図るため、上から離型剤としてテフロンをコートしたス
テンレス基板を荷重として重ね、酸素中にて280″’
CI時間処理を行ないPPSを融着した。このフィルム
をマイクロビッカース硬度計を用いて硬度の測定を行っ
たところ、延伸倍率30〜50の膜では35±5.5〜
10倍の膜では15±5.2〜5倍の膜では7±2であ
った。
Example 1 PPS films with a film thickness of 16 μm with varying stretching ratios were layered on a quartz glass substrate, and in order to further improve uniformity, a stainless steel substrate coated with Teflon as a mold release agent was applied as a load. Stacked and placed in oxygen for 280''
A CI time treatment was performed to fuse the PPS. When the hardness of this film was measured using a micro Vickers hardness meter, the hardness of the film at a stretching ratio of 30 to 50 was 35 ± 5.5 ~
The value was 15±5.2 for the 10x film and 7±2 for the 5x film.

これらの条件で、アルミニウム基板−ヒにもPPSを融
着し電荷輸送層として形成した。次に、光導電層として
Seを、約0−8μmの膜厚に真空蒸着法によって形成
し、電子写真感光体とした。
Under these conditions, PPS was also fused to the aluminum substrate to form a charge transport layer. Next, Se was formed as a photoconductive layer to a thickness of about 0 to 8 μm by vacuum evaporation to obtain an electrophotographic photoreceptor.

この時、延伸倍率30〜50の膜のPPSを電荷輸送層
とした電子写真感光体を表面電位+600vに帯電処理
を行い、500nmの光で露光を行ったととろ照度換算
で、半減電位露光量は1.31ux−secと非常に高
い感度を示した。また、残留電位も60V以下と優れた
特性を示した。
At this time, an electrophotographic photoreceptor with a PPS charge transport layer of a film with a stretching ratio of 30 to 50 was charged to a surface potential of +600 V, and exposed to 500 nm light. It showed a very high sensitivity of 1.31 ux-sec. Further, the residual potential was 60 V or less, which showed excellent characteristics.

また、延伸倍率が5〜lO倍の膜のPPSを電荷輸送層
とした電子写真感光体は、上記と同じ条件で評価を行っ
たところ、半減電位露光量は1.51ux”Secと高
いものの、残留電位が120Vとやや多い結果となった
Furthermore, when an electrophotographic photoreceptor with a charge transport layer made of PPS with a stretching ratio of 5 to 10 times was evaluated under the same conditions as above, the half-potential exposure amount was as high as 1.51 ux"Sec. The residual potential was 120V, which was a little high.

しかし、延伸倍率が2〜5倍の膜のPPSを用いた電子
写真感光体は、残留電位が300〜350v以上と極め
て高く、実用レベルには至らなかった。
However, an electrophotographic photoreceptor using a PPS film with a stretching ratio of 2 to 5 times has an extremely high residual potential of 300 to 350 V or more, and has not reached a practical level.

実施例2 次に、延伸倍率が1軸方向に2倍とし、他の軸を30倍
として得られたフィルムをアルミニウム基板上に285
℃で空気中で加熱融着処理を行い、更に、280℃の酸
素中にて9時間の処理を行った。
Example 2 Next, a film obtained by setting the stretching ratio to 2 times in one axis direction and 30 times in the other axis was placed on an aluminum substrate at 285
Heat fusion treatment was performed in air at 280°C, and further treatment was performed in oxygen at 280°C for 9 hours.

一方、アルミニウム基板上に延伸倍率が2軸とも2倍の
フィルムを上記と同様に融着し、更に酸素中にて280
℃9時閏処理を行った。
On the other hand, a film with a stretching ratio of 2 in both axes was fused onto an aluminum substrate in the same manner as above, and then heated at 280° C. in oxygen.
A leap treatment was performed at 9°C.

両者の電子写真感光体の表面に帯電処理を行い、白色光
にて露光を行ったところ、前者のものは残留電位80V
と低く、また感度も0.71ux−secと非常に高い
感度を示した。後者のものは帯電電位が250Vと低く
、また残留電位も160V以上と大きく実用には至らな
かった。
When the surfaces of both electrophotographic photoreceptors were charged and exposed to white light, the former had a residual potential of 80V.
The sensitivity was as low as 0.71 ux-sec, and the sensitivity was very high. The latter had a low charging potential of 250 V and a residual potential of 160 V or more, so it was not put into practical use.

実施例3 次に、実施例2と同様に、延伸倍率がl軸方向に60倍
とし、他の軸を20倍として得られたPPSフィルムを
アルミニウム基板上に融着し、更に酸素中にて280℃
にて122時間処理を行なった。一方では、延伸倍率が
2軸とも60倍のフィルムを上記と同様に融着し、28
0℃にて122時間処理を行った。
Example 3 Next, in the same manner as in Example 2, a PPS film obtained with a stretching ratio of 60 times in the l-axis direction and 20 times in the other axis was fused onto an aluminum substrate, and further stretched in oxygen. 280℃
The treatment was carried out for 122 hours. On the other hand, a film with a stretching ratio of 60 times in both axes was fused in the same manner as above, and 28
The treatment was carried out at 0°C for 122 hours.

前者の条件でのPPSフィルムの硬度は75±5であっ
た。しかし後者のフィルムは一部にクラックが発生した
The hardness of the PPS film under the former condition was 75±5. However, cracks occurred in some parts of the latter film.

前者の基板上を6インチの放電電極を有する平行平板型
の容量結合方式プラズマCVD装置内のアノード側に配
置し、反応容器内を5X 1O−6Torr以下に排気
後、基板を150〜200℃に加熱した。5iHnを1
0〜40secm、  B2H6を1Oppa+導入し
、圧力0.2〜l。
The former substrate was placed on the anode side of a parallel plate capacitively coupled plasma CVD apparatus having a 6-inch discharge electrode, and after the reaction vessel was evacuated to 5X 1O-6 Torr or less, the substrate was heated to 150 to 200°C. Heated. 5iHn to 1
0 to 40 sec, 1 Oppa+ of B2H6 was introduced, and the pressure was 0.2 to 1.

0Torr、高周波電力20〜100Wでa−5i:8
層を光導電層として0.2〜1μm形成した。更に、5
iH<を10〜30sccm、 C214mを20〜4
0sccn+導入し、圧力0−2〜1.0Torr、高
周波電力50〜150Wで5l−tcx : H(0<
x<l)を表WJ被覆層として0.08〜0.3μm形
成して電子写真感光体を作成した。
a-5i:8 at 0 Torr, high frequency power 20-100W
The layer was formed as a photoconductive layer with a thickness of 0.2 to 1 μm. Furthermore, 5
iH<10~30sccm, C214m 20~4
0sccn + introduced, pressure 0-2 to 1.0 Torr, high frequency power 50 to 150W, 5l-tcx: H (0<
x<l) was formed as a front WJ coating layer with a thickness of 0.08 to 0.3 μm to prepare an electrophotographic photoreceptor.

前者の試料はプラズマに対する耐性も向上し、表面電位
500vに帯電処理を行った後、白色にて露光を行った
ところ、0.71ux−secと高い感度と残留電位1
00Vと実用レベルの感光体が得られた。
The former sample also has improved resistance to plasma, and when exposed to white light after being charged to a surface potential of 500 V, it showed a high sensitivity of 0.71 ux-sec and a residual potential of 1.
00V, a photoreceptor with a practical level was obtained.

一方、後者の試料は、更にクラックが増加し、一部膜剥
離が発生した。
On the other hand, in the latter sample, cracks further increased and some film peeling occurred.

実施例4 インフレーション法によって15μm膜厚の円筒状のP
PSフィルムを作成する。この時の延伸倍率を円筒軸上
の倍率を20〜30倍、円筒軸と直角方向の倍率を10
〜15倍とした。また円筒フィルムの直径は92φとし
た。
Example 4 Cylindrical P with a film thickness of 15 μm was formed by the inflation method.
Create PS film. At this time, the stretching magnification is 20 to 30 times on the cylinder axis, and 10 times in the direction perpendicular to the cylinder axis.
~15 times. The diameter of the cylindrical film was 92φ.

鏡面研磨した88φのアルミニウムドラムを上記の円筒
状PPSフィルムに挿入し、200℃に加熱し熱ff縮
によってアルミニウムドラム−FにPPSを積層した。
A mirror-polished aluminum drum of 88φ was inserted into the above cylindrical PPS film, heated to 200° C., and PPS was laminated on the aluminum drum-F by thermal shrinkage.

一方、硬度測定用の石英基板上に融着した試料を上記の
ドラムと同時に酸素中の加熱処理装置に設置し、285
℃6時間の処理を行った。
On the other hand, a sample fused onto a quartz substrate for hardness measurement was placed in a heat treatment device in oxygen at the same time as the drum above.
The treatment was carried out at ℃ for 6 hours.

硬度測定用の試料を用い、ビッカース硬度を測定したと
ころ、硬度55±4を示した。
When Vickers hardness was measured using a sample for hardness measurement, it showed a hardness of 55±4.

また、上記ドラムを円筒回転型の真空蒸着装置内に配置
し、器内を5X 1O−6Torr以下に排気後、基板
を25〜40℃にて光導電層として、無金属Pcを0.
2〜0.371mの膜厚に蒸着した。無金属Pcは、蒸
着前に熱湯洗浄を2回、テトラヒトーロ万シ洗浄を1回
行い、M製を行った後、蒸着を行った。
Further, the drum was placed in a cylindrical rotary type vacuum evaporation apparatus, and after the inside of the apparatus was evacuated to 5X 1O-6 Torr or less, the substrate was heated to 25 to 40° C. as a photoconductive layer, and metal-free Pc was applied at 0.05 to 100° C.
The film was deposited to a thickness of 2 to 0.371 m. Before vapor deposition, the metal-free Pc was washed twice with hot water and washed once with a tetrahydrotrope, and after making M, it was vapor-deposited.

このようにして得られた感光ドラムを表面電位600V
に帯電処理した後、白色光にて露光を行ったところ、半
減電位露光量は1.31ux−secと高い感度を示し
、残留電位も60V以下と十分率さい感光ドラムが得ら
れた。
The photosensitive drum thus obtained had a surface potential of 600 V.
When the photosensitive drum was exposed to white light after being charged, the half potential exposure amount was 1.31 ux-sec, which showed high sensitivity, and the residual potential was 60 V or less, which was a sufficiently small photosensitive drum.

実施例5 実施例4と同様に、アルミニウムドラム基板上に電荷輸
送層としてPPSフィルムを加熱収縮によって積層する
際、処理雰囲気に電子受容体として、T CN Q (
7,7,8,8,−テトラシアノキノジメタン)を添加
した雰囲気で加熱処理をおこなった。
Example 5 Similarly to Example 4, when laminating a PPS film as a charge transport layer on an aluminum drum substrate by heat shrinkage, T CN Q (
The heat treatment was performed in an atmosphere to which 7,7,8,8,-tetracyanoquinodimethane) was added.

更に、酸素中の加熱処理装置に設置し、265℃6時間
の処理を行った。
Furthermore, it was placed in a heat treatment apparatus in oxygen and was treated at 265° C. for 6 hours.

同じく、硬度測定用の試料としてフィルムを同時に処理
し、石英基板−ヒに接着し硬度を測定した。
Similarly, a film was treated as a sample for hardness measurement, and the hardness was measured by adhering it to a quartz substrate.

このときのフィルム硬度は25±4であった。The film hardness at this time was 25±4.

また、上記ドラムをCdS光導電性粉体と、結着樹脂を
100:20重量部加えた(結着樹脂はポリウレタン樹
脂)溶液中に浸漬し、170℃で30分乾燥処理を行い
5μmの光導電層を形成した。
In addition, the drum was immersed in a solution containing 100:20 parts by weight of CdS photoconductive powder and a binder resin (the binder resin is a polyurethane resin), dried at 170°C for 30 minutes, and exposed to 5 μm light. A conductive layer was formed.

このようにして得られた感光ドラムを、表面電位600
■に帯電処理を行った後、白色光にて露光を行ったとこ
ろ、半減電位露光量は2.31ux−secと高い感度
を示し、残留電位も90V以下と十分率さい感光ドラム
が得られた。
The photosensitive drum thus obtained had a surface potential of 600
After carrying out the charging treatment in step (2), exposure to white light was performed, and a photosensitive drum was obtained that exhibited high sensitivity with a half-potential exposure amount of 2.31 ux-sec and a sufficiently small residual potential of 90 V or less. .

ここでは、電子受容体としてTCNQを用いたが、SO
3、A s F s等を用いても同様である。
Here, TCNQ was used as an electron acceptor, but SO
3. The same applies if A s F s etc. are used.

また、PPSを主成分とするフィルムを電荷輸送層とし
て用いたが、主鎖方向にP−フェニレンを有し、パラ位
に他のカルコゲン元素を有する構造の高分子においても
、同様な効果が得られる。
In addition, although a film containing PPS as the main component was used as the charge transport layer, similar effects can be obtained with polymers having a structure that has P-phenylene in the main chain direction and other chalcogen elements in the para position. It will be done.

実施例6 図面とは逆に、光導電層を基板に配置した例について記
す。
Example 6 Contrary to the drawings, an example in which a photoconductive layer is disposed on a substrate will be described.

鏡面研磨した15cm角のアルミニウム基板を6インチ
の放電電極を有する平行平板型の容量結合方式プラズマ
CVD装置内に配置し、反応容器内を5X 1O−6T
orr以下に排気後、基板を250℃以上、好ましくは
280〜320℃に加熱した。つぎにSiH4を10〜
40sccn+導入し、炭素源としてC2H2をSi原
子に対しC原子が、1〜25a tmXどなるよう混合
し、水素ガスにて全体のガスを5%以下に希釈したガス
を圧力0.2〜1.0Torr、高周波電力20〜10
0Wでa−5it−、(、:14層を光導電層として0
.5〜57tm形成した。
A mirror-polished 15 cm square aluminum substrate was placed in a parallel plate type capacitively coupled plasma CVD device with a 6 inch discharge electrode, and the interior of the reaction vessel was 5X 1O-6T.
After evacuation to below orr, the substrate was heated to 250°C or higher, preferably 280 to 320°C. Next, add SiH4 to 10~
40sccn+ was introduced, and C2H2 was mixed as a carbon source so that C atoms were mixed with Si atoms at 1 to 25 atmX.The total gas was diluted to 5% or less with hydrogen gas, and the gas was heated at a pressure of 0.2 to 1.0 Torr. , high frequency power 20~10
a-5it-, (,: 14 layers as photoconductive layer at 0W
.. 5 to 57 tm was formed.

更に、25μmの延伸倍率をl軸の倍率を20〜30倍
、他の軸の倍率を30〜45倍とした2軸延伸PPS高
分子フィルムを密着させ端部を固定し空気中にて、28
0〜290℃の温度で1〜5時閏時素酸素雰囲気中熱し
融着させ、電荷移動層として形成して電子写真感光体を
作成した。
Furthermore, a biaxially stretched PPS polymer film of 25 μm with a stretching ratio of 20 to 30 times for the l axis and 30 to 45 times for the other axes was brought into close contact with the end portions, and the film was stretched in air for 28 hours.
An electrophotographic photoreceptor was prepared by heating and fusing the mixture at a temperature of 0 to 290° C. in an oxygen atmosphere for a time period of 1 to 5 hours to form a charge transfer layer.

この時のPPSの硬度ζオ、60±4であった。The hardness of PPS at this time was 60±4.

この感光体を一500Vに帯電させ同じく白色光にて露
光したところ、半減電位露光量は1.oIux−sec
以下と感度は非常に向−ヒした。また、残留電位も一8
0V以下と優れた特性を得ることができた。
When this photoreceptor was charged to -500V and exposed to white light, the half-potential exposure amount was 1. oIux-sec
The sensitivity was very good. Also, the residual potential is 18
It was possible to obtain excellent characteristics of 0V or less.

また、この際a−5it−xcy:N!と基板の間に、
電荷注入阻!E層として、0.1層mのa−5i+−x
Nx:1層を挿入すれば、電荷保持能力が向上し、コン
トラストの高い画像が得られた。
Also, at this time a-5it-xcy:N! and the board,
Block charge injection! As layer E, a-5i+-x of 0.1 layer m
When one layer of Nx was inserted, the charge retention ability was improved and an image with high contrast was obtained.

発明の効果 本発明によれば、電荷輸送層がP−フェニレンを有し、
パラ位にVIb族元素を有する直鎖状化合物高分子層を
主成分とし、前記電荷輸送層フィルムを加熱処理により
融着し形成する工程を有する電子写真感光体の製造方法
において、延伸倍率の少なくとも1軸が5〜50倍に2
軸延伸によって形成された前記電荷輸送層フィルムを用
いることによって、高感度、低残留電位の電子写真感光
体が安価に製造できる。
Effects of the Invention According to the present invention, the charge transport layer contains P-phenylene,
In a method for producing an electrophotographic photoreceptor, the main component is a linear compound polymer layer having a group VIb element at the para position, and the method includes a step of fusing and forming the charge transport layer film by heat treatment, wherein the stretching ratio is at least 1 axis is 5 to 50 times 2
By using the charge transport layer film formed by axial stretching, an electrophotographic photoreceptor with high sensitivity and low residual potential can be manufactured at low cost.

また、加熱処理によって製膜された電荷輸送層は硬度が
ビッカース硬度lO〜80と増し、自らも耐刷性を著し
く向上できると同時に、プラズマに対する耐性も向上し
、非晶質シリコン等のプラズマを用いる光導−fi P
の形成プロセスにも、プラズマによるダメージもなく膜
堆積が可能となった。これらにより、長寿命化が可能と
なった。
In addition, the hardness of the charge transport layer formed by heat treatment increases to Vickers hardness 1O ~ 80, which significantly improves printing durability. At the same time, resistance to plasma is also improved, and plasma resistance of amorphous silicon, etc. Light guide used - fi P
In the process of forming the film, it is now possible to deposit a film without any damage caused by plasma. These have made it possible to extend the lifespan.

【図面の簡単な説明】[Brief explanation of the drawing]

図は、本発明の実施例における電子写真感光体の断面図
である。 l・・・支持体、2・・・電荷輸送層、3・・・光導電
層、4・・・自由表面。
The figure is a sectional view of an electrophotographic photoreceptor in an example of the present invention. 1... Support, 2... Charge transport layer, 3... Photoconductive layer, 4... Free surface.

Claims (7)

【特許請求の範囲】[Claims] (1)光励起によってキャリアを発生する光導電層と、
そのキャリアを転送する電荷輸送層を有する機能分離型
電子写真感光体の製造方法において、P−フェニレンを
有しパラ位にVIb族元素を有する直鎖状化合物高分子層
を主成分とする前記電荷輸送層を形成するに際して、前
記電荷輸送層を形成するフィルムを加熱処理により融着
し形成する工程を有すし、延伸倍率の少なくとも1軸が
5〜50倍に2軸延伸によって形成された前記電荷輸送
層フィルムを用いることを特徴とする電子写真感光体の
製造方法。
(1) A photoconductive layer that generates carriers by photoexcitation;
In the method for manufacturing a functionally separated electrophotographic photoreceptor having a charge transport layer for transferring carriers, the charge transport layer mainly comprises a linear compound polymer layer containing P-phenylene and a Group VIb element at the para position. When forming the transport layer, there is a step of fusing and forming the film forming the charge transport layer by heat treatment, and the charge transport layer formed by biaxial stretching at least one axis of the stretching ratio is 5 to 50 times. A method for producing an electrophotographic photoreceptor, the method comprising using a transport layer film.
(2)円筒形状フィルムを加熱により収縮密着する工程
を含むことを特徴とする特許請求の範囲第1項記載の電
子写真感光体の製造方法。
The method for manufacturing an electrophotographic photoreceptor according to claim 1, which comprises the step of (2) shrinking and bringing the cylindrical film into close contact with each other by heating.
(3)フィルムを融着の際、あるいは融着後酸素を含む
雰囲気中で加熱する工程を含むことを特徴とする特許請
求の範囲第1項記載の電子写真感光体の製造方法。
(3) The method for manufacturing an electrophotographic photoreceptor according to claim 1, which comprises the step of heating the film in an oxygen-containing atmosphere during or after fusing.
(4)電荷移動層である高分子層に電子受容体を添加す
る工程を含む特許請求の範囲第1項記載の電子写真感光
体の製造方法。
(4) The method for producing an electrophotographic photoreceptor according to claim 1, which includes the step of adding an electron acceptor to the polymer layer that is the charge transfer layer.
(5)光導電層が電子スピン密度を減少せしめる修飾物
質を含む非晶質層を形成する工程を有する特許請求の範
囲第1項記載の電子写真感光体の製造方法。
(5) The method for manufacturing an electrophotographic photoreceptor according to claim 1, which comprises the step of forming an amorphous layer in which the photoconductive layer contains a modifier that reduces electron spin density.
(6)光導電層が、少なくとも水素あるいはハロゲン元
素のいずれかを含む特許請求の範囲第6項記載の電子写
真感光体の製造方法。
(6) The method for manufacturing an electrophotographic photoreceptor according to claim 6, wherein the photoconductive layer contains at least either hydrogen or a halogen element.
(7)自由表面に表面被覆層を形成する工程を有する特
許請求の範囲第1項記載の電子写真感光体の製造方法。
(7) The method for manufacturing an electrophotographic photoreceptor according to claim 1, which comprises the step of forming a surface coating layer on the free surface.
JP29105887A 1987-11-18 1987-11-18 Manufacture of electrophotographic sensitive body Pending JPH01133054A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29105887A JPH01133054A (en) 1987-11-18 1987-11-18 Manufacture of electrophotographic sensitive body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29105887A JPH01133054A (en) 1987-11-18 1987-11-18 Manufacture of electrophotographic sensitive body

Publications (1)

Publication Number Publication Date
JPH01133054A true JPH01133054A (en) 1989-05-25

Family

ID=17763887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29105887A Pending JPH01133054A (en) 1987-11-18 1987-11-18 Manufacture of electrophotographic sensitive body

Country Status (1)

Country Link
JP (1) JPH01133054A (en)

Similar Documents

Publication Publication Date Title
US4634648A (en) Electrophotographic imaging members with amorphous carbon
EP0219982B1 (en) Overcoated amorphous silicon imaging members
TW201016747A (en) Copolymer for electronic devices
JPH01133054A (en) Manufacture of electrophotographic sensitive body
US4906544A (en) Photosensitive member of plasma polymerized amorphous carbon charge transporting layer and charge generating layer
US4913994A (en) Photosensitive member composed of charge transporting layer and charge generating layer
JPH01134458A (en) Electrophotographic sensitive body
US4886719A (en) Electrophotography photosensitive member and a method for fabricating same
JPH01133061A (en) Electrophotographic sensitive body
US4758487A (en) Electrostatographic imaging members with amorphous boron
JPH01134461A (en) Electrophotographic sensitive body and manufacture of same
JPH01142731A (en) Electrophotographic sensitive body and manufacture of same
EP0238093B1 (en) Photosensitive member composed of charge transporting layer and charge generating layer
KR0156562B1 (en) A method for preparing an electrophotographic photoreceptor
JPH02157848A (en) Electrophotographic sensitive body and its preparation
JPS6275537A (en) Electrophotographic sensitive body
JPH0812432B2 (en) Method for manufacturing electrophotographic photoreceptor
JPS62242948A (en) Electrophotographic sensitive body
JPH01124863A (en) Production of electrophotographic sensitive body
JPH01133062A (en) Electrophotographic sensitive body
JP2538012B2 (en) Method for manufacturing electrophotographic photoreceptor
JP2661073B2 (en) Photoconductive layer and manufacturing method thereof
JPH012062A (en) Manufacturing method of electrophotographic photoreceptor
JPS60254044A (en) Electrophotographic sensitive body
JPS6381436A (en) Production of electrophotographic sensitive body