JP3298110B2 - Anisotropic conductive adhesive and bonding method thereof - Google Patents

Anisotropic conductive adhesive and bonding method thereof

Info

Publication number
JP3298110B2
JP3298110B2 JP7086991A JP7086991A JP3298110B2 JP 3298110 B2 JP3298110 B2 JP 3298110B2 JP 7086991 A JP7086991 A JP 7086991A JP 7086991 A JP7086991 A JP 7086991A JP 3298110 B2 JP3298110 B2 JP 3298110B2
Authority
JP
Japan
Prior art keywords
adhesive
anisotropic conductive
particles
chip
flexible tape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP7086991A
Other languages
Japanese (ja)
Other versions
JPH04306279A (en
Inventor
大草隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP7086991A priority Critical patent/JP3298110B2/en
Publication of JPH04306279A publication Critical patent/JPH04306279A/en
Application granted granted Critical
Publication of JP3298110B2 publication Critical patent/JP3298110B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/078Adhesive characteristics other than chemical
    • H01L2924/0781Adhesive characteristics other than chemical being an ohmic electrical conductor
    • H01L2924/07811Extrinsic, i.e. with electrical conductive fillers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives

Abstract

PURPOSE:To obtain the subject adhesive, homogeneously containing particles of a light absorber for black to brown color having a smaller outside diameter than that of electrically conductive particles in the interior of the adhesive and capable of preventing junction quality of OLB junctions and COG junctions from deteriorating by heat. CONSTITUTION:The objective adhesive homogeneously containing particles of a light absorber for black to brown color, composed of carbon powder particles, black plastic balls, etc., and having a smaller outside diameter (the smaller the diameter, the better) than that of electrically conductive particles in the interior of the adhesive. Furthermore, a curing accelerator, colored to black to brown and contained in microcapsules is preferably contained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】液晶表示パネルのOUTER−L
EAD−BONDING実装におけるガラスパネルとフ
レキシブルテ−プの接合、およびCHIP−ON−GL
ASS実装におけるガラスパネルとICチップの接合に
おける、異方性導電接着剤及びそれを用いた接合方法に
関する。
BACKGROUND OF THE INVENTION OUTER-L of liquid crystal display panel
Bonding of glass panel and flexible tape in EAD-BONDING mounting, and CHIP-ON-GL
The present invention relates to an anisotropic conductive adhesive and a bonding method using the same in bonding a glass panel and an IC chip in ASS mounting.

【0002】[0002]

【従来の技術】液晶表示パネルのガラスパネルには液晶
駆動用の電極が形成されており、このガラス電極は液晶
駆動用ICの実装されたフレキシブルテ−プと,リ−ド
線の形状やピッチの制約を受けずなおかつ目的の接合と
接続が出来る異方性導電接着剤により熱圧着接合され
る。あるいはまた、液晶駆動用ICをフレキシブルテ−
プを用いずに、直接ガラスパネルの電極と異方性導電接
着剤により熱圧着接合される。前者をOUTER−LE
AD−BONDING実装(以降OLB実装と呼ぶ)、
後者をCHIP−ON−GLASS実装(以降COG実
装と呼ぶ)と言う。異方性導電接着剤は、導電性を確保
するための導電粒子たとえば10μm〜30μm程度の
プラスチックボ−ルにニッケル金メッキした粒子や半田
ボ−ルが用いられ、接着性を確保するための接着剤たと
えば熱を加えることにより可塑性を示す熱可塑性接着剤
や熱を加えることにより硬化性を示す熱硬化性接着剤が
用いられる。導電粒子は、接着剤の中に均等になおかつ
適量に分散し互いに接触しないため、導電体にはさまれ
て圧縮した場合に粒子の圧縮方向(z方向)に対して導
電しその垂直方向(x,y方向)に対して導電しないと
いう電気的異方性を示す。図2に従来の異方性導電接着
剤の断面図を示す。導電粒子1は、接着剤2の中に互い
に接触しないようになおかつ均等に分散されている。ま
た接着剤2の厚みは、導電粒子1の2〜5倍の厚さを持
つ。
2. Description of the Related Art An electrode for driving a liquid crystal is formed on a glass panel of a liquid crystal display panel. The glass electrode is formed of a flexible tape on which an IC for driving a liquid crystal is mounted and the shape and pitch of a lead wire. Thermocompression bonding is performed by an anisotropic conductive adhesive which is not restricted by the above and can be connected to a target bonding. Alternatively, the liquid crystal driving IC may be replaced with a flexible tape.
Thermo-compression bonding is directly performed with an electrode of a glass panel using an anisotropic conductive adhesive without using a loop. The former is OUTER-LE
AD-BONDING implementation (hereinafter referred to as OLB implementation),
The latter is called CHIP-ON-GLASS implementation (hereinafter referred to as COG implementation). As the anisotropic conductive adhesive, conductive particles for securing conductivity, for example, particles obtained by plating nickel gold on a plastic ball of about 10 μm to 30 μm or a solder ball are used. For example, a thermoplastic adhesive that exhibits plasticity by applying heat or a thermosetting adhesive that exhibits curability by applying heat is used. Since the conductive particles are evenly and appropriately dispersed in the adhesive and do not come into contact with each other, when the particles are sandwiched between the conductors and compressed, they are conductive in the compression direction (z direction) of the particles and perpendicular to the direction (x , Y-direction). FIG. 2 shows a sectional view of a conventional anisotropic conductive adhesive. The conductive particles 1 are evenly dispersed in the adhesive 2 so as not to contact each other. The thickness of the adhesive 2 is 2 to 5 times the thickness of the conductive particles 1.

【0003】この異方性導電接着剤によるOLB実装方
法あるいはCOG実装方法は、ガラス電極とフレキシブ
ルテ−プの導通電極あるいはガラス電極とICチップの
導通電極の導電性を導電粒子を仲介として確保するため
に、異方性導電接着剤を導電粒子の直径以下に圧縮する
ための力を均等に加える。さらに、ガラスとフレキシブ
ルテ−プあるいはガラスとICチップの接着性を確保す
るために接着剤に対して熱を加えるため、熱容量が小さ
く熱伝導性のよいフレキシブルテ−プあるいはICチッ
プに、加熱ヘッドによる接触加熱を行い熱伝達により接
着剤に熱エネルギ−を伝える方法が知られている。
The OLB mounting method or the COG mounting method using an anisotropic conductive adhesive secures the conductivity of a glass electrode and a conductive electrode of a flexible tape or a glass electrode and a conductive electrode of an IC chip through conductive particles. Therefore, a force for compressing the anisotropic conductive adhesive below the diameter of the conductive particles is evenly applied. Further, since heat is applied to the adhesive to secure the adhesion between the glass and the flexible tape or the glass and the IC chip, the heating head is applied to a flexible tape or an IC chip having a small heat capacity and a high thermal conductivity. A method is known in which heat is applied to the adhesive and heat energy is transmitted to the adhesive by heat transfer.

【0004】[0004]

【発明が解決しようとする課題】しかし従来方法では、
接着剤に熱を直接供給せずフレキシブルテ−プあるいは
ICチップからの熱伝達による方法をとるため各々以下
の課題を有する。
However, in the conventional method,
Since the method does not directly supply heat to the adhesive but uses heat transfer from a flexible tape or an IC chip, it has the following problems.

【0005】OLB実装:フレキシブルテ−プに対し
て、接着剤が接着に必要とする温度以上の温度状態が発
生するため、フレキシブルテ−プの耐熱温度の高いもの
が必要とされる。さらに、接合過程に於て熱膨張により
フレキシブルテ−プが伸びるため、伸びによる位置ずれ
が顕著に現れる。またこれらを押さえるために高耐熱性
や低熱膨張性のフレキシブルテ−プが要求され、高価な
フレキシブルテ−プとなる。図5にフレキシブルテ−プ
が熱膨張で伸びることにより、OLB不良を起こしてい
る断面図を示す。フレキシブルテ−プの電極5とガラス
パネルの電極7の相対的な位置が合わないヶ所が発生
し、本来導電すべき電極どうしが導電するとともに本来
導電すべきでない電極どうしも導電してしまうという不
良が発生している。
[0005] OLB mounting: Since the temperature of the flexible tape is higher than the temperature required by the adhesive for bonding, a flexible tape having a high heat-resistant temperature is required. Further, in the joining process, since the flexible tape expands due to thermal expansion, a positional shift due to the expansion is remarkably exhibited. Further, in order to suppress these, a flexible tape having high heat resistance and low thermal expansion is required, resulting in an expensive flexible tape. FIG. 5 is a cross-sectional view showing an OLB failure caused by expansion of the flexible tape due to thermal expansion. In some cases, the relative positions of the electrode 5 of the flexible tape and the electrode 7 of the glass panel do not match, causing the electrodes that should be conductive to be conductive and the electrodes that should not be conductive to be conductive. Has occurred.

【0006】COG実装:ICチップに対して、接着剤
が接着に必要とする温度以上の温度状態が発生するた
め、ICチップに熱による反りが生じ、ICチップの周
辺部あるいはICチップの中心部においてガラスパネル
の電極とICチップの電極の間にギャップが生じ、導通
不良が現れやすくなる。図6はその様子を示す断面図で
ある。ICチップの平坦度が悪くなるため、図中央の導
電粒子によって決まる間隔以上にガラスパネル6とIC
チップ8とが近づけないため、図両サイドの導電粒子1
とICチップの電極9あるいは導電粒子1とガラスパネ
ルの電極7の間にギップが生じたり接触面積が少ないこ
とによる接触不足が生じ導通不良となる。また、両方法
とも圧着ヘッドが加熱されるため、加熱状態でのヘッド
平坦度管理が難しく、場所による圧着むらが生じてしま
う。
[0006] COG mounting: Since the temperature of the IC chip is higher than the temperature required for bonding, the IC chip is warped due to heat, and the periphery of the IC chip or the center of the IC chip. In this case, a gap is formed between the electrode of the glass panel and the electrode of the IC chip, and poor conduction tends to appear. FIG. 6 is a sectional view showing this state. Since the flatness of the IC chip is deteriorated, the distance between the glass panel 6 and the IC is larger than the distance determined by the conductive particles in the center of the figure.
The conductive particles 1 on both sides of the figure
Then, a gap occurs between the electrode 9 of the IC chip or the conductive particles 1 and the electrode 7 of the glass panel, or a short contact area due to a small contact area results in poor conduction. In both methods, since the pressure bonding head is heated, it is difficult to control the flatness of the head in a heated state, resulting in uneven pressure bonding depending on the location.

【0007】そこで本発明はこのような課題を解決する
もので、直接加熱され易い異方性導電着剤とその異方性
導電接着剤を直接加熱するための方法を提供し、熱によ
るOLB圧着及びCOG圧着の接合品質の低下を防ぐこ
とを目的とする。
Accordingly, the present invention has been made to solve the above problems, and provides an anisotropic conductive adhesive which is easily heated directly and a method for directly heating the anisotropic conductive adhesive. And to prevent a decrease in bonding quality of COG pressure bonding.

【0008】[0008]

【課題を解決するための手段】本発明の異方性導電接着
剤は、内部に導電性粒子が一様に分散された異方性導電
接着剤において、前記導電性粒子より外径が小さく絶縁
体から成る光吸収粒子を内部に一様に分散してなり、前
記光吸収粒子は照射された光エネルギーを熱エネルギー
に変換する特性を有することを特徴とする。また、本発
明の接合方法は、被接合対象Aと被接合対象Bとを導電
性粒子が一様に分散された異方性導電接着剤により電気
的に接合する方法において、前記導電性粒子より外径が
小さく絶縁体から成る光吸収粒子を内部に一様に分散し
てなり、前記光吸収粒子は照射された光エネルギーを熱
エネルギーに変換する特性を有することを特徴とする。
The anisotropic conductive adhesive according to the present invention is an anisotropic conductive adhesive in which conductive particles are uniformly dispersed therein, and has an outer diameter smaller than that of the conductive particles. Light absorbing particles made of a body are uniformly dispersed therein, and the light absorbing particles have a characteristic of converting irradiated light energy into heat energy. Further, the bonding method of the present invention is a method of electrically bonding a target A and a target B with an anisotropic conductive adhesive in which conductive particles are uniformly dispersed. Light absorbing particles made of an insulator having a small outer diameter are uniformly dispersed therein, and the light absorbing particles have a characteristic of converting irradiated light energy into heat energy.

【0009】さらに上記異方性導電接着剤を用いたガラ
スパネルとフレキシブルテ−プの接合あるいはガラスパ
ネルとICチップの接合において、異方性導電接着剤を
間に入れた状態で透明受台と加圧用ヘッドでガラスパネ
ルとフレキシブルテ−プあるいはガラスパネルとICチ
ップを挟み込み一定の圧力を加えると共に、上記透明受
台の下方から異方性導電接着剤に対し光を熱エネルギ−
として照射することにより、ガラスパネルとフレキシブ
ルテ−プあるいはガラスパネルとICチップを接合する
ことを特徴とする。。
Further, in the bonding of the glass panel to the flexible tape or the bonding of the glass panel and the IC chip using the above-mentioned anisotropic conductive adhesive, the transparent pedestal is placed with the anisotropic conductive adhesive interposed therebetween. A glass head and a flexible tape or a glass panel and an IC chip are sandwiched by a pressurizing head to apply a constant pressure, and light is applied to the anisotropic conductive adhesive from below the transparent receiving base by heat energy.
In this case, the glass panel and the flexible tape or the glass panel and the IC chip are joined. .

【0010】あるいは上記異方性導電接着剤を用いたガ
ラスパネルとフレキシブルテ−プの接合あるいはガラス
パネルとICチップの接合において、異方性導電接着剤
を間に入れた状態で透明受台と加圧用ヘッドでガラスパ
ネルとフレキシブルテ−プあるいはガラスパネルとIC
チップを挟み込み一定の圧力を加えると共に、上記透明
受台の下方から異方性導電接着剤に対し光を熱エネルギ
−として照射し同時に、異方性導電接着剤の温度立ち上
がり性を改善するために加圧用ヘッドを加熱することに
より、ガラスパネルとフレキシブルテ−プあるいはガラ
スパネルとICチップを接合することを特徴とする。
[0010] Alternatively, in bonding a glass panel to a flexible tape or bonding a glass panel to an IC chip using the anisotropic conductive adhesive described above, a transparent pedestal is placed with the anisotropic conductive adhesive interposed therebetween. Glass panel and flexible tape or glass panel and IC with pressure head
In order to improve the temperature rise of the anisotropic conductive adhesive by irradiating the anisotropic conductive adhesive with light as heat energy from below the transparent pedestal while applying a constant pressure while sandwiching the chip. By heating the pressurizing head, the glass panel and the flexible tape or the glass panel and the IC chip are joined.

【0011】[0011]

【作用】異方性導電接着剤を用いた接合において、接着
性を確保するために必要な熱エネルギ−の異方性導電接
着剤への供給方法が、接合対称の接触加熱による異方性
導電接着剤への熱伝導方法ではなく、異方性導電接着剤
の非接触加熱による直接加熱方法が可能となる。これに
より接合のための装置条件である加圧機構と加熱機構の
機構分離と独立制御が可能となる。
In the joining using the anisotropic conductive adhesive, the method of supplying the heat energy necessary for securing the adhesiveness to the anisotropic conductive adhesive is based on the anisotropic conductive heating by contact heating symmetrical to the bonding. A direct heating method by non-contact heating of the anisotropic conductive adhesive becomes possible instead of a method of conducting heat to the adhesive. Thereby, the mechanism separation and independent control of the pressurizing mechanism and the heating mechanism, which are the apparatus conditions for bonding, can be performed.

【0012】[0012]

【実施例】図1に本発明の異方性導電接着剤の断面図を
示す。接着性を確保するための接着剤2に、導電性を確
保するための導電粒子1が圧縮時に導電性について異方
性を示すことのできる程度に均等に分散していること
は、従来と変わらない。本発明では、さらに接着剤2の
中に光エネルギーを吸収しやすい粒子すなわち光吸収粒
子3を一様に含むことを特徴とする。光吸収粒子3の直
径は、導電粒子1の直径よりも小さい必要がある。これ
は異方性導電接着剤が圧縮されたとき導電粒子1の直径
で決まる厚みまで圧縮されなければならないためであ
り、光吸収粒子3の直径は小さければ小さいぼどよい。
導電性については、導体であっても絶縁体であってもよ
い。さらに光エネルギーの吸収性をよくするために、黒
色あるいは茶色系統の着色を行う。カーボンの粉末粒子
や黒色のプラスチックボール等がこれにあたる。また熱
硬化性の接着剤では、接着剤の硬化を促進する硬化促進
剤が含まれている。硬化促進剤はマイクロカプセルとし
て常温では保護されており、加熱することによってマイ
クロカプセルが破壊され硬化促進剤としての役割を発揮
する。そこでこの硬化促進剤自身に黒色あるいは茶色系
統の着色を行なうことにより、直接的に本発明の効果を
発揮できる。上記のように光吸収粒子3は、接着剤2の
接着性および導電粒子1の異方的導電性の役割を阻害せ
ず、光エネルギ−の吸収性を最大限に発揮できる物質で
ある。
FIG. 1 is a sectional view of an anisotropic conductive adhesive according to the present invention. The fact that the conductive particles 1 for securing the conductivity are uniformly dispersed in the adhesive 2 for securing the adhesion to the extent that the conductive particles 1 can exhibit anisotropy in conductivity when compressed is different from the conventional case. Absent. The present invention is further characterized in that the adhesive 2 uniformly contains particles that easily absorb light energy, that is, light absorbing particles 3. The diameter of the light absorbing particles 3 needs to be smaller than the diameter of the conductive particles 1. This is because when the anisotropic conductive adhesive is compressed, it must be compressed to a thickness determined by the diameter of the conductive particles 1, and the smaller the diameter of the light absorbing particles 3, the better.
Regarding the conductivity, it may be a conductor or an insulator. Further, in order to improve light energy absorption, black or brown coloring is performed. This includes carbon powder particles and black plastic balls. Further, the thermosetting adhesive contains a curing accelerator for accelerating the curing of the adhesive. The curing accelerator is protected as a microcapsule at normal temperature, and the microcapsules are destroyed by heating, thereby exhibiting a role as a curing accelerator. Therefore, the effect of the present invention can be directly exhibited by coloring the curing accelerator itself with a black or brown color. As described above, the light absorbing particles 3 are substances capable of maximizing the absorption of light energy without impairing the role of the adhesive 2 and the anisotropic conductivity of the conductive particles 1.

【0013】次に、請求項3の本発明による異方性導電
接着剤を用いた接合方法をOLB実装およびCOG実装
に適用した場合の加熱原理断面図を図7に示す。接合対
象であるフレキシブルテープあるいはICチップ20と
ガラスパネル6は、異方性導電接着剤を間に挟み圧着受
台19と圧着ヘッド14とにより加圧圧縮される。加圧
圧縮によりフレキシブルテープの電極あるいはICチッ
プの電極21とガラスパネルの電極7は、導電粒子1を
仲介に導電性が得られるようになる。さて、本発明の特
徴である異方性導電膜への加熱方法は、以下の通りであ
る。圧着受台19を光透過可能なガラスを選択し、圧着
受台19側から光を照射する。ガラスパネル6には石英
ガラスを用いることもあるが一般にはソーダガラスやパ
イレックスガラスを用いるため、光は300nm以上の
波長域を持った光たとえばハロゲンランプや自然光に近
いキセノンランプ等による光を用いる。光ビーム10は
圧着受台19とガラスパネル6を通過し光吸収粒子3に
到達し、光エネルギーが熱エネルギーに変換される。光
吸収粒子3が受けた熱エネルギーは、光吸収粒子3から
の熱伝達11として接着剤2に与えられることになる。
光ビーム10はフレキシブルテープあるいはICチップ
20や導電粒子1などの光吸収粒子3以外にも照射され
るため、そこにおける光エネルギーの熱エネルギー変換
といった光吸収粒子3においてみられるものと同様の効
果も得られる。
Next, FIG. 7 is a sectional view showing the principle of heating when the bonding method using the anisotropic conductive adhesive according to the present invention is applied to OLB mounting and COG mounting. The flexible tape or IC chip 20 to be bonded and the glass panel 6 are pressed and compressed by the pressure receiving table 19 and the pressure head 14 with an anisotropic conductive adhesive therebetween. Due to the compression, the electrode 21 of the flexible tape or the electrode 21 of the IC chip and the electrode 7 of the glass panel become conductive through the conductive particles 1. Now, the method for heating the anisotropic conductive film, which is a feature of the present invention, is as follows. A glass capable of transmitting light is selected for the pressure receiving pedestal 19, and light is irradiated from the pressure receiving pedestal 19 side. Quartz glass may be used for the glass panel 6, but in general, soda glass or Pyrex glass is used, so that light having a wavelength range of 300 nm or more, for example, light from a halogen lamp or a xenon lamp close to natural light is used. The light beam 10 passes through the pressure receiving table 19 and the glass panel 6, reaches the light absorbing particles 3, and converts light energy into heat energy. The heat energy received by the light absorbing particles 3 is given to the adhesive 2 as heat transfer 11 from the light absorbing particles 3.
Since the light beam 10 is also applied to a portion other than the light absorbing particles 3 such as the flexible tape or the IC chip 20 or the conductive particles 1, the same effects as those found in the light absorbing particles 3 such as the conversion of light energy into heat energy are also obtained. can get.

【0014】図8は,図7に示した方式の温度立ち上が
り性に着目しそれを改善する方式すなわち請求項3によ
る接合方法を,OLB実装およびCOG実装に適用した
場合の加熱原理断面図である。図7に示した方法に加え
圧着ヘッド14を加熱することにより、圧着ヘッド14
の熱エネルギーを熱伝達12としてフレキシブルテープ
あるいはICチップ20に与え、さらにフレキシブルテ
ープあるいはICチップ20の熱エネルギーを熱伝達1
3として接着剤2に与える。ここで注意しなければなら
ないのは、圧着ヘッド14を加熱する理由は、図7の方
法において接着剤2に与えられた熱エネルギーが熱伝達
としてフレキシブルテープあるいはICチップ20に奪
われるのを防ぐことを目的としている点である。すなわ
ち、光ビームにより得られる接着剤2への熱エネルギー
を接着剤2以外の周辺物質に奪われるのを防ぐことにあ
る。
FIG. 8 is a cross-sectional view of the heating principle when the method of improving the temperature rise characteristic of the method shown in FIG. 7 is applied, that is, the bonding method according to claim 3 is applied to OLB mounting and COG mounting. . By heating the pressure bonding head 14 in addition to the method shown in FIG.
The heat energy of the flexible tape or the IC chip 20 is given to the flexible tape or the IC chip 20 as the heat transfer 12 and the heat energy of the flexible tape or the IC chip 20 is further transferred to the heat transfer 1.
3 is given to the adhesive 2. Here, it should be noted that the reason why the pressure bonding head 14 is heated is to prevent the heat energy given to the adhesive 2 in the method of FIG. 7 from being taken by the flexible tape or the IC chip 20 as heat transfer. The point is that it is aimed at. That is, it is to prevent heat energy to the adhesive 2 obtained by the light beam from being taken away by peripheral substances other than the adhesive 2.

【0015】図9は,上記図8の効果を説明する温度立
ち上がり特性図である。横軸が時間を示し、縦軸が温度
をしめす。図8の場合の接着剤温度23は図7の場合の
接着剤温度22に比べ、到達温度は同じであるが立ち上
がり性において大幅な改善がみられる。ただしフレキシ
ブルテープあるいはICチップの到達温度もΔTだけ上
昇してしまうが、課題に示した問題点ほどの温度になら
ないようにヘッド温度を設定すれば良い。接着剤温度の
立ち上がり性の改善は、熱圧着工程の時間短縮に欠かす
ことが出来ない。
FIG. 9 is a temperature rise characteristic diagram for explaining the effect of FIG. The horizontal axis indicates time, and the vertical axis indicates temperature. The temperature 23 of the adhesive in the case of FIG. 8 is the same as the temperature of the adhesive 22 in the case of FIG. 7, but the temperature rise is substantially improved. However, although the ultimate temperature of the flexible tape or IC chip also increases by ΔT, the head temperature may be set so that the temperature does not become as high as the problem described in the problem. Improvement of the rise property of the adhesive temperature is indispensable for shortening the time of the thermocompression bonding step.

【0016】図10は、従来方法と上記図7および図8
に示す本方法の違いを温度分布によって比較する説明図
である。圧着ヘッド14とフレキシブルテープあるいは
ICチップ20と接着剤2とガラスパネル6の各ポイン
トにおいて、従来方法による温度分布26と図7による
温度分布27および図8による温度分布28である。い
ずれの方法も接着剤温度は同じであるが、フレキシブル
テープあるいはICチップ温度において大きな違いのあ
ることに注目する。従来方法は圧着ヘッドからの接触加
熱であるために、フレキシブルテープあるいはICチッ
プ温度が接着剤温度よりも当然高くなってしまう。これ
に対して本発明による方法は、光を用いた非接触加熱で
あるために接着剤を直接加熱でき、フレキシブルテープ
あるいはICチップ温度を接着剤温度よりも低く押える
ことができる。具体的に接着剤温度を200度に設定す
ると、フレキシブルテープ温度は従来方法では約250
度であり本発明による方法では約100〜150度とな
る。すなわちフレキシブルテープ温度において150〜
100度の温度低下であり、常温時と加熱時の変化率に
おいても従来方法との比較において1/3〜1/2の効
果である。つまりフレキシブルテープに対する熱影響を
1/3〜1/2に押さえることに等しい。このことはI
Cチップの場合においても同様である。
FIG. 10 shows the conventional method and FIGS. 7 and 8 described above.
FIG. 5 is an explanatory diagram comparing differences of the present method shown in FIG. At each point of the pressure bonding head 14, the flexible tape or the IC chip 20, the adhesive 2, and the glass panel 6, a temperature distribution 26 according to the conventional method, a temperature distribution 27 according to FIG. 7, and a temperature distribution 28 according to FIG. Note that the adhesive temperature is the same in both methods, but there is a significant difference in the flexible tape or IC chip temperature. In the conventional method, the temperature of the flexible tape or the IC chip naturally becomes higher than the temperature of the adhesive because the contact heating is performed from the pressure bonding head. On the other hand, in the method according to the present invention, the adhesive can be directly heated because of non-contact heating using light, and the temperature of the flexible tape or the IC chip can be kept lower than the adhesive temperature. Specifically, when the adhesive temperature is set to 200 degrees, the flexible tape temperature is about 250 in the conventional method.
Degrees in the method according to the invention, approximately 100-150 degrees. That is, at a flexible tape temperature of 150 to
This is a temperature decrease of 100 degrees, and the rate of change between normal temperature and heating is also 1/3 to 1/2 as compared with the conventional method. That is, this is equivalent to suppressing the thermal effect on the flexible tape to 1/3 to 1/2. This means that I
The same applies to the case of the C chip.

【0017】さて次にこれまで述べてきた方法の具体化
した例について、OLB実装およびCOG実装の各々に
ついて示す。図3は、本方法によるOLB接合図であ
る。ガラスパネル6の接合位置にフレキシブルテープ4
が複数個位置合わせされた後、熱圧着される。図3で、
左側が仮圧着工程であり右側が本発明による本圧着工程
である。圧着ヘッド14が異方性導電接着剤の存在する
部分に押し当てられ、ガラスパネル6側から光ビームが
透明な圧着受台19を通して照射される。圧着ヘッド1
4はフレキシブルテープ4を1つ単位で押し当てている
が、これは光ビームの発生源の数が1つであり、なおか
つ可動ストロークを制限しているためであり、これらの
仕様を変えればそれに合わせて一括して押し当てること
も可能である。光ビームの光の発生源から光ファイバー
16により導かれ、スポット集光レンズ17によりスポ
ット状に集光される。集光対象である異方性導電接着剤
はスポット状でなく細長いライン状であるため、光ビー
ムをスポット状からライン状に展開する必要があり、光
ファイバー16をライン方向に移動させる。移動スピー
ドは接着剤が必要とする熱エネルギーを満足させること
から決まり、またその回数も1回の移動でもよく数回の
往復による方法でもよい。
Next, concrete examples of the method described above will be described for each of the OLB mounting and the COG mounting. FIG. 3 is an OLB bonding diagram according to the present method. Flexible tape 4 at the joint position of glass panel 6
Are aligned and then thermocompression-bonded. In FIG.
The left side is the temporary pressure bonding step, and the right side is the main pressure bonding step according to the present invention. The pressure bonding head 14 is pressed against the portion where the anisotropic conductive adhesive is present, and a light beam is irradiated from the glass panel 6 side through the transparent pressure bonding support 19. Crimping head 1
4, the flexible tape 4 is pressed in units of one unit because the number of light beam sources is one and the movable stroke is limited. It is also possible to press them together. The light beam is guided from an optical fiber source by an optical fiber 16 and condensed into a spot by a spot condensing lens 17. Since the anisotropic conductive adhesive to be condensed is not a spot but an elongated line, the light beam needs to be developed from the spot to a line, and the optical fiber 16 is moved in the line direction. The moving speed is determined by satisfying the heat energy required by the adhesive, and the number of times may be one movement or several reciprocations.

【0018】図4は、本発明によるCOG接合図であ
る。OLB接合の場合と同様に、ガラスパネル6の接合
位置にICチップ8が複数個位置合わせされた後、熱圧
着される。ただし仮圧着工程と本圧着工程のように工程
を分割してもしなくてもよい。ただ熱圧着の工程は、単
独に考えることができる。さてICチップ8の形状は一
般に長方形であり、またそれに従ってICチップの電極
9の配置も長方形である。そこで圧着ヘッド14にIC
チップ8の外形寸法と同様あるいはそれ以上の外形寸法
を必要とする。光の照射対象である異方性導電接着剤も
長方形の線上に配置されるため、光ビームの照射方法も
それに合わせる必要がある。OLB接合の場合と同様
に、スポット光を長方形のライン状に移動することも可
能であるが、ここでは移動させない場合について示す。
光ビームは光の発生源から光ファイバー16により導か
れ、4辺ライン集光レンズ18により4辺ライン状に集
光される。光ファイバーは移動させることなく、一定時
間光ビームを照射する。以上のように、光ビームをスポ
ット状にしスキャニングする場合と照射対象の形状に合
わせて一括照射する場合とに分かれるが、前者は照射対
象が任意に選択可能でありフレキシブルであるが、後者
は照射対象が限定されるが移動機構を持たず移動速度む
らなどによる照射むらが発生しにくいという、各々の利
点があり目的により使い分けることができる。
FIG. 4 is a COG bonding diagram according to the present invention. As in the case of the OLB bonding, a plurality of IC chips 8 are aligned with the bonding position of the glass panel 6, and then thermocompression-bonded. However, the steps may not be divided as in the temporary pressure bonding step and the main pressure bonding step. However, the thermocompression bonding process can be considered independently. The shape of the IC chip 8 is generally rectangular, and the arrangement of the electrodes 9 of the IC chip is also rectangular accordingly. Therefore, IC
An external dimension similar to or larger than the external dimension of the chip 8 is required. Since the anisotropic conductive adhesive to be irradiated with light is also arranged on a rectangular line, it is necessary to adjust the light beam irradiation method accordingly. As in the case of the OLB junction, the spot light can be moved in a rectangular line shape. However, a case where the spot light is not moved is described here.
The light beam is guided from the light source by the optical fiber 16 and is condensed in a four-sided line shape by the four-sided line condenser lens 18. The optical fiber emits a light beam for a certain time without moving. As described above, there are two cases: the case where the light beam is spot-shaped for scanning and the case where the irradiation is performed collectively according to the shape of the irradiation target.The former is flexible in that the irradiation target can be arbitrarily selected and the latter is the irradiation. Although the target is limited, there is an advantage in that it has no moving mechanism and irradiation unevenness due to uneven moving speed is hardly generated, and can be used properly depending on the purpose.

【0019】図3および図4における圧着ヘッド14
は、請求項3を満足させるために、従来の圧着ヘッドの
ようなヒーター内臓の圧着ヘッドを用いることにより対
応できる。ただし、上記で述べてきたように異方性導電
接着剤の温度立ち上がり性の改善を目的としており、課
題で述べた問題点が発生するような圧着ヘッドの加熱は
行わない。
Crimping head 14 in FIGS. 3 and 4
Can be satisfied by using a crimping head with a built-in heater such as a conventional crimping head in order to satisfy claim 3. However, as described above, the purpose is to improve the temperature rise of the anisotropic conductive adhesive, and the heating of the pressure bonding head, which causes the problem described in the problem, is not performed.

【0020】最後に、これまで述べた実施例は請求項1
の異方性導電膜を前提としてきたが、従来の異方性導電
膜であっても接着剤を直接加熱するという効果は弱まる
が、問題点の解決方法として有効手段である。またその
実施例も図3および図4の方法が適用される。
Finally, the embodiment described so far is claim 1
Although the conventional anisotropic conductive film has been premised, the effect of directly heating the adhesive is weakened even with the conventional anisotropic conductive film, but it is an effective means for solving the problem. 3 and 4 are also applied to the embodiment.

【0021】[0021]

【発明の効果】異方性導電接着剤を用いたガラスパネル
とフレキシブルテープあるいはガラスパネルとICチッ
プの接合過程において、接合対象が受ける熱による悪影
響を最小限に押さえられることができ、目的とする接合
品質すなわち導電性を確保するための位置精度とギャッ
プ精度さらに接着性を確保するための均一な熱エネルギ
ー分布を安定化させることができる。
In the process of joining a glass panel and a flexible tape or a glass panel and an IC chip using an anisotropic conductive adhesive, the adverse effect of heat applied to the joining object can be minimized. It is possible to stabilize the uniform thermal energy distribution for securing the joining quality, that is, the positional accuracy and gap accuracy for ensuring the conductivity, and the adhesiveness.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の異方性導電接着剤の断面図。FIG. 1 is a cross-sectional view of the anisotropic conductive adhesive of the present invention.

【図2】 従来の異方性導電接着剤の断面図。FIG. 2 is a cross-sectional view of a conventional anisotropic conductive adhesive.

【図3】 本発明によるOLB接合図。FIG. 3 is an OLB bonding diagram according to the present invention.

【図4】 本発明によるCOG接合図。FIG. 4 is a COG bonding diagram according to the present invention.

【図5】 従来接合におけるOLB不良断面図。FIG. 5 is a cross-sectional view of an OLB defect in the conventional bonding.

【図6】 従来接合におけるCOG接合断面図。FIG. 6 is a cross-sectional view of a COG junction in a conventional junction.

【図7】 本発明による加熱原理断面図。FIG. 7 is a sectional view of a heating principle according to the present invention.

【図8】 本発明による加熱原理断面図。FIG. 8 is a sectional view of the principle of heating according to the present invention.

【図9】 本発明による温度立ち上がり特性図。FIG. 9 is a temperature rise characteristic diagram according to the present invention.

【図10】 本発明と従来との熱分布比較図。FIG. 10 is a comparison diagram of heat distribution between the present invention and the related art.

【符号の説明】[Explanation of symbols]

1:導電粒子 2:接着剤 3:光吸収粒子 4:フレキシブルテ−プ 5:フレキシブルテ−プの電極 6:ガラスパネル 7:ガラスパネルの電極 8:ICチップ 9:ICチップの電極 10:光ビ−ム 11:光吸収粒子からの熱伝達 12:圧着ヘッドからの熱伝達 13:フレキシブルテ−プからの熱伝達 14:圧着ヘッド 15:異方性導電接着剤 16:光ファイバ− 17:スポット収光レンズ 18:4辺ライン収光レンズ 19:圧着受台 20:フレキシブルテ−プあるいはガ
ラスパネル 21:フレキシブルテ−プの電極あるいはガラスパネル
の電極 22:図7の接着剤温度 23:図8の接着剤温度 24:図7のフレキシブルテエープあるいはICチップ
温度 25:図8のフレキシブルテエープあるいはICチップ
温度
1: Conductive particle 2: Adhesive 3: Light absorbing particle 4: Flexible tape 5: Flexible tape electrode 6: Glass panel 7: Glass panel electrode 8: IC chip 9: IC chip electrode 10: Light Beam 11: Heat transfer from light absorbing particles 12: Heat transfer from pressure bonding head 13: Heat transfer from flexible tape 14: Pressure bonding head 15: Anisotropic conductive adhesive 16: Optical fiber 17: Spot Light-collecting lens 18: Four-sided line light-collecting lens 19: Crimping cradle 20: Flexible tape or glass panel 21: Flexible tape or glass panel electrode 22: Adhesive temperature in FIG. 7 23: FIG. 24: Flexible tape or IC chip temperature of FIG. 7 25: Flexible tape or IC chip temperature of FIG.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI H01B 5/00 H01B 5/00 Z 5/16 5/16 H01R 4/04 H01R 4/04 // H01L 21/52 H01L 21/52 E H05K 1/14 H05K 1/14 J 3/32 3/32 B (56)参考文献 特開 昭62−18793(JP,A) 特開 平4−237903(JP,A) 特開 昭62−135579(JP,A) 特開 昭52−53941(JP,A) 特開 昭57−111366(JP,A) 特開 昭62−79281(JP,A) 特開 昭49−28630(JP,A) 特開 昭59−75968(JP,A) 特開 昭61−152777(JP,A) (58)調査した分野(Int.Cl.7,DB名) C09J 201/00 - 201/10 C09J 5/00 - 5/10 C09J 9/02 C09J 11/00 - 11/08 H01B 1/20 - 1/24 H01B 5/00 H01B 5/16 H01R 4/04 H01L 21/52 H05K 1/14 H05K 3/32 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification code FI H01B 5/00 H01B 5/00 Z 5/16 5/16 H01R 4/04 H01R 4/04 // H01L 21/52 H01L 21 / 52 E H05K 1/14 H05K 1/14 J 3/32 3/32 B (56) References JP-A-62-18793 (JP, A) JP-A-4-237903 (JP, A) JP-A Sho 62- 135579 (JP, A) JP-A-52-53941 (JP, A) JP-A-57-111366 (JP, A) JP-A-62-79281 (JP, A) JP-A-49-28630 (JP, A) JP-A-59-75968 (JP, A) JP-A-61-152777 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C09J 201/00-201/10 C09J 5/00 -5/10 C09J 9/02 C09J 11/00-11/08 H01B 1/20-1/24 H01B 5/00 H01B 5/16 H01R 4/04 H01L 21/52 H05K 1/14 H05K 3/32

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】内部に導電性粒子が一様に分散された異方
性導電接着剤において、前記導電性粒子より外径が小さ
く絶縁体から成る光吸収粒子を内部に一様に分散してな
り、前記光吸収粒子は照射された光エネルギーを熱エネ
ルギーに変換する特性を有することを特徴とする異方性
導電接着剤。
1. An anisotropic conductive adhesive in which conductive particles are uniformly dispersed therein, wherein light-absorbing particles comprising an insulator having a smaller outer diameter than said conductive particles are uniformly dispersed therein. Wherein the light-absorbing particles have a property of converting irradiated light energy into heat energy.
【請求項2】被接合対象Aと被接合対象Bとを導電性粒
子が一様に分散された異方性導電接着剤により電気的に
接合する方法において、前記導電性粒子より外径が小さ
く絶縁体から成る光吸収粒子を内部に一様に分散してな
り、前記光吸収粒子は照射された光エネルギーを熱エネ
ルギーに変換する特性を有することを特徴とする接合方
法。
2. A method of electrically joining an object to be joined A and an object to be joined B with an anisotropic conductive adhesive in which conductive particles are uniformly dispersed, wherein the outer diameter of the object is smaller than that of the conductive particles. A bonding method, wherein light-absorbing particles made of an insulator are uniformly dispersed therein, and the light-absorbing particles have a property of converting irradiated light energy into heat energy.
JP7086991A 1991-04-03 1991-04-03 Anisotropic conductive adhesive and bonding method thereof Expired - Fee Related JP3298110B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7086991A JP3298110B2 (en) 1991-04-03 1991-04-03 Anisotropic conductive adhesive and bonding method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7086991A JP3298110B2 (en) 1991-04-03 1991-04-03 Anisotropic conductive adhesive and bonding method thereof

Publications (2)

Publication Number Publication Date
JPH04306279A JPH04306279A (en) 1992-10-29
JP3298110B2 true JP3298110B2 (en) 2002-07-02

Family

ID=13443998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7086991A Expired - Fee Related JP3298110B2 (en) 1991-04-03 1991-04-03 Anisotropic conductive adhesive and bonding method thereof

Country Status (1)

Country Link
JP (1) JP3298110B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101630573B1 (en) * 2015-03-23 2016-06-14 한국광기술원 Apparatus and method for bonding part

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4791708B2 (en) * 2004-06-23 2011-10-12 リンテック株式会社 Adhesive resin material for mounting electronic components, electronic device using the same, and method for producing the adhesive resin material for mounting electronic components
JP2008085148A (en) * 2006-09-28 2008-04-10 Tokyo Seimitsu Co Ltd Adhesion expression method and adhesion expression equipment of adhesive film
WO2009154464A1 (en) * 2008-06-20 2009-12-23 Polymer Vision Limited An integrated circuit comprising light absorbing adhesive
JP6259177B2 (en) * 2012-04-16 2018-01-10 早川ゴム株式会社 Method for bonding anisotropic conductive film
CN103855585A (en) * 2012-12-05 2014-06-11 苏州工业园区高登威科技有限公司 Cable butt joint device
JP6425899B2 (en) * 2014-03-11 2018-11-21 デクセリアルズ株式会社 ANISOTROPIC CONDUCTIVE ADHESIVE, METHOD FOR MANUFACTURING CONNECTION AND METHOD FOR CONNECTING ELECTRONIC COMPONENTS

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101630573B1 (en) * 2015-03-23 2016-06-14 한국광기술원 Apparatus and method for bonding part

Also Published As

Publication number Publication date
JPH04306279A (en) 1992-10-29

Similar Documents

Publication Publication Date Title
US6284086B1 (en) Apparatus and method for attaching a microelectronic device to a carrier using a photo initiated anisotropic conductive adhesive
US7144471B2 (en) Bonding method and apparatus
JPH09297318A (en) Liquid crystal device, production of liquid crystal device and electronic apparatus
JP3298110B2 (en) Anisotropic conductive adhesive and bonding method thereof
US20060196600A1 (en) Apparatus and method for bonding anisotropic conductive film using laser beam
CN107078071B (en) Method for manufacturing connected body, method for connecting electronic component, and connected body
JP3914431B2 (en) Manufacturing method of semiconductor device
JP3416979B2 (en) Joining equipment
JPH10112478A (en) Ball grid array semiconductor device and its mounting method
JPH05144878A (en) Joining method, device, and structure
JPH0685448A (en) Laser soldering method and device thereof
JPH03225934A (en) Connecting method for semiconductor integrated circuit element
JP2015142120A (en) Method of manufacturing connection body, and connection method and connection device of electronic component
JPH0541091U (en) Anisotropic conductive crimping device
JP3152449B2 (en) Lead bonding apparatus and method for IC parts
JP2540963B2 (en) Method for manufacturing semiconductor device
US11956899B2 (en) Display panel and display device including the same
JPH0411797A (en) Connecting structure for circuit board
JP2012079807A (en) Semiconductor device manufacturing method
JPH0563031A (en) Bonding method for semiconductor device and substrate
JP3238256B2 (en) Semiconductor device, image sensor device, and manufacturing method thereof
JPH02151045A (en) Connection structure of electronic component and connection and formation of electronic component
JPH04213429A (en) Bonding method with light
JP2005136257A (en) Conduction bonding method of packaged component
JP2003151439A (en) Manufacturing method for fluorescent character display device loaded with ic chip, and fluorescent character display device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080419

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090419

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090419

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100419

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees