JPH02151045A - Connection structure of electronic component and connection and formation of electronic component - Google Patents

Connection structure of electronic component and connection and formation of electronic component

Info

Publication number
JPH02151045A
JPH02151045A JP30391588A JP30391588A JPH02151045A JP H02151045 A JPH02151045 A JP H02151045A JP 30391588 A JP30391588 A JP 30391588A JP 30391588 A JP30391588 A JP 30391588A JP H02151045 A JPH02151045 A JP H02151045A
Authority
JP
Japan
Prior art keywords
electronic component
substrate
connection
resin layer
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30391588A
Other languages
Japanese (ja)
Inventor
Kunihiko Watanabe
邦彦 渡邊
Masaru Sakaguchi
勝 坂口
Mitsuo Nakatani
中谷 光雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP30391588A priority Critical patent/JPH02151045A/en
Publication of JPH02151045A publication Critical patent/JPH02151045A/en
Pending legal-status Critical Current

Links

Landscapes

  • Wire Bonding (AREA)

Abstract

PURPOSE:To contrive the improvement of the reliability of a connection to a high-density packaging by a method wherein parts having a conductivity and parts having insulation properties are formed simply and selectively in a resin layer to be used for the connection. CONSTITUTION:A resin layer 5 having hardenability to both of light and heat is applied on a substrate 1 and light 7 is directed on this substrate 1 from the rear of the substrate 1. Regions 6, which are irradiated with the light and are hardened, and regions 5, which become selectively unhardened regions as the light is unirradiated, are generated in the resin layer and a metal constituting electrodes 2 discharges the role of a photomask to the resin layer. Then, conductive particles 8 are adhered on the upper parts of the regions 5 on the upper parts of the electrodes 2 and leads 3 on a carrier 4 are aligned and are pressure-welded from the upper part of the carrier 4 to perform the electrical connection between the leads 3 and the electrodes 2. After that, a heating is performed to harden completely the resin layer 5 at the unhardened regions and a connection of an electronic component is completed. Thereby, a highly reliable connection is made possible even in a high-density packaging.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、電子部品の接続構造体および電子部品の接続
形成方法に係り、特に接続部が導電性粒子で電気的に接
続されると共に絶縁性樹脂で接着固定した構造に好適な
接続構造体および接続形成方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a connection structure for electronic components and a method for forming connections for electronic components, and in particular, the present invention relates to a connection structure for electronic components and a method for forming connections for electronic components, and in particular, the connection portions are electrically connected with conductive particles and are insulated. The present invention relates to a connection structure and a connection formation method suitable for a structure adhesively fixed with a synthetic resin.

〔従来の技術〕[Conventional technology]

近年、電子部品の高密度化に伴い高密度実装において、
高信頼性のある電気的接続が各種電子部品の接続に必要
とされている。例えば、最近開発のさかんな液晶表示素
子、プラズマ表示素子などの平面表示素子においては、
各々の画素に対して駆動用ICを必要とするため、画素
数の増加や高精細化にともなうニーズが高まっている。
In recent years, with the increasing density of electronic components, high-density mounting
Highly reliable electrical connections are required to connect various electronic components. For example, in recently developed flat display devices such as liquid crystal display devices and plasma display devices,
Since a driving IC is required for each pixel, needs are increasing as the number of pixels increases and the resolution becomes higher.

この平面表示基板上の電極と外部能動用回路との電気的
接続において、最近では熱溶融型接着テープ内に金屑粒
子を分散した導電異方性接着剤を用いた電気的接続方法
が主流となっている。この方法は作業が簡便で低コスト
という面では有効だが、高密度化に対する電極間絶縁や
位置ずれに対する信頼性の点で配慮が不十分であった。
Recently, the mainstream electrical connection method for electrically connecting the electrodes on the flat display substrate to external active circuits is to use a conductive anisotropic adhesive in which gold particles are dispersed in a heat-melting adhesive tape. It has become. Although this method is effective in terms of ease of operation and low cost, insufficient consideration has been given to the reliability of inter-electrode insulation and misalignment due to high density.

この問題を解決する手段として、例えば特開昭62−1
54746号に記載されているように、導電性粒子を混
入させた熱溶融型樹脂導電部と、何も混入しない熱溶融
型樹脂のみの絶縁部とを2度に分けて形成する方法が提
案されている。この方法ではまず熱溶融型のペースト中
に導電性粒子を混入したものを電極上にのみ印刷し、こ
れを乾燥させた後、接続部に熱溶融型の絶縁性接着剤を
被着し、電子部品あるいはリードを重ねて加熱圧着する
ものである。
As a means to solve this problem, for example, Japanese Patent Laid-Open No. 62-1
As described in No. 54746, a method has been proposed in which a conductive part of a hot-melt resin mixed with conductive particles and an insulating part of only a hot-melt resin mixed with nothing are formed in two steps. ing. In this method, a hot-melt paste mixed with conductive particles is printed only on the electrodes, and after drying, a hot-melt insulating adhesive is applied to the connection area, and the Parts or leads are overlapped and bonded under heat and pressure.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術のように、電極上に熱溶融型導電ペースト
を印刷により形成し、その後導電ペースト上を含む面全
体を樹脂で被着させる接続技術は、導電異方性接着剤を
用いた接続方法よりも信頼性が高く有効である。しかし
ながら、接続端子間の距離が更に短(高密度になると、
導電ペーストが加熱溶融時に流出し、隣り合う電極パタ
ーン同士がドツキングして電気的に短絡するという点に
配慮がされておらず信頼性の点で問題があった。
As in the above-mentioned conventional technology, a connection technology in which a heat-melting conductive paste is formed on an electrode by printing, and then the entire surface including the conductive paste is coated with resin is a connection method using a conductive anisotropic adhesive. more reliable and valid. However, as the distance between the connection terminals becomes shorter (higher density),
There was a problem in terms of reliability because no consideration was given to the fact that the conductive paste flows out when heated and melted, causing adjacent electrode patterns to become dotted and electrically short-circuited.

本発明の目的は、この問題を、解決することにあり、そ
の第1の目的は、高密度実装においても信頼性の高い接
続を可能とする改良された電子部品の接続構造体を、そ
して第2の目的は、電子部品の接続形成方法をそれぞれ
提供することにある。
The purpose of the present invention is to solve this problem, and the first purpose is to provide an improved connection structure for electronic components that enables highly reliable connection even in high-density packaging; The purpose of No. 2 is to provide a method for forming connections between electronic components.

〔課題を解決するための手段〕[Means to solve the problem]

上記第1の目的は、電子部品の端子と基板面の端子部と
を導電性粒子で電気的に接続すると共に絶縁性樹脂層で
接着固定させて成る電子部品の接続構造体であって、上
記絶縁樹脂層を熱もしくは放射線硬化性樹脂で構成する
と共に上記基板面の端子部を含み全面に形成し、しかも
上記導電性粒子を端子接続部にのみ選択的に形成して成
ることを特徴とする電子部品の接続構造体により、達成
される。
The first object is to provide a connection structure for an electronic component, in which a terminal of an electronic component and a terminal portion on a substrate surface are electrically connected using conductive particles and are adhesively fixed using an insulating resin layer. The insulating resin layer is made of a heat- or radiation-curable resin and is formed on the entire surface of the substrate including the terminal portions, and the conductive particles are selectively formed only on the terminal connection portions. This is achieved by a connection structure for electronic components.

そして、その代表的応用例としては、上記基板面を、そ
の主面に平面表示素子が形成され、かつその周縁に駆動
用電極群が配設された表示板で構成すると共に、前記駆
動用電極群に接続する上記電子部品を、前記表示素子を
駆動する外部駆動回路の組込まれた駆動部とその電極端
子群とを配設した部品で構成して成ることを特徴とする
電子部品の接続構造体により、達成される。
As a typical application example, the substrate surface is constituted by a display plate in which a flat display element is formed on the main surface and a drive electrode group is arranged around the periphery, and the drive electrode A connection structure for electronic components, characterized in that the electronic component connected to the group is constituted by a component in which a drive unit incorporating an external drive circuit for driving the display element and a group of electrode terminals thereof are arranged. Accomplished by the body.

また、上記第2の目的は、電子部品の端子と基板面の端
子部とを導電性粒子で電気的に接続すると共に絶縁性樹
脂層で接着固定させる電子部品の接続形成方法において
、予め電子部品を接続する電極パターンがその表面に形
成された前記基板面上に絶縁性樹脂層を塗布形成する工
程と、前記基板の電極パターン上の領域を除いて前記基
板上に塗布形成された絶縁性樹脂層を選択的に硬化する
工程と、次いで前記基板上に導電性粒子を散布して前記
電極パターン上の未硬化#@縁性樹脂層上にのみ選択的
にこの導電性粒子を被着させる工程と、次いで前記基板
の電極パターン上に電子部品の接続リードの位置が合う
ように相対的に位置合せして電子部品を基板上に重ね合
せ圧着下で前記未硬化樹脂層を硬化する工程とを有して
成ることを特徴とする電子部品の接続形成方法により、
達成される。
The second object is to provide a connection forming method for an electronic component in which a terminal of an electronic component and a terminal portion on a substrate surface are electrically connected using conductive particles and are adhesively fixed using an insulating resin layer. a step of coating and forming an insulating resin layer on the surface of the substrate on which an electrode pattern connecting the electrodes is formed; and a step of coating and forming an insulating resin layer on the substrate except for the area on the electrode pattern of the substrate. a step of selectively curing the layer, and then a step of scattering conductive particles on the substrate to selectively deposit the conductive particles only on the uncured #@marginal resin layer on the electrode pattern. and then, a step of relatively aligning the electronic component so that the connection lead of the electronic component is aligned with the electrode pattern of the substrate, overlapping the electronic component on the substrate, and curing the uncured resin layer under pressure bonding. By a method for forming a connection for an electronic component, the method comprises:
achieved.

上記絶縁性樹脂としては、周知の熱もしくは光を含む放
射線にて硬化する熱硬化型もしくは放射線硬化型樹脂を
用いることができる。また、選択的硬化の方法としては
、熱線もしくは放射線を遮断するマスクパターンを用い
て露熱もしくは露光することにより所定の電極パターン
に応じた未硬化部分を残して選択的に硬化させることが
できる。
As the insulating resin, a known thermosetting or radiation curing resin that is cured by heat or radiation including light can be used. Further, as a method of selective curing, by exposing to heat or light using a mask pattern that blocks heat rays or radiation, selective curing can be performed while leaving an uncured portion corresponding to a predetermined electrode pattern.

上記電極パターンの形成された基板が、例えばガラスや
透光性セラミックスのごとく、光透過性の絶縁材で、し
かも電極パターンが不透過性の導体で構成されていれば
、この電極パターンをマスクに兼用し、その背面から露
光することにより。
If the substrate on which the electrode pattern is formed is made of a light-transmitting insulating material, such as glass or transparent ceramic, and the electrode pattern is made of an opaque conductor, this electrode pattern can be used as a mask. By combining and exposing from its back.

特別のマスクを用いることなく自己整合的に所定の選択
的硬化を実現することができる。ただし、電極パターン
が、例えば酸化スズや酸化インジウムのごとき透明導電
層から成る場合には、当然のことながら専用のマスクが
必要となる。
Predetermined selective curing can be achieved in a self-aligned manner without using a special mask. However, if the electrode pattern is made of a transparent conductive layer such as tin oxide or indium oxide, a special mask is naturally required.

さらにまた、例えばLSIのボンディングのように微細
な電極パターン同士の接続においては、高精度の選択硬
化技術が要求され、マスクパターン形状に忠実な未硬化
領域を実現する必要がある。
Furthermore, in connection between fine electrode patterns, such as in LSI bonding, a highly accurate selective curing technique is required, and it is necessary to realize an uncured area that is faithful to the shape of the mask pattern.

そのために、好ましくは、この樹脂中にあらかじめ絶縁
性の熱もしくは光吸収剤(例えば染料や顔料でもよい)
を溶解もしくは分散せしめておき、基板や電極パターン
等からの反射を防止することが有効である。これにより
、電極パターン上の樹脂中に光が回り込み未硬化領域が
縮少化するのを防止することができ、信頼性の高い接続
を可能とする。
For this purpose, preferably an insulating heat or light absorbing agent (for example a dye or a pigment) is preliminarily added to the resin.
It is effective to dissolve or disperse the liquid to prevent reflection from the substrate, electrode pattern, etc. This can prevent light from going around into the resin on the electrode pattern and shrinking the uncured area, making it possible to achieve highly reliable connections.

上記樹脂の未硬化領域に導電性粒子を被着させる方法と
しては、導電性粒子微粉を例えばダスティング等の方法
で散布すればよい、また、散布するタイミングとしては
未硬化領域表面が、ある程度の粘着性を保持している期
間内に行うのが好ましい。
As a method for depositing conductive particles on the uncured area of the resin, conductive particle fine powder may be sprinkled by a method such as dusting. It is preferable to carry out the process while the adhesiveness is maintained.

導電性粒子としては、良導電性の粉末であればいずれの
ものでもよく、金属粉、もしくは酸化スズ、酸化インジ
ウムのごとき導電性酸化物粉末でもよく、その他、例え
ば樹脂ボールなどの絶縁物の表面を導電性物質でコート
した、いわゆるマイクロカプセルを用いることもできる
The conductive particles may be any powder with good conductivity, metal powder or conductive oxide powder such as tin oxide or indium oxide, and other materials such as the surface of an insulating material such as a resin ball. So-called microcapsules coated with a conductive substance can also be used.

なお、上記絶縁性樹脂の塗布においては、均一な膜厚の
得られる塗布方法であればいずれの周知の塗布方法でも
よいが、スピンコーティング等が好ましい。また、樹脂
塗膜の厚さについては、少なくとも基板面に形成された
電極高さ相当分は必要であり、好ましくは、電極上の厚
みがほぼ導電性粒子の平均粒径相当分になるように形成
することである。その理由は、選択的硬化により実現さ
れた電極上の未硬化領域は導電性粒子を保持し、かつそ
の後の圧着下での樹脂硬化工程で1両接続電極部間を接
着固定する働きをするからである。
Note that in applying the insulating resin, any known application method may be used as long as it provides a uniform film thickness, but spin coating or the like is preferred. The thickness of the resin coating must be at least equivalent to the height of the electrode formed on the substrate surface, and preferably, the thickness on the electrode should be approximately equivalent to the average particle diameter of the conductive particles. It is to form. The reason for this is that the uncured areas on the electrodes achieved through selective curing hold the conductive particles, and in the subsequent resin curing process under pressure bonding, serve to bond and fix the two connecting electrode parts. It is.

つまり、面接続電極部間を接着固定するに足る量の未硬
化樹脂があればよい。
In other words, it is sufficient to have a sufficient amount of uncured resin to adhesively fix the surface-connected electrode parts.

この未硬化領域の樹脂に導電性粒子が散布され、接続す
べき両端子同士の位置合せが行われ、しかも加圧、圧着
下で未硬化樹脂を硬化させ接着固定することにより端子
接続を完了させる訳であるが、樹脂硬化手段としては、
選択的硬化工程と同一の硬化法が用いられる。とりわけ
加熱による場合。
Conductive particles are sprinkled on the resin in this uncured area, and the two terminals to be connected are aligned, and the uncured resin is cured under pressure and crimping to complete the terminal connection. However, as a resin curing method,
The same curing method as the selective curing process is used. Especially when heated.

導電粒子を金属粒子にしたため加熱時に粒子が酸化され
、それにより電気抵抗が増大すると見込まれる際゛には
、この未硬化樹脂の硬化工程の雰囲気を例えば窒素ガス
等の非酸化ガス雰囲気として処理することが望ましい。
If the electrically conductive particles are metal particles and are expected to be oxidized during heating and thereby increase the electrical resistance, the atmosphere in the curing process of the uncured resin should be treated as a non-oxidizing gas atmosphere such as nitrogen gas. This is desirable.

しかし、導電性粒子が上述の酸化スズや酸化インジウム
のごとき酸化物から成る場合には、この様な配慮は必要
なく、通常の空気中処理で十分である。
However, when the conductive particles are made of an oxide such as the above-mentioned tin oxide or indium oxide, such consideration is not necessary and normal treatment in air is sufficient.

〔作   用〕[For production]

導電粒子を選択的に電極上部の樹脂のみに混入させるに
は1選択的に電極上部以外の樹脂を硬化させ、電極上部
の樹脂にのみ未硬化の状態で導電性粒子を混入する。
In order to selectively mix the conductive particles only into the resin above the electrode, one method is to selectively harden the resin other than the resin above the electrode, and then mix the conductive particles only into the resin above the electrode in an uncured state.

このための樹脂として、熱硬化性樹脂あるいは光を含む
放射線もしくは放射線と熱の両者に対し硬化性のある樹
脂を用いる。熱硬化性樹脂を用いた場合の選択的硬化は
赤外線などの熱スポットを用いて行なう、また後者の樹
脂を用いた場合は紫外線などの光、その他X線、電子線
などの放射線スポットまたはフォトマスク等を用いて硬
化を行う、特に液晶デイスプレィなどのように、素子が
ガラス基板上に形成され、かつ電極が金属などの光不透
過性材料で構成されている表示素子の場合は、フォトマ
スク等を用いる必要はなく、裏面より紫外線を照射する
ことによって電極間の樹脂のみに光が照射され簡単に選
択硬化が実現できる。
As the resin for this purpose, a thermosetting resin or a resin that is curable against radiation including light or both radiation and heat is used. When using a thermosetting resin, selective curing is performed using a heat spot such as infrared rays, and when the latter resin is used, light such as ultraviolet rays, other radiation spots such as X-rays and electron beams, or a photomask is used. Especially in the case of a display element such as a liquid crystal display where the element is formed on a glass substrate and the electrodes are made of a light-opaque material such as metal, a photomask etc. By irradiating ultraviolet rays from the back side, only the resin between the electrodes is irradiated with light, and selective curing can be easily achieved.

この場合、電極の形状そのものがマスクとなるため、微
小な位置合わせなどを必要とせずに自己整合的に誤りな
く硬化が可能となる。
In this case, since the shape of the electrode itself serves as a mask, curing can be performed in a self-aligned manner without error, without requiring minute alignment.

その後、電極上の未硬化樹脂に導電性粒子を混入させ、
電子部品またはリード等の端子を圧接し樹脂全体を硬化
させる。この未硬化樹脂の硬化は接続部にリードや電極
等の端子があり、いずれも光等の放射線の照射が不能あ
るいは不十分な場合には、熱で硬化させるのが好ましい
。これにより樹脂のすべての部分が硬化し接続が完了す
る。
After that, conductive particles are mixed into the uncured resin on the electrode,
Electronic components or terminals such as leads are pressed together and the entire resin is cured. For curing of this uncured resin, if there are terminals such as leads or electrodes in the connecting portion, and it is impossible or insufficient to irradiate them with radiation such as light, it is preferable to cure the uncured resin with heat. This will cure all parts of the resin and complete the connection.

本発明において、端子間の電気的接続は導電性粒子が担
い、樹脂の接着固定により端子間は固定される。そして
、この端子間の接続固定に際しては、導電性粒子が電極
上の未硬化樹脂にのみ選択的に混入されているため、電
極間ピッチが短くなっても、その後の硬化処理において
、従来のように相互に流出して隣接する電極間で短絡す
るという恐れは極めて少ない。その理由は、本発明で使
用する樹脂が従来のように熱溶融型でなく、熱硬化性も
しくは放射線硬化性のものであるからである。つまり、
従来の接続は硬化している樹脂(導電性粒子を混入した
)を接合時に加圧しながら加熱により溶融させて行うも
のであるのに対し、本発明においては全く逆で、lll
!I接する電極間は選択硬化で既に硬化し絶縁状態がよ
く実現されており、電極上の未硬化樹脂を、加熱により
硬化する(溶融するのではない)ものであるからである
In the present invention, the electrical connection between the terminals is carried out by conductive particles, and the terminals are fixed by adhesion and fixation of resin. When fixing the connection between these terminals, conductive particles are selectively mixed only into the uncured resin on the electrodes, so even if the pitch between the electrodes is shortened, the subsequent curing process will not be as easy as before. There is very little risk that the electrodes will leak into each other and cause a short circuit between adjacent electrodes. The reason for this is that the resin used in the present invention is not a heat-melting type as in the past, but a thermosetting or radiation-curing resin. In other words,
While conventional connections are made by heating and melting a hardened resin (containing conductive particles) while applying pressure during bonding, the present invention does the exact opposite.
! This is because the areas between the electrodes that are in contact with each other have already been selectively cured and a well-insulated state has been achieved, and the uncured resin on the electrodes is cured (not melted) by heating.

〔実施例〕〔Example〕

以下、本発明の実施例を第1図〜第4図により説明する
Embodiments of the present invention will be described below with reference to FIGS. 1 to 4.

実施例 1 第1図(a)〜(f)は本発明の電気的接続方法の工程
図を示したものである。
Example 1 FIGS. 1(a) to 1(f) show process diagrams of the electrical connection method of the present invention.

第1図(a)は接続前の電極を有する基板とリード群と
を対向させた断面図を示す。基板1として1.1mm厚
さのガラス基板を用いた。この上にクロムを直流スパッ
タリング法で約1100n成膜した後、フォトリソグラ
フおよびエツチング工程を経て約150pピツチで電極
パターン2を形成する。
FIG. 1(a) shows a cross-sectional view of a substrate having electrodes and a group of leads facing each other before connection. As the substrate 1, a glass substrate with a thickness of 1.1 mm was used. After forming a film of about 1100 nm of chromium thereon by direct current sputtering, electrode patterns 2 are formed at a pitch of about 150 p through photolithography and etching steps.

電極2の材料としてはこの他アルミニウム、銅などの周
知の導電性金属が用いられ、成膜法もめっき法などでも
良い。
Other well-known conductive metals such as aluminum and copper may be used as the material for the electrode 2, and the film formation method may also be a plating method.

リード群としては約125−厚さのポリイミド製のテー
プキャリア4の上に約35−厚の銅箔層を接着し、その
表面をさらに約5tImsめっきし、上記電極2と同様
にフォトリソグラフおよびエツチング工程を経て基板側
電極2と同一ピッチでリード3を形成したものを用いた
As a lead group, a copper foil layer of approximately 35 mm thick is adhered onto a polyimide tape carrier 4 of approximately 125 mm thick, and its surface is further plated for approximately 5 tIms, and photolithography and etching are performed in the same manner as the electrode 2 above. The leads 3 were formed at the same pitch as the substrate-side electrodes 2 through a process.

第1図(b)はこの基板上に光および熱の両者に対して
硬化性を有する樹脂5を塗布した様子を示す図である。
FIG. 1(b) is a diagram showing a state in which a resin 5 having curability against both light and heat is applied onto this substrate.

樹脂としてはアクリル系のものを用いた。組成はヒドロ
キシブチルメタクリレートとジシクロペンタジェンジア
クリレートを混合したものを主剤とし、光重合開始剤と
して2−ヒドロキシ−2−メチル−1−フェニルプロパ
ン−1−オンを、熱硬化用触媒としてターシャリ−ブチ
ルパーベンゾエートを各々数%添加したものである。
Acrylic resin was used as the resin. The composition is a mixture of hydroxybutyl methacrylate and dicyclopentadiene diacrylate as the main ingredient, 2-hydroxy-2-methyl-1-phenylpropan-1-one as a photopolymerization initiator, and tertiary as a thermosetting catalyst. Several percent of butyl perbenzoate was added to each.

樹脂としてはこの他に、例えばアクリル樹脂を主剤とし
て、1、lOデカンジオールジメタクリレートと2−ヒ
ドロキシエチルメタクリレートの混合物、光重合開始剤
として、2−ヒドロキシシクロへキシルフェニルケトン
、熱硬化用触媒として、メチルエチルケトンパーオキサ
イドやクメンヒドロパーオキサイドなどが使用可能であ
る。
Other resins include, for example, an acrylic resin as a main ingredient, a mixture of 1,1O decanediol dimethacrylate and 2-hydroxyethyl methacrylate, a photopolymerization initiator, 2-hydroxycyclohexylphenyl ketone, and a thermosetting catalyst. , methyl ethyl ketone peroxide, cumene hydroperoxide, etc. can be used.

塗布法としてはスピンコード法を用い、樹脂厚さ約2−
となるように塗布した。この際厚くしすぎると、基板と
の熱膨張差のため、ヒートサイクルなどで位置ずれを生
じ、接続抵抗が増大するというような問題が生じるので
、後の工程で散布混入させる導電性粒子のことを考慮し
て、電極2の厚さと粒子の平均粒径との総和にほぼ近い
厚さまでとするのが望ましい。
The coating method uses the spin code method, and the resin thickness is approximately 2-
It was applied so that At this time, if it is made too thick, the difference in thermal expansion with the substrate will cause misalignment during heat cycles, leading to problems such as increased connection resistance. In consideration of this, it is desirable that the thickness be approximately close to the sum of the thickness of the electrode 2 and the average particle size of the particles.

その後この基板1に裏面より光7を照射する。Thereafter, light 7 is irradiated onto this substrate 1 from the back side.

光としては高圧水銀ランプを光源とし、365nmの波
長をもつ紫外光を用いた。照射エネルギーは約2On+
J/aiTで行なった。これにより第1図(C)に示し
たように樹脂には光を照射されて硬化した領域6と光が
未照射のために選択的に未硬化となった領域5が生じる
。つまり、裏面より光を照射する事で電極2を構成して
いる金属が樹脂に対してフォトマスクの役割を果たし、
電極2の上部の樹脂のみが選択的に未硬化領域となる。
A high-pressure mercury lamp was used as the light source, and ultraviolet light having a wavelength of 365 nm was used. Irradiation energy is approximately 2On+
It was held at J/aiT. As a result, as shown in FIG. 1(C), the resin has a region 6 that is irradiated with light and hardened, and a region 5 that is selectively uncured because it is not irradiated with light. In other words, by irradiating light from the back side, the metal forming the electrode 2 acts as a photomask against the resin.
Only the resin above the electrode 2 selectively becomes an uncured region.

第1図(d)は電極2上部の未硬化領域5の上部のみに
導電粒子8を付着させた様子を示す図である。
FIG. 1(d) is a diagram showing a state in which conductive particles 8 are attached only to the upper part of the uncured region 5 above the electrode 2.

つまり第1図(c)のように選択硬化が完了した樹脂の
上に導電性粒子8を散布する。導電性粒子8としてこの
例では平均直径が約2ImのNi粒子を用いた。この場
合従来の方法では導電粒子の直径は樹脂厚さと同程度あ
るいはそれ以上必要であったが、本実施例の場合、接続
部に電極間絶縁を気にせずに導電粒子を選択的に混入で
きるので。
That is, as shown in FIG. 1(c), conductive particles 8 are sprinkled on the resin that has been selectively cured. In this example, Ni particles having an average diameter of about 2 Im were used as the conductive particles 8. In this case, in the conventional method, the diameter of the conductive particles was required to be the same as or larger than the resin thickness, but in the case of this example, conductive particles can be selectively mixed into the connection part without worrying about the insulation between the electrodes. So.

密度さえ十分であれば導電性粒子の直径は小さくても良
い、付着が不十分な場合はこの段階でやや加圧し、十分
な付着が得られるようにする。そして硬化領域6上に散
布された導電粒子は窒素ブローあるいは横にして振動さ
せるなどの方法で除去した。
The diameter of the conductive particles may be small as long as the density is sufficient. If adhesion is insufficient, apply a little pressure at this stage to obtain sufficient adhesion. The conductive particles sprinkled on the hardened area 6 were removed by blowing with nitrogen or by vibrating it horizontally.

第1図(e)及び第1図(f)は、それぞれ。FIG. 1(e) and FIG. 1(f) respectively.

リード3と電極2との位置合せ及び両者を加圧下で接着
硬化させた状態を示した図である。つまり。
FIG. 3 is a diagram showing the alignment of the lead 3 and the electrode 2 and the state in which both are adhesively hardened under pressure. In other words.

第1図(d)のようにして、導電性粒子8を選択的に配
置したものの上に、テープキャリア4上のリード3を位
置合わせし、上部より圧着してり一ド3と電極2の電気
的接続を行なう、その後加圧状態のまま全体を150℃
で約60分加熱し未硬化領域の樹脂5を完全に硬化させ
接続が完了する。なお、硬化時における圧力は1リード
当り約20gfとした。
As shown in FIG. 1(d), the leads 3 on the tape carrier 4 are aligned over the selectively arranged conductive particles 8, and the leads 3 and electrodes 2 are crimped from above. Make electrical connections, then heat the whole body to 150℃ while keeping it under pressure.
The resin 5 in the uncured area is completely cured by heating for about 60 minutes, and the connection is completed. Note that the pressure during curing was approximately 20 gf per lead.

実施例 2 第2の実施例は、導電性粒子として約1−直径の酸化ア
ンチモンがドープされた酸化錫粒子を使用した場合のも
のであり、工程は実施例1と同様である。この場合は接
続後、100℃、100時間の空気中での熱処理に対し
ても導電性粒子の表面酸化に起因する接続抵抗の劣化は
認められず、安定な信頼性の高い接続が実現された6 実施例 3 第3の実施例は、基板1としてガラスエポキシ、ベーク
ライト基板のような光を透過しない材料を用いた場合で
ある。これを第2図の工程に従って説明する。この場合
は基板が光を透過しないことから裏面から光7を照射す
る事が出来ない。
Example 2 The second example uses antimony oxide-doped tin oxide particles of approximately 1-diameter diameter as the conductive particles, and the steps are the same as in Example 1. In this case, no deterioration in connection resistance due to surface oxidation of the conductive particles was observed even after heat treatment in air at 100°C for 100 hours after connection, and a stable and highly reliable connection was achieved. 6 Example 3 The third example is a case where a material that does not transmit light, such as glass epoxy or a Bakelite substrate, is used as the substrate 1. This will be explained according to the steps shown in FIG. In this case, since the substrate does not transmit light, the light 7 cannot be irradiated from the back surface.

第2図(、)は実施例1と同様に基板1の上の電極2を
おおうように光および熱の両者に対して硬化性を有する
樹脂5を塗布した様子を示す。基板としては約21m厚
のベークライト板を用い、銅を約10.めっきしてリソ
グラフィによりパターン形成したものを電極2とした。
FIG. 2(,) shows a state in which a resin 5 that is hardenable to both light and heat is applied so as to cover the electrode 2 on the substrate 1, as in Example 1. A Bakelite plate with a thickness of about 21 m was used as the substrate, and copper was coated with a thickness of about 10 m. Electrode 2 was formed by plating and patterning by lithography.

第2図(b)はフォトマスク9を用いて樹脂5を選択的
に硬化させる方法を示す図である。フォトマスクとして
は電極2の形成時に用いたクロムのメタルマスク9′が
そのまま使用可能である。
FIG. 2(b) is a diagram showing a method of selectively curing the resin 5 using a photomask 9. As the photomask, the chromium metal mask 9' used when forming the electrode 2 can be used as is.

硬化条件は実施例1と同様とした。このようにフォトマ
スクを用いる事で、基板が光不透過な材料の場合でも第
2図(c)に示すように樹脂の選択硬化が可能となる6
以下の電極2とリード3の接続は実施例1と同様である
ので省略する。
The curing conditions were the same as in Example 1. By using a photomask in this way, even if the substrate is made of a material that does not transmit light, selective curing of the resin is possible as shown in Figure 2(c)6.
The following connection between the electrode 2 and the lead 3 is the same as in Example 1, and will therefore be omitted.

実施例 4 第4の実施例は、何らかの事情で光による硬化が使用不
能、または電極の凹凸が大きくフォトマスクが使用不能
などの場合の例を示すもので、実施例3と同様の基板を
用いて行なった。以下、第3図の工程図を用いて具体的
に説明する。
Example 4 The fourth example shows an example in which curing by light cannot be used for some reason, or the electrode is too uneven to use a photomask, and the same substrate as in Example 3 is used. I did it. Hereinafter, a detailed explanation will be given using the process diagram of FIG. 3.

第3図(a)のように樹脂5を塗布する。樹脂5として
熱硬化性のエポキシ樹脂を用いた。そ−して図示してい
ないレーザ光源からの赤外線ビームlOを用いて、樹脂
の選択硬化を第3図(b)のように直接描画で行なった
。また光による硬化が使用可能な場合は、紫外線ビーム
を用いた方法で樹脂の選択的硬化を光による直接描画で
行なう事もできる。この様にして第3図(c)に示した
ように選択的未硬化領域5を形成することができた。
The resin 5 is applied as shown in FIG. 3(a). A thermosetting epoxy resin was used as the resin 5. The resin was then selectively cured by direct writing using an infrared beam 10 from a laser light source (not shown) as shown in FIG. 3(b). In addition, if curing by light is available, selective curing of the resin can also be performed by direct writing with light using a method using an ultraviolet beam. In this way, selective uncured regions 5 could be formed as shown in FIG. 3(c).

以下の電極2とリード3の接続は実施例1と同様である
ので省略する。
The following connection between the electrode 2 and the lead 3 is the same as in Example 1, and will therefore be omitted.

実施例 5 第2図に工程図を示した上記実施例3の樹脂層5の中に
、あらかじめ光吸収剤としてアゾ系染料を溶解しておき
、その他の処理は実施例3と同様に施し高圧水銀ランプ
を光源として365nmの波長の紫外線で樹脂の選択硬
化を行った。その結果。
Example 5 An azo dye was dissolved in advance as a light absorber in the resin layer 5 of Example 3 whose process diagram is shown in FIG. 2, and other treatments were carried out in the same manner as in Example 3. The resin was selectively cured with ultraviolet light having a wavelength of 365 nm using a mercury lamp as a light source. the result.

マスクパターン(電極パターンに一致)に忠実な未硬化
領域5を残した選択的硬化領域6を形成することができ
た。この光吸収剤の効果は、電極パターンが微細なほど
有効であり基板や電極パターンのエツジからの反射によ
る電極パターン上の樹脂への光の回り込みを防止するこ
とができた。なお、この種の光吸収剤としては、キノリ
ン系、アミノケトン系、アントラキノン系などの染料も
有効であった。
It was possible to form selectively cured regions 6 that left uncured regions 5 faithful to the mask pattern (corresponding to the electrode pattern). The effect of this light absorbing agent was more effective as the electrode pattern became finer, and it was possible to prevent light from going around to the resin on the electrode pattern due to reflection from the edges of the substrate and the electrode pattern. Note that quinoline-based, aminoketone-based, and anthraquinone-based dyes were also effective as this type of light absorber.

実施例 6 第5図は、液晶表示素子に本発明の電子部品の接続形成
技術を適応した例を示したものである。
Embodiment 6 FIG. 5 shows an example in which the electronic component connection formation technology of the present invention is applied to a liquid crystal display element.

第5図(a)は一部破断面を有する外観を示す平面図で
ある0周知のように、液晶表示素子は平面表示素子の一
つで、縦横の信号線により該当部分の液晶を駆動し、任
意の図形、文字等を表示するものである。液晶の駆動方
式は、配線の交差部の充放電のみを利用する単純マトリ
クス方式と、交差部にスイッチング素子を形成したアク
ティブマトリクス方式があり、以下は後者の例を示す。
FIG. 5(a) is a plan view showing the external appearance with a partially broken surface.0 As is well known, a liquid crystal display element is a type of flat display element, and the liquid crystal in the corresponding part is driven by vertical and horizontal signal lines. , to display arbitrary figures, characters, etc. There are two types of liquid crystal driving methods: a simple matrix method that uses only the charging and discharging at the intersections of wiring, and an active matrix method that uses switching elements at the intersections.An example of the latter is shown below.

スイッチング素子として、薄膜トランジスタ11をマト
リクス状に形成した基板1と、上板12との間に液晶が
封入されている。薄膜トランジスタ11を駆動するため
の走査線13.信号NjA14は基板1の3方向に引き
出されている。この3方向をとり囲むようにプリント基
板15が固定されている。基板1とプリント基板15に
またがって駆動用LS116をマウントしたフィルムキ
ャリア4が配置され、リードは基板1、プリント基板1
5上の電極に各々接続されている。
As a switching element, a liquid crystal is sealed between a substrate 1 on which thin film transistors 11 are formed in a matrix, and an upper plate 12. A scanning line 13 for driving the thin film transistor 11. The signal NjA14 is extracted in three directions of the substrate 1. A printed circuit board 15 is fixed so as to surround these three directions. A film carrier 4 on which a driving LS 116 is mounted is placed across the substrate 1 and the printed circuit board 15, and the leads are connected to the substrate 1 and the printed circuit board 1.
5, respectively.

第5図(b)は薄膜トランジスタマトリクスの要部拡大
図を示す、薄膜トランジスタllは走査線I3、信号4
9!14によって電極に接続されている。電極は下より
クロム200nn+、透明導電膜(ITO)100r+
+wの構成である。また、電極ピッチは最少150−で
ある。
FIG. 5(b) shows an enlarged view of the main part of the thin film transistor matrix.
9!14 to the electrodes. The electrodes are chromium 200nn+ and transparent conductive film (ITO) 100r+ from the bottom.
+w configuration. Further, the electrode pitch is at least 150-.

第5図(c)は、第5図(a)の接続部へ−A′断面拡
大図を示す。薄膜トランジスタ11と接続している電極
2を有する基板1と上板12の間に液晶17が封入され
ていて、すき間はシール剤I8でシールされている。一
方、プリント基板15に接続されたフィルムキャリア4
上には駆動用LS116がマウン険されている。このフ
ィルムキャリア4上のり−ド3と電極2との接続を本発
明の電気的接続形成法で行なう、電極2上に実施例1と
同様の光、熱硬化性樹脂を約2−厚に塗布する。その後
に背面より365na+の紫外光を照射し、端子部以外
の樹脂を選択硬化した後、導電性粒子8として直径約2
−の金めっきしたスチレンボールを散布した。この他に
も同じ構造のマイクロカプセルも使用可能である0次に
基板をさかさにして軽くたたく、エアブロ−1八ケによ
り落とすなどの方法により余分な導電性粒子を除去した
FIG. 5(c) shows an enlarged cross-sectional view taken along line A' to the connecting portion in FIG. 5(a). A liquid crystal 17 is sealed between a substrate 1 having an electrode 2 connected to a thin film transistor 11 and an upper plate 12, and the gap is sealed with a sealant I8. On the other hand, the film carrier 4 connected to the printed circuit board 15
The driving LS116 is mounted on top. The connection between the board 3 on the film carrier 4 and the electrode 2 is made by the electrical connection forming method of the present invention.A photothermosetting resin similar to that in Example 1 is coated on the electrode 2 to a thickness of about 2 mm. do. After that, 365 Na+ ultraviolet light is irradiated from the back side to selectively harden the resin other than the terminal part, and then conductive particles 8 with a diameter of about 2
- gold-plated styrene balls were sprinkled. In addition, microcapsules having the same structure can also be used. Excess conductive particles were removed by a method such as turning the zero-order substrate upside down and tapping it lightly, or removing it with an air blower.

そしてフィルムキャリア4のリード3と、電極2との位
置合せを行い、圧着したまま100’cで60分硬化し
た。さらに接続部の機械的強度の増加、接続部の耐腐蝕
性の増加の目的で、接続部全体をシリコーン樹脂19で
コーティングした。
Then, the leads 3 of the film carrier 4 and the electrodes 2 were aligned and cured at 100'C for 60 minutes while being pressed together. Furthermore, the entire joint was coated with silicone resin 19 for the purpose of increasing the mechanical strength of the joint and corrosion resistance of the joint.

なお1本発明の電子部品の接続形成法は、この他にフィ
ルムキャリア4上のり−ド3とプリント基板15上の電
極との接続、あるいは駆動用LS116とのマウント部
20にも使用できる。
In addition, the method for forming connections for electronic components according to the present invention can also be used for connecting the board 3 on the film carrier 4 and the electrodes on the printed circuit board 15, or for connecting the mount 20 with the driving LS 116.

[発明の効果〕 本発明によれば、接続に用いる樹脂層に簡単に導電性を
有する部分と絶縁性を有する部分とを選択的に容易に形
成できる。この形成は樹脂を塗布した後に電極ピッチに
合わせて行なうことができるので、あらゆる電極形状ま
たは電極ピッチにも対応が可能であり、作業性の点で効
果がある。
[Effects of the Invention] According to the present invention, a conductive portion and an insulating portion can be selectively and easily formed in a resin layer used for connection. This formation can be performed after applying the resin to match the electrode pitch, so it can be applied to any electrode shape or electrode pitch, and is effective in terms of workability.

また本発明は、従来の導電異方性接着剤などのように樹
脂中に均一に導電性粒子が混入されている場合と比較し
て、電極上部では導電性粒子の密度が高く、電極間には
導電粒子はほとんど介入しないという密度分布が形成さ
れるため、電極上の導電率は増大し、電極間の絶縁抵抗
も増大する。
Furthermore, compared to conventional conductive anisotropic adhesives in which conductive particles are uniformly mixed into the resin, the present invention has a higher density of conductive particles at the top of the electrodes, and Since a density distribution is formed in which conductive particles hardly intervene, the conductivity on the electrodes increases and the insulation resistance between the electrodes also increases.

よって高密度実装に対する接続信頼性の向上という点で
効果がある。
Therefore, it is effective in improving connection reliability for high-density packaging.

さらに熱溶融型導電ペーストとII!!縁性樹脂性樹脂
にわたって塗布する従来方法と比較しても、本発明では
、熱硬化性樹脂もしくは放射線硬化性樹脂を使用してい
ることから、圧着下での導電性粒子の固定が電極上で正
確に行うことができ、従来の熱溶融型樹脂のように接続
時において溶融樹脂の流出に伴う隣接する電極間の短絡
事故発生の可能性は極めて少ない。それ故、高密度実装
における端子間接続において高い信頼性を実現すること
ができる。
Furthermore, heat-melting conductive paste and II! ! Compared to the conventional method in which the conductive particles are applied over the edge resin, since the present invention uses a thermosetting resin or radiation-curable resin, the conductive particles can be fixed on the electrode under pressure bonding. This can be done accurately, and unlike conventional heat-melting resins, there is an extremely low possibility of short-circuiting between adjacent electrodes due to outflow of molten resin during connection. Therefore, high reliability can be achieved in connection between terminals in high-density packaging.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(f)は本発明の一実施例である電子部
品の接続工程を示す断面図、第2図(a)〜(c)は同
じく本発明の異なる実施例の工程を示す断面図、第3図
(a)〜(c)は、本発明のさらに異なる実施例の工程
を示す断面図、第4図(a)は液晶表示素子に本発明を
適用した一部破断外観平面図、第4図(b)は液晶表示
素子に組込まれた薄膜トランジスタマトリックスの要部
拡大図、そして第4図(c)は第4図(a)のA−A′
線断面図である。 1・・・基板       2・・・電極3・・・リー
ド      4・・・フィルムキャリア5・・・樹脂
(未硬化領域)6・・・樹脂(既硬化領域)7・・・光
        8・・・導電性粒子9・・・フォトマ
スク   10・・・赤外線ビーム11・・・薄膜トラ
ンジスタ 12・・・上板13・・・走査線     
 14・・・信号線15・・・プリント基板   16
・・・駆動用LS117・・・液晶       18
・・・シール剤19・・・シリコーン樹脂  20・・
・マウント部第1 図 1−一一一基版 2−一一一電極 3−一一−リード′ 4−−−−フィルムキャリア 5−−−−、オ途4′パー(末石更イと、)6−−−−
右はRb(ししTi1更記)8−−一一導喝1小支粒子 ↓ 番 番 ↓ 番 番〜7 一−−−基級 2−−−一電極 5−一−−mfl (東硬4乙) 6−−−オ棄すR旨(既す更Iヒ) 7−−−−光 9−一−−7オトマスク (α) 第4 図 第3 赤外線σ−ム 第4
FIGS. 1(a) to (f) are cross-sectional views showing the process of connecting electronic components according to an embodiment of the present invention, and FIGS. 2(a) to (c) are sectional views showing the process of connecting electronic components according to another embodiment of the present invention. 3(a) to 3(c) are sectional views showing steps of further different embodiments of the present invention, and FIG. 4(a) is a partially broken external appearance of a liquid crystal display device to which the present invention is applied. A plan view, FIG. 4(b) is an enlarged view of the main part of the thin film transistor matrix incorporated in the liquid crystal display element, and FIG. 4(c) is an A-A' in FIG. 4(a).
FIG. 1... Substrate 2... Electrode 3... Lead 4... Film carrier 5... Resin (uncured area) 6... Resin (cured area) 7... Light 8... Conductive particles 9...Photomask 10...Infrared beam 11...Thin film transistor 12...Top plate 13...Scanning line
14...Signal line 15...Printed circuit board 16
...Drive LS117...Liquid crystal 18
...Sealant 19...Silicone resin 20...
・Mount part 1 Figure 1-111 base plate 2-111 electrode 3-11-lead' 4-----film carrier 5----, )6------
On the right is Rb (Added Ti1) 8--11 lead 1 small particle ↓ No. ↓ No. 7 1--Basic 2--1 electrode 5-1--mfl (Tokyo 4 Otsu) 6----O abandonment R (already rejected) 7----Light 9-1--7 Otomask (α) Fig. 4 Infrared σ-m No. 4

Claims (1)

【特許請求の範囲】 1、電子部品の端子と基板面の端子部とを導電性粒子で
電気的に接続すると共に絶縁性樹脂層で接着固定させて
成る電子部品の接続構造体であって、上記絶縁樹脂層を
熱もしくは放射線硬化性樹脂で構成すると共に上記基板
面の端子部を含み全面に形成し、しかも上記導電性粒子
を端子接続部にのみ選択的に形成して成ることを特徴と
する電子部品の接続構造体。 2、上記基板面を、その主面に平面表示素子が形成され
、かつその周縁に駆動用電極群が配設された表示板で構
成すると共に、前記駆動用電極群に接続する上記電子部
品を、前記表示素子を駆動する外部駆動回路の組込まれ
た駆動部とその電極端子群とを配設した部品で構成して
成ることを特徴とする請求項1記載の電子部品の接続構
造体。 3、電子部品の端子と基板面の端子部とを導電性粒子で
電気的に接続すると共に絶縁性樹脂層で接着固定させる
電子部品の接続形成方法において、予め電子部品を接続
する電極パターンがその表面に形成された前記基板面上
に絶縁性樹脂層を塗布形成する工程と、前記基板の電極
パターン上の領域を除いて前記基板上に塗布形成された
絶縁性樹脂層を選択的に硬化する工程と、次いで前記基
板上に導電性粒子を散布して前記電極パターン上の未硬
化絶縁性樹脂層上にのみ選択的にこの導電性粒子を被着
させる工程と、次いで前記基板の電極パターン上に電子
部品の接続リードの位置が合うように相対的に位置合せ
して電子部品を基板上に重ね合せ圧着下で前記未硬化樹
脂層を硬化する工程とを有して成ることを特徴とする電
子部品の接続形成方法。 4、上記絶縁性樹脂層を塗布形成する工程において、樹
脂中に絶縁性の予め光を含む放射線吸収剤もしくは熱吸
収剤を含有せしめたことを特徴とする請求項3記載の電
子部品の接続形成方法。
[Scope of Claims] 1. A connection structure for an electronic component in which a terminal of an electronic component and a terminal portion on a substrate surface are electrically connected by conductive particles and fixed by adhesive with an insulating resin layer, The insulating resin layer is made of a heat- or radiation-curable resin and is formed on the entire surface of the substrate including the terminal portions, and the conductive particles are selectively formed only on the terminal connection portions. Connection structure for electronic components. 2. The substrate surface is constituted by a display plate having a flat display element formed on its main surface and a driving electrode group arranged around its periphery, and the electronic component connected to the driving electrode group. 2. The electronic component connection structure according to claim 1, wherein the electronic component connection structure is constituted by a component in which a drive section incorporating an external drive circuit for driving the display element and a group of electrode terminals thereof are disposed. 3. In an electronic component connection forming method in which the terminal of the electronic component and the terminal portion on the board surface are electrically connected using conductive particles and adhesively fixed with an insulating resin layer, the electrode pattern for connecting the electronic component is formed in advance. A step of coating and forming an insulating resin layer on the surface of the substrate formed on the surface, and selectively curing the insulating resin layer coated and formed on the substrate except for the area on the electrode pattern of the substrate. a step of dispersing conductive particles onto the substrate to selectively deposit the conductive particles only on the uncured insulating resin layer on the electrode pattern; The electronic component is relatively aligned so that the connection leads of the electronic component match, the electronic component is stacked on the board, and the uncured resin layer is cured under pressure bonding. Method of forming connections for electronic components. 4. Connection formation of electronic components according to claim 3, characterized in that in the step of coating and forming the insulating resin layer, an insulating radiation absorbing agent or heat absorbing agent containing light is contained in the resin in advance. Method.
JP30391588A 1988-12-02 1988-12-02 Connection structure of electronic component and connection and formation of electronic component Pending JPH02151045A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30391588A JPH02151045A (en) 1988-12-02 1988-12-02 Connection structure of electronic component and connection and formation of electronic component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30391588A JPH02151045A (en) 1988-12-02 1988-12-02 Connection structure of electronic component and connection and formation of electronic component

Publications (1)

Publication Number Publication Date
JPH02151045A true JPH02151045A (en) 1990-06-11

Family

ID=17926803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30391588A Pending JPH02151045A (en) 1988-12-02 1988-12-02 Connection structure of electronic component and connection and formation of electronic component

Country Status (1)

Country Link
JP (1) JPH02151045A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006049783A (en) * 2004-06-29 2006-02-16 Yuji Suda Manufacturing method and electrode connection method for anisotropic conductive adhesive film
JP2009238635A (en) * 2008-03-27 2009-10-15 Sony Chemical & Information Device Corp Joining body, its manufacturing method, anisotropic conductive material and its manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006049783A (en) * 2004-06-29 2006-02-16 Yuji Suda Manufacturing method and electrode connection method for anisotropic conductive adhesive film
JP2009238635A (en) * 2008-03-27 2009-10-15 Sony Chemical & Information Device Corp Joining body, its manufacturing method, anisotropic conductive material and its manufacturing method

Similar Documents

Publication Publication Date Title
EP0424106B1 (en) A method for connecting circuit boards
US5318651A (en) Method of bonding circuit boards
JP2730357B2 (en) Electronic component mounted connector and method of manufacturing the same
US4880486A (en) Method for mounting electronic parts
TWI450315B (en) Method for implementing semiconductor device
WO1995004387A1 (en) An electrical connecting structure and a method for electrically connecting terminals to each other
TW202341529A (en) Method and structure for die bonding using energy beam
JPH02230672A (en) Method for arrangement of conductive particle on electrode
JPH02180036A (en) Formation of electrode
JP2000105388A (en) Production of liquid crystal display device, liquid crystal display device and conductive adhesive film
JPH02151045A (en) Connection structure of electronic component and connection and formation of electronic component
JPH07226569A (en) Circuit board and electrode connection member and its manufacture
JPH0695462B2 (en) Method of placing conductive particles on electrode
JP3298110B2 (en) Anisotropic conductive adhesive and bonding method thereof
JPH0437146A (en) Mounting of semiconductor chip of liquid crystal display apparatus
JP3050345B2 (en) Connection method for integrated circuit elements
JPH10163261A (en) Manufacture of electronic component mounting wiring board
JPH06224256A (en) Semiconductor device
JPH06124952A (en) Bump forming method of semiconductor chip
JPS6255883A (en) Electric connection
JP4032320B2 (en) Electrode connection method
JPH10335379A (en) Mounting method for semiconductor device
JPH06186582A (en) Connecting structure and connecting method for electrode
JP3238256B2 (en) Semiconductor device, image sensor device, and manufacturing method thereof
JPH06118434A (en) Packaging method for driving ic of liquid crystal display panel