JP3050345B2 - Connection method for integrated circuit elements - Google Patents

Connection method for integrated circuit elements

Info

Publication number
JP3050345B2
JP3050345B2 JP4196255A JP19625592A JP3050345B2 JP 3050345 B2 JP3050345 B2 JP 3050345B2 JP 4196255 A JP4196255 A JP 4196255A JP 19625592 A JP19625592 A JP 19625592A JP 3050345 B2 JP3050345 B2 JP 3050345B2
Authority
JP
Japan
Prior art keywords
active energy
energy ray
electrode
integrated circuit
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4196255A
Other languages
Japanese (ja)
Other versions
JPH0621149A (en
Inventor
孝二 松井
光 木村
和明 内海
栄一 小川
博司 駒野
俊身 青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Ohka Kogyo Co Ltd
NEC Corp
Original Assignee
Tokyo Ohka Kogyo Co Ltd
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Ohka Kogyo Co Ltd, NEC Corp filed Critical Tokyo Ohka Kogyo Co Ltd
Priority to JP4196255A priority Critical patent/JP3050345B2/en
Priority to US07/978,720 priority patent/US5318651A/en
Priority to SG1996004470A priority patent/SG44626A1/en
Priority to EP92120208A priority patent/EP0544294B1/en
Priority to DE69208601T priority patent/DE69208601T2/en
Publication of JPH0621149A publication Critical patent/JPH0621149A/en
Priority to US08/217,973 priority patent/US5545281A/en
Application granted granted Critical
Publication of JP3050345B2 publication Critical patent/JP3050345B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29199Material of the matrix
    • H01L2224/2929Material of the matrix with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/831Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus
    • H01L2224/83101Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus as prepeg comprising a layer connector, e.g. provided in an insulating plate member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • H01L2224/83851Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester being an anisotropic conductive adhesive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits

Landscapes

  • Wire Bonding (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、LSI等の微細な電極
パッドと実装基板上に設けた電極端子を接続する集積回
路素子の接続方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for connecting an integrated circuit element for connecting a fine electrode pad such as an LSI and an electrode terminal provided on a mounting substrate.

【0002】[0002]

【従来の技術】従来、この種の接続には表面に導電性粒
子を含む電気接続用異方性導電材料を適用し、これを1
80〜200℃、20〜30kg/cm2程度で熱圧着
する方法が採用されている。
2. Description of the Related Art Conventionally, for this type of connection, an anisotropic conductive material for electrical connection containing conductive particles on its surface has been applied,
A method of thermocompression bonding at 80 to 200 ° C. and about 20 to 30 kg / cm 2 is employed.

【0003】すなわち、図4(a)に示すように、電極
パッド2上に金属バンプ51が形成されたLSIチップ
1と、この電極パッド2に対応して形成された電極端子
4を有する基板3とを導電性粒子11を含む電気接続用
異方性導電材料を含有してなる熱接着樹脂10を介して
向き合わせる。次に、図4(b)に示すように、LSI
チップ1を基板3に押し付け、加熱することにより、熱
接着樹脂10を軟化させ、電極パッド2と電極端子4と
を導電性粒子11により、接続することによって行われ
る。また、この接続には金属バンプ51を用いずに、電
極パッド2と電極端子4の間のみで、導電性粒子11を
介して行われる場合もある。
That is, as shown in FIG. 4A, an LSI chip 1 having metal bumps 51 formed on electrode pads 2 and a substrate 3 having electrode terminals 4 formed corresponding to the electrode pads 2. Are opposed to each other via a thermal adhesive resin 10 containing an anisotropic conductive material for electrical connection including conductive particles 11. Next, as shown in FIG.
This is performed by pressing the chip 1 against the substrate 3 and heating it to soften the thermal adhesive resin 10 and connect the electrode pads 2 and the electrode terminals 4 with the conductive particles 11. In some cases, this connection is made via the conductive particles 11 only between the electrode pad 2 and the electrode terminal 4 without using the metal bump 51.

【0004】[0004]

【発明が解決しようとする課題】上述した従来の接続実
装方法では、電極パッド2と電極端子4間を電気的に接
続している導電性粒子11の数量が多くなると隣合う電
極パッド、あるいは電極端子間でショートあるいは電流
リークが発生する。これを避けるために導電性粒子11
の数量を少なくすると、接続抵抗が増大すると共にばら
つくと言う問題も発生していた。また甚だしい場合には
電気的にオープンになる接続箇所が発生していた。さら
に、最近の接続寸法の高精細化に伴って、この傾向はま
すます著しくなっている。また、LSIチップが基板に
厳密に平行なまま押し付けられることは極めて難しく、
各々の電極端子間のギャップにばらつきが発生し、各電
極端子間の導電粒子の数量にばらつきが生じ、結果とし
て接続が不安定になると言う問題があった。これらの現
象は、デバイスの動作不良を引き起こす重大な欠点とな
っている。
In the above-described conventional connection mounting method, when the number of conductive particles 11 electrically connecting the electrode pad 2 and the electrode terminal 4 increases, the adjacent electrode pad or electrode becomes larger. Short circuit or current leak occurs between terminals. In order to avoid this, the conductive particles 11
If the number of is reduced, there is a problem that the connection resistance increases and varies. In severe cases, there were connection points that became electrically open. In addition, this trend is becoming more and more remarkable with recent increase in connection dimension. Also, it is extremely difficult for the LSI chip to be pressed strictly parallel to the substrate,
There is a problem that the gap between the electrode terminals varies, and the number of conductive particles between the electrode terminals varies, resulting in unstable connection. These phenomena are serious drawbacks that cause device malfunction.

【0005】本発明の目的は、再現性が良く、安定で、
しかも高精細化が可能な集積回路素子の接続方法を提供
することにある。
It is an object of the present invention to provide a reproducible, stable,
In addition, it is an object of the present invention to provide a method for connecting integrated circuit elements capable of high definition.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するた
め、鋭意研究を重ねた結果、活性エネルギー線硬化性樹
脂を使用することにより上記問題点を解決し得ることを
見い出し、本発明を完成するに至った。
Means for Solving the Problems As a result of intensive studies to achieve the above object, it has been found that the above problems can be solved by using an active energy ray-curable resin, and the present invention is completed. Reached.

【0007】すなわち本発明は集積回路素子の接続方法
において、集積回路素子に形成された電極パッドと該電
極パッドに対応して基板に形成された電極端子とを金属
バンプを介して接続する集積回路素子の接続方法であっ
て、1)電極パッド又は電極端子の少なくとも一方の表面
に金属バンプを形成する工程、2)集積回路素子側又は基
板側表面の少なくとも一方に活性エネルギー線硬化性樹
脂を被覆する工程、3)活性エネルギー線硬化性樹脂をリ
ソグラフィー法によりパターニングして電極パッド又は
電極端子上の活性エネルギー線硬化性樹脂を選択的に除
去する工程、4)電極パッドと電極端子とを向き合わせ、
金属バンプと対向する電極パッド又は電極端子を当接さ
せた後、熱圧着することにより、活性エネルギー線硬化
性樹脂と集積回路素子又は基板とを密着させるととも
に、電極パッドと電極端子とを金属バンプを介して接続
する工程、及び5)加熱処理及び/又は活性エネルギー線
の照射処理を施す工程とから成ることを特徴とする集積
回路素子の接続方法、を提供するものである。
That is, the present invention relates to a method of connecting an integrated circuit element, wherein an electrode pad formed on the integrated circuit element and an electrode terminal formed on a substrate corresponding to the electrode pad are connected via a metal bump. An element connection method, wherein 1) a step of forming a metal bump on at least one surface of an electrode pad or an electrode terminal, 2) at least one of an integrated circuit element side or a substrate side surface is coated with an active energy ray-curable resin. 3) patterning the active energy ray-curable resin by lithography to selectively remove the active energy ray-curable resin on the electrode pads or electrode terminals; 4) facing the electrode pads and the electrode terminals ,
After the electrode pads or electrode terminals facing the metal bumps are brought into contact, the active energy ray-curable resin is brought into close contact with the integrated circuit element or substrate by thermocompression bonding, and the electrode pads and the electrode terminals are connected to the metal bumps. And 5) a step of performing a heat treatment and / or an irradiation treatment with active energy rays.

【0008】次に本発明をさらに詳しく説明する。図1
中に示すごとく、あらかじめ電極素子が設けられた基板
又は電極パッドが設けられた集積回路素子上に蒸着法等
によりインジウムなどの金属バンプ層を積層し、得られ
た金属バンプ層上にフォトレジストを塗布、乾燥した
後、マスクパターンを介して露光後、不要レジスト部分
を除去しプラズマエッチング、エッチャント浸漬等によ
り電極パッド又は電極端子上に金属バンプを形成する。
Next, the present invention will be described in more detail. FIG.
As shown in the figure, a metal bump layer of indium or the like is laminated by a vapor deposition method or the like on a substrate provided with electrode elements in advance or an integrated circuit element provided with electrode pads, and a photoresist is formed on the obtained metal bump layer. After application and drying, after exposure through a mask pattern, unnecessary resist portions are removed, and metal bumps are formed on the electrode pads or electrode terminals by plasma etching, immersion in an etchant, or the like.

【0009】金属バンプを所望の位置に設けた後、集積
回路素子または基板側表面の少なくとも一方に活性エネ
ルギー線硬化性樹脂を設け、リソグラフィー法によりパ
ターニングして電極パッド又は電極端子上の活性エネル
ギー線硬化性樹脂を選択的に除去する。
After the metal bumps are provided at desired positions, an active energy ray curable resin is provided on at least one of the integrated circuit element and the substrate side surface, and is patterned by lithography to form active energy rays on the electrode pads or electrode terminals. The curable resin is selectively removed.

【0010】ここで、本発明方法に使用する金属バンプ
としては、ハンダ、金、アルミニウム、インジウム、I
TO等の導電体を用いることができるが、比較的低温度
で融着できるインジウムが特に好ましく用いられる。
Here, the metal bumps used in the method of the present invention include solder, gold, aluminum, indium, and I.
Although a conductor such as TO can be used, indium which can be fused at a relatively low temperature is particularly preferably used.

【0011】本発明の方法に使用する活性エネルギー線
硬化性樹脂としては、活性エネルギー線反応性樹脂、活
性エネルギー線重合開始剤を含有してなる樹脂組成物を
用いることができる。
As the active energy ray-curable resin used in the method of the present invention, a resin composition containing an active energy ray-reactive resin and an active energy ray polymerization initiator can be used.

【0012】活性エネルギー線反応性樹脂としては紫外
線、電子線、X線等の活性エネルギー線の照射により硬
化し、その硬化物が加熱処理により接着性を示すもので
あればよく、具体的には活性エネルギー線の照射による
硬化性を呈するフェノールノボラック型エポキシ樹脂、
クレゾールノボラック型エポキシ樹脂、グリシジルアミ
ン型エポキシ樹脂、ビフェニル型エポキシ樹脂及びそれ
らの臭化物にアクリル酸、メタクリル酸、クロトン酸、
マレイン酸、マレイン酸モノメチル、マレイン酸モノプ
ロピル、マレイン酸モノブチル、ソルビン酸等の不飽和
塩基酸を上記樹脂のエポキシ基と反応させエステル化し
たものが好適に用いられるが、特にアクリル酸が好まし
く、この不飽和塩基酸は酸当量/エポキシ当量比で0.
5〜1.5の範囲で反応させることが好ましい。
The active energy ray-reactive resin may be any resin as long as it is cured by irradiation with active energy rays such as ultraviolet rays, electron beams, and X-rays, and the cured product shows adhesiveness by heat treatment. Phenol novolak type epoxy resin which shows curability by irradiation with active energy rays,
Cresol novolak type epoxy resin, glycidylamine type epoxy resin, biphenyl type epoxy resin and their bromides acrylic acid, methacrylic acid, crotonic acid,
Maleic acid, monomethyl maleate, monopropyl maleate, monobutyl maleate, those obtained by reacting an unsaturated base acid such as sorbic acid with the epoxy group of the above resin and esterified are preferably used, and acrylic acid is particularly preferable. This unsaturated basic acid has an acid equivalent / epoxy equivalent ratio of 0.1.
The reaction is preferably performed in the range of 5 to 1.5.

【0013】このようにして得られた活性エネルギー線
反応性樹脂はアルカリ現像可能とするために、さらに上
記樹脂にフタル酸、無水フタル酸、マレイン酸、無水マ
レイン酸、シュウ酸、アジピン酸、クエン酸等の多塩基
酸を反応させるとよい。この場合、得られる樹脂の酸価
を50〜150とすることが好ましい。
In order to make the active energy ray-reactive resin thus obtained alkali developable, the above-mentioned resin is further added to phthalic acid, phthalic anhydride, maleic acid, maleic anhydride, oxalic acid, adipic acid, citric acid, and the like. It is preferable to react a polybasic acid such as an acid. In this case, the obtained resin preferably has an acid value of 50 to 150.

【0014】上記樹脂成分は紫外線等の活性エネルギー
線の照射により硬化し、その硬化物が加熱処理により接
着性を示さなければならないが、この場合の加熱処理温
度は50〜120℃、好ましくは60〜90℃の範囲で
ある。この温度が50℃未満では良好な接着性を与える
ことができず、逆に120℃を超えると良好な形状のパ
ターンを得ることができず好ましくない。
The above resin component is cured by irradiation with active energy rays such as ultraviolet rays, and the cured product must exhibit adhesiveness by heat treatment. In this case, the heat treatment temperature is 50 to 120 ° C., preferably 60 to 120 ° C. ~ 90 ° C. If the temperature is lower than 50 ° C., good adhesiveness cannot be provided, while if it exceeds 120 ° C., a pattern having a good shape cannot be obtained, which is not preferable.

【0015】活性エネルギー線重合開始剤は活性エネル
ギー線の照射によりラジカルを発生するものであり、水
素引き抜き反応、ラジカル開裂反応などの開始剤自身の
物性により活性エネルギー線反応性樹脂の重合を促進さ
せることができる。水素引き抜き型の代表物質は、ベン
ゾフェノン類である。ラジカル開裂型の例として、ベン
ジルジメチルケタール類が挙げられる。更に、チオキサ
ントン系の化合物も用いられる。具体的にはベンゾフェ
ノン、4,4’−ジメチルアミノベンゾフェノン、4,
4’−ジエチルアミノベンゾフェノン、2−エチルアン
トラキノン、tert−ブチルアントラキノン、ベンゾ
インエチルエーテル、ベンゾインイソプロピルエーテ
ル、2,2−ジメトキシ−2−フェニルアセトフェノ
ン、2,2−ジエトキシアセトフェノン、2−クロロチ
オキサントン、ジエチルチオキサントン、2−ヒドロキ
シ−2−メチルプロピオフェノン、4−イソプロピル−
2−ヒドロキシ−2−メチルプロピオフェノンなどがあ
り、これらのうちの一種または2種以上を前記活性エネ
ルギー線反応性樹脂に対し2〜10重量%の割合で配合
するのが好ましい。
The active energy ray polymerization initiator generates radicals upon irradiation with active energy rays, and promotes the polymerization of the active energy ray reactive resin by the physical properties of the initiator itself such as a hydrogen abstraction reaction and a radical cleavage reaction. be able to. Representative substances of the hydrogen abstraction type are benzophenones. Examples of radical cleavage types include benzyldimethyl ketals. Further, a thioxanthone compound is also used. Specifically, benzophenone, 4,4′-dimethylaminobenzophenone,
4'-diethylaminobenzophenone, 2-ethylanthraquinone, tert-butylanthraquinone, benzoin ethyl ether, benzoin isopropyl ether, 2,2-dimethoxy-2-phenylacetophenone, 2,2-diethoxyacetophenone, 2-chlorothioxanthone, diethylthioxanthone , 2-hydroxy-2-methylpropiophenone, 4-isopropyl-
There are 2-hydroxy-2-methylpropiophenone and the like, and it is preferable to mix one or more of these at a ratio of 2 to 10% by weight based on the active energy ray-reactive resin.

【0016】この活性エネルギー線硬化性樹脂は通常有
機溶剤に溶解させた塗布液の形で用いるのが実用的であ
り、このような溶剤としてはエチレングリコールモノエ
チルエーテル、エチレングリコールモノエチルエーテル
アセテート、エチレングリコールモノブチルエーテル、
エチレングリコールモノブチルエーテルアセテート、プ
ロピレングリコールモノメチルエーテル、プロピレング
リコールモノメチルエーテルアセテート、メチルエチル
ケトン、メチルイソブチルケトン、1,1,1−トリク
ロロエタン、トリクロロエチレンなどの1種または2種
以上を混合して用いることができる。
The active energy ray-curable resin is usually practically used in the form of a coating solution dissolved in an organic solvent. Examples of such a solvent include ethylene glycol monoethyl ether, ethylene glycol monoethyl ether acetate, and the like. Ethylene glycol monobutyl ether,
One or a mixture of two or more of ethylene glycol monobutyl ether acetate, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, methyl ethyl ketone, methyl isobutyl ketone, 1,1,1-trichloroethane and trichloroethylene can be used.

【0017】本発明の接続方法で用いる活性エネルギー
線硬化性樹脂は上記組成で使用可能であるが、熱圧着の
際、樹脂に柔軟性をもたせてクラック等の発生を防ぐた
めの柔軟剤、接着性を持たせる温度をコントロールする
ための接着性向上剤を加えることができる。
The active energy ray-curable resin used in the connection method of the present invention can be used in the above-mentioned composition. However, at the time of thermocompression bonding, a softener and an adhesive for imparting flexibility to the resin to prevent the occurrence of cracks and the like are used. An adhesion enhancer for controlling the temperature at which the property is imparted can be added.

【0018】このような柔軟剤としてはアクリレート
系、メタクリレート系ウレタン系、スチレン系等の各種
モノマー、オリゴマーが使用される。
As such a softening agent, various monomers and oligomers such as an acrylate type, a methacrylate type urethane type and a styrene type are used.

【0019】また接着性向上剤としてはフェノールノボ
ラック型エポキシ樹脂、クレゾールノボラック型エポキ
シ樹脂、ビスフェノールA型エポキシ樹脂が好適に用い
られる。この接着性向上剤は活性エネルギー線硬化性樹
脂固形分に対し5〜40重量%、好ましくは10〜20
重量%の割合で配合することができる。
As the adhesion improver, a phenol novolak type epoxy resin, a cresol novolak type epoxy resin, and a bisphenol A type epoxy resin are preferably used. This adhesiveness improver is 5 to 40% by weight, preferably 10 to 20% by weight, based on the solid content of the active energy ray-curable resin.
% By weight.

【0020】この接着性向上剤は上記範囲の中で任意に
配合割合を変化させることによって、接着性の現れる温
度を自由にコントロールすることができるが接着性の現
れる温度は50〜120℃が好ましい。接着性向上剤は
120℃以上ではエポキシ環が開くことによって硬化
し、活性エネルギー線硬化性樹脂の強度を上げることが
できる。
The temperature at which the adhesive property appears can be freely controlled by arbitrarily changing the mixing ratio of the adhesive improver within the above range, but the temperature at which the adhesive property appears is preferably 50 to 120 ° C. . At 120 ° C. or higher, the adhesion improver is cured by opening the epoxy ring, and can increase the strength of the active energy ray-curable resin.

【0021】この他に、ガラス等の可視光に対して透明
な基板を用いた場合には、集積回路素子の光による誤作
動を防ぐために、カーボンブラック、チタンブラック、
鉄黒、鉛白、二酸化チタン、チタニウムイエロー、群青
等の無機顔料、アゾ系、フタロシアニン系、イソインヒ
ドリン系、ジオキサン系等の有機顔料の一種または数種
を遮光性材料を加えることができる。遮光性材料は全成
分中で5〜40重量%、好ましくは10〜30重量%の
割合で添加することができ、接着、硬化させた後の該樹
脂被膜の波長400nm〜700nmにおける光透過率
が5%未満であるように適宜選択して添加される。
In addition, when a substrate transparent to visible light, such as glass, is used, carbon black, titanium black,
One or more of inorganic pigments such as iron black, lead white, titanium dioxide, titanium yellow, and ultramarine blue, and one or more organic pigments such as azo, phthalocyanine, isoinhydrin, and dioxane can be added with a light-shielding material. The light-shielding material can be added at a ratio of 5 to 40% by weight, preferably 10 to 30% by weight based on all components, and the light transmittance at a wavelength of 400 to 700 nm of the resin film after bonding and curing is improved. It is appropriately selected and added so as to be less than 5%.

【0022】更に活性エネルギー線硬化性樹脂には必要
に応じて慣用されている染料、顔料、重合禁止剤消泡剤
等を加えることができる。
Further, a dye, a pigment, a polymerization inhibitor, a defoaming agent, etc., which are commonly used, can be added to the active energy ray-curable resin, if necessary.

【0023】以上に述べた活性エネルギー線硬化性樹脂
を溶剤に溶解した液は図2中(a)に示すごとく、ロー
ルコーター、カーテンフローコーター、スクリーン印
刷、スプレーコーター、スピンコーターなどにより塗布
し、乾燥する。乾燥後、図2中(b)に示すように電極
部分が遮光されたマスクを用いて選択的に紫外線等の活
性エネルギー線を照射し又はガラス基板などの活性エネ
ルギー線に対して透明な基板を用いた場合には基板裏面
から活性エネルギー線を照射し図2中(c)に示すよう
に未照射部分を現像液を用いて除去することによって電
極間にのみ活性エネルギー線硬化性樹脂を残余させる。
露光の際に照射する活性エネルギー線の量は遮光剤が含
有されていない場合には0.05〜0.15J/cm2
程度、含有されている場合には0.3〜2.5J/cm
2 の強度で照射される。照射強度がこれよりも少ない場
合には照射部分に十分な硬化性を与えることができず、
多い場合には樹脂中のエネルギー線硬化成分が完全に硬
化してしまい接着性を得ることが難しくなり以後の工程
に差し支えるため好ましくない。
The solution obtained by dissolving the above-described active energy ray-curable resin in a solvent is applied by a roll coater, curtain flow coater, screen printing, spray coater, spin coater or the like as shown in FIG. dry. After drying, as shown in FIG. 2 (b), an active energy ray such as an ultraviolet ray is selectively irradiated using a mask in which the electrode portion is shielded from light or a substrate transparent to the active energy ray such as a glass substrate is irradiated. When used, the active energy ray curable resin is left only between the electrodes by irradiating the active energy ray from the back surface of the substrate and removing the unirradiated portion using a developing solution as shown in FIG. 2C. .
The amount of the active energy ray irradiated at the time of exposure is 0.05 to 0.15 J / cm 2 when no light-shielding agent is contained.
About 0.3 to 2.5 J / cm if contained
Irradiation at an intensity of 2 . If the irradiation intensity is less than this, it is not possible to give sufficient curability to the irradiated part,
If the amount is too large, the energy ray-curable component in the resin is completely cured, and it is difficult to obtain adhesiveness, which hinders the subsequent steps.

【0024】このパターニングされた活性エネルギー線
硬化性樹脂は加熱処理を施すことによって接着性を付与
させ図2中(d)に示すごとく前記電極パッドと電極端
子とを金属バンプを介して重ね合わせ、温度50〜12
0℃、圧力1〜20kg/cm2 の範囲で熱圧着するこ
とにより、前記活性エネルギー線硬化性樹脂と基板又は
素子とを接着させるとともに、該電極パッドと電極端子
とを金属バンプを介して接続する。該電極パッドまたは
電極端子と金属バンプをより確実に接続するために、さ
らに温度120〜180℃に上げて数分間熱圧着を続け
てもよい。
The patterned active energy ray-curable resin is subjected to heat treatment to impart adhesiveness, and as shown in FIG. 2D, the electrode pads and the electrode terminals are overlapped via metal bumps. Temperature 50-12
The active energy ray-curable resin is bonded to a substrate or element by thermocompression bonding at 0 ° C. and a pressure of 1 to 20 kg / cm 2 , and the electrode pad and the electrode terminal are connected via a metal bump. I do. In order to more reliably connect the electrode pad or the electrode terminal to the metal bump, the temperature may be further raised to 120 to 180 ° C. and thermocompression bonding may be continued for several minutes.

【0025】その後、全体を温度120℃〜200℃の
範囲で加熱するか、図2中(e)に示すように1〜5J
/cm2 の範囲で紫外線等の活性エネルギー線の照射処
理をし、樹脂を完全硬化して接着させる。これによって
金属バンプを介した電極端子と電極パッド間及び、基板
と活性エネルギー線硬化性樹脂間の両方で接着又は接続
されるため、強固な接着性が得られ、かつ微細な回路を
有する電極間においても短絡などの生じない接続が行わ
れる。
Thereafter, the whole is heated at a temperature in the range of 120 ° C. to 200 ° C., or 1 to 5 J as shown in FIG.
Irradiation treatment with active energy rays such as ultraviolet rays in the range of / cm 2 is performed to completely cure and bond the resin. As a result, strong adhesion is obtained between the electrode terminals and the electrode pads via the metal bumps and between the substrate and the active energy ray-curable resin. In this case, a connection that does not cause a short circuit or the like is performed.

【0026】樹脂を硬化させる際に、活性エネルギー線
又は熱単独でも充分な硬化性が得られるが併用すること
により硬化時間の短縮を図ることが出来る。加熱硬化温
度が120℃以下では硬化が始まらず200℃以上では
樹脂に熱ダレが起こり好ましいパターン形状が得られな
くなると共に、基板や電極に悪影響を及ぼすため好まし
くない。
When the resin is cured, sufficient curability can be obtained with active energy rays or heat alone, but the curing time can be shortened by using the resin in combination. If the heat curing temperature is 120 ° C. or lower, curing does not start. If the heat curing temperature is 200 ° C. or higher, heat sagging occurs in the resin, making it impossible to obtain a preferable pattern shape and adversely affecting the substrate and the electrodes.

【0027】これらにより、再現性が良く、安定で、接
続信頼性が高く、しかも高精細化が可能なLSIチップ
の接続方法を提供するものである。
Thus, an object of the present invention is to provide a method of connecting an LSI chip which has good reproducibility, is stable, has high connection reliability, and is capable of high definition.

【0028】[0028]

【作用】電極パッドと、電極端子とを金属バンプを介し
て接続し、活性エネルギー線硬化性樹脂を用いて集積回
路素子と基板とを接着させるため、接続が確実となり、
接続抵抗の変動分は小さくすることができる。さらに、
基板が可視光に対して透明である場合には、活性エネル
ギー線硬化性樹脂の波長400nm〜700nmにおけ
る光透過率が5%未満とすることによって、LSI自体
の遮光を施さなくても、LSIの光による誤動作を防止
することが可能である。
The electrode pad and the electrode terminal are connected via a metal bump, and the integrated circuit element and the substrate are bonded using an active energy ray-curable resin.
The variation of the connection resistance can be reduced. further,
When the substrate is transparent to visible light, by setting the light transmittance of the active energy ray-curable resin at a wavelength of 400 nm to 700 nm to less than 5%, even if the LSI itself is not shaded, It is possible to prevent malfunction due to light.

【0029】[0029]

【実施例】実施例1 以下、本発明について、図面を参照して説明する。図
1、図2は、本発明の一実施例としてLSIチップの接
続方法を工程順に示す断面図である。図1は、工程の前
段、図2は工程の後段を示している。まず図1(a)に
ついて、集積回路素子1(以下、LSIチップという)
の表面には、例えば、Au/Cr/Alの3層金属膜
(それぞれの膜厚は、1.0μm、0.05μm、0.
5μm)、あるいは、Au/TiN/Alの3層金属膜
(それぞれの膜厚は、0.8μm、0.08μm、0.
2μm)で構成された電極パッド2が形成され、一方基
板3には、電極パッド2に対応して電極端子4が形成さ
れている。本発明においては、電極パッド2上に金属バ
ンプ5を一体的に形成する。この金属バンプの成分とし
ては、In(インジウム)金属を用いるが、溶融温度を
コントロールする必要がある場合には、インジウムと鉛
等との合金を用いてもよい。
Embodiment 1 Hereinafter, the present invention will be described with reference to the drawings. 1 and 2 are sectional views showing a method of connecting an LSI chip as an embodiment of the present invention in the order of steps. FIG. 1 shows a stage before the process, and FIG. 2 shows a stage after the process. First, referring to FIG. 1A, an integrated circuit device 1 (hereinafter, referred to as an LSI chip)
On the surface of the substrate, for example, a three-layered Au / Cr / Al metal film (each having a thickness of 1.0 μm, 0.05 μm, 0.
5 μm) or a three-layer metal film of Au / TiN / Al (thicknesses of the respective layers are 0.8 μm, 0.08 μm, and 0.1 μm).
2 μm), and an electrode terminal 4 is formed on the substrate 3 corresponding to the electrode pad 2. In the present invention, the metal bumps 5 are integrally formed on the electrode pads 2. As a component of the metal bump, In (indium) metal is used, but if it is necessary to control the melting temperature, an alloy of indium and lead may be used.

【0030】次に図2(a)に示すように、基板3上
に、テトラヒドロ無水フタル酸を付加した フェノールノボラック型エポキシアクリレート樹脂 9.0g テトラヒドロ無水フタル酸を付加した クレゾールノボラック型エポキシアクリレート樹脂 14.0g クレゾールノボラック型エポキシ樹脂 12.9g ウレタンオリゴマー 6.5g 2-メチル-[-4(メチルチオ)フェニル]-2-モルフォリノ-1- プロパン 6.4g ジエチルチオキサントン 3.2g プロピレングリコールモノメチルエーテルアセテート 34.0g を混合溶解して調製した活性エネルギー線硬化性樹脂溶
液をスピンナー等で均一に塗布後、乾燥する。
Next, as shown in FIG. 2A, a phenol novolak type epoxy acrylate resin to which tetrahydrophthalic anhydride has been added 9.0 g on a substrate 3 A cresol novolak type epoxy acrylate resin to which tetrahydrophthalic anhydride has been added 14 3.0 g Cresol novolak type epoxy resin 12.9 g Urethane oligomer 6.5 g 2-Methyl-[-4 (methylthio) phenyl] -2-morpholino-1-propane 6.4 g Diethylthioxanthone 3.2 g Propylene glycol monomethyl ether acetate 34. An active energy ray-curable resin solution prepared by mixing and dissolving 0 g of the mixture is uniformly applied with a spinner or the like, and then dried.

【0031】次に、図2(b)に示すように、フォトマ
スクを通して活性エネルギー線である紫外線8を照射す
る。
Next, as shown in FIG. 2B, ultraviolet rays 8 as active energy rays are irradiated through a photomask.

【0032】次に、図2(c)に示すように、5%トリ
エタノールアミン水溶液からなる現像液9にて現像を行
い、電極端子4上の樹脂層を除去しマスクパターンを作
成する。
Next, as shown in FIG. 2C, development is carried out with a developing solution 9 comprising a 5% aqueous solution of triethanolamine, and the resin layer on the electrode terminals 4 is removed to form a mask pattern.

【0033】次に、図2(d)に示すように、金属バン
プ5と電極端子4とを向き合わせ、LSIチップ1をあ
らかじめ80℃に加熱した基板3上に乗せ、金属バンプ
5と電極端子4とを当接させ、5kg/cm2の荷重を
加えて活性エネルギー線硬化性樹脂と基板とを接着する
とともにLSIチップ1と電極端子4とを金属バンプ5
を介して圧着した。さらに接続を強固にするために5k
g/cm2の荷重を加えながら150℃で2分加熱す
る。これによって、金属バンプ5を溶融させ、金属バン
プ5と電極端子4を固着させた。
Next, as shown in FIG. 2D, the metal bumps 5 and the electrode terminals 4 face each other, and the LSI chip 1 is placed on the substrate 3 preheated to 80 ° C. 4 and a load of 5 kg / cm 2 is applied to bond the active energy ray-curable resin and the substrate, and the LSI chip 1 and the electrode terminals 4 are connected to the metal bumps 5.
Was crimped through. 5k to further strengthen the connection
Heat at 150 ° C. for 2 minutes while applying a load of g / cm 2 . Thus, the metal bump 5 was melted, and the metal bump 5 and the electrode terminal 4 were fixed.

【0034】そして、図2(e)に示すように、紫外線
を3J/cm2 で全面照射し、活性エネルギー線硬化性
樹脂を硬化させ、LSIチップ1と基板3とを接着固定
すると共に金属バンプ接合部分の固定を行い、図示の素
子を完成した。LSIチップと基板との接続不良や短絡
などもみられず、良好な素子が得られた。
Then, as shown in FIG. 2E, the entire surface is irradiated with ultraviolet rays at 3 J / cm 2 to cure the active energy ray-curable resin, and the LSI chip 1 and the substrate 3 are bonded and fixed, and the metal bumps are formed. The bonding portion was fixed to complete the illustrated device. There was no poor connection or short circuit between the LSI chip and the substrate, and a good device was obtained.

【0035】実施例2 上記実施例1において、光熱硬化性を有する樹脂を、L
SIチップ1側に塗布し、以下、工程順に従って接続を
行ったが実施例1と同様に良好な素子が得られた。
Example 2 In Example 1, the resin having photo-thermosetting properties was
It was applied to the SI chip 1 side, and connection was made in the following process order, but a good device was obtained as in Example 1.

【0036】実施例3 上記実施例1において、活性エネルギー線硬化性樹脂を
硬化させるために行った紫外線の全面照射処理に代え
て、オーブン中で150℃で15分間の加熱処理にした
以外は実施例1と同様の操作により素子を得た。この素
子の電極同士も接続不良や短絡などもみられず、良好に
接続していることが確認された。
Example 3 In Example 1, the heat treatment was performed in an oven at 150 ° C. for 15 minutes in place of the UV irradiation for curing the active energy ray-curable resin. An element was obtained in the same manner as in Example 1. The electrodes of this element were also connected well without any poor connection or short circuit.

【0037】実施例4 上記実施例1において、活性エネルギー線硬化性樹脂を
硬化させるために行った紫外線の全面照射処理を150
℃のホットプレート上で1J/cm2 全面照射したが実
施例1と同様に良好な素子が得られた。
Example 4 In the above-mentioned Example 1, the entire surface irradiation treatment with ultraviolet rays performed to cure the active energy ray-curable resin was performed.
The entire surface was irradiated with 1 J / cm 2 on a hot plate at ℃ ° C., but a good device was obtained as in Example 1.

【0038】実施例5 上記実施例1においてガラス基板を用いた際、活性エネ
ルギー線硬化性樹脂成分中に更に以下の遮光剤成分 CFブラック(顔料/御国色素(株)製)
14.0gを加えたものを実施例1の工程
順に従って接続を行ったがLSIチップと基板との接続
不良や短絡などはみられなかった。また得られた素子
を、電子機器に組み込んで使用中、該素子全面にわたり
白色蛍光灯の光を当て続けたが光電効果等による誤作動
は一切発生しなかった。
Example 5 When a glass substrate was used in Example 1 above, the following light-shielding agent component CF black (pigment / manufactured by Okuni Pigment Co., Ltd.) was added to the active energy ray-curable resin component.
The connection to which 14.0 g was added was made in accordance with the process sequence of Example 1, but no defective connection or short circuit between the LSI chip and the substrate was found. In addition, while the obtained device was incorporated in an electronic device and used, light from a white fluorescent lamp was continuously applied to the entire surface of the device, but no malfunction occurred due to the photoelectric effect or the like.

【0039】[0039]

【発明の効果】以上説明したように、本発明のLSIチ
ップの接続方法によれば、従来のように接着剤樹脂中に
導電粒子を分散した方法ではないので、高精細化接続が
確実に、容易に信頼性よく実施できるという極めて顕著
な効果が得られる。また、金属バンプをLSIチップの
電極パッドあるいは基板の電極端子に直接設けるため、
接続が確実に行なわれると同時に、その接続抵抗の変動
分を小さくすることもできる。さらに、基板が可視光に
対して透明である場合、活性エネルギー線硬化性樹脂に
遮光性材料を用いると、LSI自体の遮光を施さなくて
も、LSIの光による誤動作を防止することが可能であ
る。
As described above, according to the method of connecting an LSI chip of the present invention, since the conductive particles are not dispersed in the adhesive resin as in the conventional method, high-definition connection is ensured. An extremely remarkable effect that it can be easily and reliably implemented is obtained. Also, since the metal bumps are provided directly on the electrode pads of the LSI chip or the electrode terminals of the substrate,
At the same time that the connection is made securely, the variation of the connection resistance can be reduced. Furthermore, when the substrate is transparent to visible light, using a light-shielding material for the active energy ray-curable resin can prevent a malfunction due to light of the LSI without shielding the LSI itself. is there.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係るLSIの接続方法の前段工程を示
す断面図である。
FIG. 1 is a cross-sectional view showing a first step of an LSI connection method according to the present invention.

【図2】本発明に係るLSIの接続方法の後段工程を示
す断面図である。
FIG. 2 is a cross-sectional view showing a subsequent step of an LSI connection method according to the present invention.

【図3】本発明方法によって得られた素子の断面図であ
る。
FIG. 3 is a cross-sectional view of a device obtained by the method of the present invention.

【図4】従来のLSIチップの接続方法を工程順に示す
断面図である。
FIG. 4 is a cross-sectional view showing a conventional LSI chip connection method in the order of steps.

【符号の説明】[Explanation of symbols]

1…LSIチップ、2…電極パッド、3…基板、4…電
極端子、5…低融点金属バンプ、6…活性エネルギー線
硬化性樹脂、7…フォトマスク、8…紫外線、9…現像
液、10…熱接着樹脂、11…導電性粒子、51…金属
バンプ。
DESCRIPTION OF SYMBOLS 1 ... LSI chip, 2 ... electrode pad, 3 ... substrate, 4 ... electrode terminal, 5 ... low melting point metal bump, 6 ... active energy ray curable resin, 7 ... photomask, 8 ... ultraviolet light, 9 ... developer, 10 ... thermal bonding resin, 11 ... conductive particles, 51 ... metal bumps.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 内海 和明 東京都港区芝五丁目7番1号 日本電気 株式会社内 (72)発明者 小川 栄一 神奈川県川崎市中原区中丸子150番地 東京応化工業株式会社内 (72)発明者 駒野 博司 神奈川県川崎市中原区中丸子150番地 東京応化工業株式会社内 (72)発明者 青山 俊身 神奈川県川崎市中原区中丸子150番地 東京応化工業株式会社内 合議体 審判長 池田 正人 審判官 富永 正史 審判官 酒井 正己 (56)参考文献 特開 平3−225934(JP,A) ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Kazuaki Utsumi 5-7-1 Shiba, Minato-ku, Tokyo NEC Corporation (72) Inventor Eiichi Ogawa 150 Nakamaruko, Nakahara-ku, Kawasaki City, Kanagawa Prefecture Tokyo Ohka Kogyo (72) Inventor Hiroshi Komano 150 Nakamurako Nakahara-ku, Kawasaki City, Kanagawa Prefecture Inside Tokyo Ohka Kogyo Co., Ltd. (72) Inventor Toshimi Aoyama 150 Nakamaruko Nakahara-ku, Kawasaki City, Kanagawa Prefecture Tokyo Ohka Kogyo Co., Ltd. Referee Masato Ikeda Referee Masafumi Tominaga Referee Masami Sakai (56) Reference JP-A-3-225934 (JP, A)

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 集積回路素子に形成された電極パッドと
該電極パッドに対応して基板に形成された電極端子とを
金属バンプを介して接続する集積回路素子の接続方法で
あって、 1)電極パッド又は電極端子の少なくとも一方の表面に金
属バンプを形成する工程、 2)集積回路素子側又は基板側表面の少なくとも一方に活
性エネルギー線硬化性樹脂を被覆する工程、 3)活性エネルギー線硬化性樹脂をリソグラフィー法によ
りパターニングして電極パッド又は電極端子上の活性エ
ネルギー線硬化性樹脂を選択的に除去する工程、 4)電極パッドと電極端子とを向き合わせ、金属バンプと
対向する電極パッド又は電極端子を当接させた後、熱圧
着することにより、活性エネルギー線硬化性樹脂と集積
回路素子又は基板とを密着させるとともに、電極パッド
と電極端子とを金属バンプを介して接続する工程、及び 5)加熱処理及び/又は活性エネルギー線の照射処理を施
す工程とから成ることを特徴とする集積回路素子の接続
方法。
1. A method of connecting an integrated circuit element, wherein an electrode pad formed on the integrated circuit element and an electrode terminal formed on a substrate corresponding to the electrode pad are connected via a metal bump, A step of forming a metal bump on at least one surface of the electrode pad or the electrode terminal; 2) a step of coating at least one of the integrated circuit element side or the substrate side surface with an active energy ray-curable resin; 3) an active energy ray-curable A step of selectively removing the active energy ray-curable resin on the electrode pads or electrode terminals by patterning the resin by lithography, 4) facing the electrode pads and the electrode terminals, and facing the metal bumps or the electrode pads or electrodes After contacting the terminals, by thermocompression bonding, the active energy ray-curable resin and the integrated circuit element or substrate are brought into close contact with each other, and A method of connecting an electrode terminal via a metal bump; and 5) performing a heat treatment and / or an irradiation treatment with an active energy ray.
【請求項2】 金属バンプがインジウムであることを特
徴とする請求項1に記載の集積回路素子の接続方法。
2. The method according to claim 1, wherein the metal bump is indium.
【請求項3】 請求項1に記載の基板が可視光線に対し
て透明である場合、選択的に除去された活性エネルギー
線硬化性樹脂の波長400nm〜700nmにおける光
透過率が5%未満であることを特徴とする請求項1又は
2記載の集積回路素子の接続方法。
3. When the substrate according to claim 1 is transparent to visible light, the selectively removed active energy ray-curable resin has a light transmittance at a wavelength of 400 nm to 700 nm of less than 5%. 3. The method for connecting integrated circuit elements according to claim 1, wherein:
【請求項4】 電極パッドと電極端子とを向き合わせて
当接させた後、熱圧着する際、温度50〜120℃の範
囲で活性エネルギー線硬化性樹脂と集積回路素子又は基
板とを接着させた後、温度を120〜180℃の範囲で
該金属バンプと対向する電極パッド又は電極端子とを接
続することを特徴とする請求項1又は2記載の集積回路
素子の接続方法。
4. An active energy ray-curable resin and an integrated circuit element or substrate are bonded at a temperature in the range of 50 to 120 ° C. when thermocompression bonding is performed after the electrode pads and the electrode terminals are brought into contact with each other facing each other. 3. The method for connecting an integrated circuit element according to claim 1, wherein the metal bump and the electrode pad or the electrode terminal facing the metal bump are connected at a temperature of 120 to 180 [deg.] C. after the step.
JP4196255A 1991-11-27 1992-06-29 Connection method for integrated circuit elements Expired - Fee Related JP3050345B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP4196255A JP3050345B2 (en) 1992-06-29 1992-06-29 Connection method for integrated circuit elements
US07/978,720 US5318651A (en) 1991-11-27 1992-11-19 Method of bonding circuit boards
SG1996004470A SG44626A1 (en) 1991-11-27 1992-11-26 Method of bonding circuir boards
EP92120208A EP0544294B1 (en) 1991-11-27 1992-11-26 Method of bonding circuit boards
DE69208601T DE69208601T2 (en) 1991-11-27 1992-11-26 Process for connecting printed circuit boards
US08/217,973 US5545281A (en) 1991-11-27 1994-03-25 Method of bonding circuit boards

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4196255A JP3050345B2 (en) 1992-06-29 1992-06-29 Connection method for integrated circuit elements

Publications (2)

Publication Number Publication Date
JPH0621149A JPH0621149A (en) 1994-01-28
JP3050345B2 true JP3050345B2 (en) 2000-06-12

Family

ID=16354772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4196255A Expired - Fee Related JP3050345B2 (en) 1991-11-27 1992-06-29 Connection method for integrated circuit elements

Country Status (1)

Country Link
JP (1) JP3050345B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6995476B2 (en) 1998-07-01 2006-02-07 Seiko Epson Corporation Semiconductor device, circuit board and electronic instrument that include an adhesive with conductive particles therein
JP3451987B2 (en) 1998-07-01 2003-09-29 日本電気株式会社 Functional element, substrate for mounting functional element, and method of connecting them
JP2004134646A (en) * 2002-10-11 2004-04-30 Seiko Epson Corp Mounting structure of semiconductor element with bumps, mounting method of semiconductor element with bumps, electro-optical device, and electronic apparatus
JP4131864B2 (en) 2003-11-25 2008-08-13 東京応化工業株式会社 Chemical amplification type positive photosensitive thermosetting resin composition, method for forming cured product, and method for producing functional device
JP6205955B2 (en) * 2013-07-31 2017-10-04 日立化成株式会社 Manufacturing method of semiconductor device and semiconductor device obtained by the manufacturing method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03225934A (en) * 1990-01-31 1991-10-04 Nec Corp Connecting method for semiconductor integrated circuit element

Also Published As

Publication number Publication date
JPH0621149A (en) 1994-01-28

Similar Documents

Publication Publication Date Title
US5318651A (en) Method of bonding circuit boards
JP2940269B2 (en) Connecting method of integrated circuit element
JP3094948B2 (en) Method of connecting circuit board for mounting semiconductor element and semiconductor element
US6376158B1 (en) Methods for selectively filling apertures
JPH04156402A (en) Color filter
JP2000188473A (en) New filling method for through hole
US5378298A (en) Radiation sensitive adhesive composition and method of photoimagingsame
JPH02302053A (en) Selective etching method for polyimide board
JP3050345B2 (en) Connection method for integrated circuit elements
JP3083845B2 (en) Semiconductor device
JP2660943B2 (en) Circuit board bonding method
JP2017120866A (en) Solder bump-forming method
JPH10207046A (en) Highly sensitive photoresist containing inorganic substance, and highly sensitive dry film resist
JP2661382B2 (en) LSI chip connection method
US20040076744A1 (en) Method for forming solder-resist film
JP2868984B2 (en) Circuit board
JPH05191020A (en) Printed wiring board with solder resist film
US5306602A (en) Method of producing longitudinally fine striped type heat seal connector member
JPH02151045A (en) Connection structure of electronic component and connection and formation of electronic component
JP3071894B2 (en) Circuit formation method
JP2000200960A (en) Solder resist and forming method thereof
JPH03173086A (en) Manufacture of longitudinally-striped slender streak type heat seal connector member
JP2003069204A (en) Photosensitive flux and solder joint part using the same, flip chip, semiconductor package, and printed wiring board, and method for manufacturing semiconductor device
JP2006113402A (en) Photosensitive resin composition, photosensitive element, method for forming permanent protective film and printed wiring board
JPH0458542A (en) Connecting method of integrated circuit element

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19980623

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080331

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090331

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090331

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100331

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100331

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110331

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees