JPH0214791B2 - - Google Patents

Info

Publication number
JPH0214791B2
JPH0214791B2 JP54172014A JP17201479A JPH0214791B2 JP H0214791 B2 JPH0214791 B2 JP H0214791B2 JP 54172014 A JP54172014 A JP 54172014A JP 17201479 A JP17201479 A JP 17201479A JP H0214791 B2 JPH0214791 B2 JP H0214791B2
Authority
JP
Japan
Prior art keywords
film
molybdenum
polycrystalline silicon
silicide
gate electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP54172014A
Other languages
Japanese (ja)
Other versions
JPS5694671A (en
Inventor
Junji Sakurai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP17201479A priority Critical patent/JPS5694671A/en
Publication of JPS5694671A publication Critical patent/JPS5694671A/en
Publication of JPH0214791B2 publication Critical patent/JPH0214791B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Description

【発明の詳細な説明】 本発明は、モリブデンを主材とするゲート電極
を有するMIS電界効果半導体装置の製造方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a MIS field effect semiconductor device having a gate electrode mainly made of molybdenum.

近年、MIS電界効果半導体装置のゲート電極と
してモリブデンが用いられようとしている。
In recent years, molybdenum has been used as a gate electrode for MIS field effect semiconductor devices.

しかしながら、ゲート絶縁膜の上にモリブデン
被膜を形成すると、多結晶シリコン被膜の場合と
比較して、仕事関数φMが大になり、また、表
(界)面電荷量QSSも大になるので不安定になる。
However, when a molybdenum film is formed on the gate insulating film, the work function φ M becomes larger and the surface (interfacial) charge Q SS also becomes larger, compared to the case of a polycrystalline silicon film. Becomes unstable.

そこで、モリブデン・シリサイド(Mosil)−
モリーブデン(Mo)の2層構造にしたもの(要
すれば特公昭49−14794号公報参照)、多結晶シリ
コン−モリブデンの2層構造にしたもの(要すれ
ば特公昭54−11674号公報参照)などが提案され
ているが、これは、いずれもモリブデンそのもの
を用いている為、次のような欠点がある。
Therefore, molybdenum silicide (Mosil)
Those with a two-layer structure of molybdenum (Mo) (refer to Japanese Patent Publication No. 49-14794 if necessary), those with a two-layer structure of polycrystalline silicon and molybdenum (refer to Japanese Patent Publication No. 11674-1977 if necessary) However, since they all use molybdenum itself, they have the following drawbacks.

(1) モリブデンとフオト・レジスタとの密着性が
多結晶シリコンとフオト・レジストほどは良く
ないので、精密なパターニングが困難である。
(1) Precise patterning is difficult because the adhesion between molybdenum and photoresist is not as good as that between polycrystalline silicon and photoresist.

(2) モリブデンは酸化され易いので、アルミニウ
ムの配線などと接続する場合にコンタクト不良
を起し易い。
(2) Since molybdenum is easily oxidized, contact failure is likely to occur when connecting it to aluminum wiring, etc.

本発明は、モリブデン・シリサイドのゲート電
極を有するMIS電界効果半導体装置を容易に製造
する方法を提供するものであり、以下これを詳細
に説明する。
The present invention provides a method for easily manufacturing a MIS field effect semiconductor device having a gate electrode of molybdenum silicide, which will be described in detail below.

第1図乃至第4図は本発明一実施例を説明する
為の工程要所に於ける半導体装置の要部側断面説
明図であり、次に、これ等の図を参照しつつ記述
する。
1 to 4 are explanatory side cross-sectional views of essential parts of a semiconductor device at key points in the process for explaining one embodiment of the present invention, and the following description will be made with reference to these figures.

第1図参照 (1) シリコン半導体基板1に窒化シリコン・マス
クを用いた選択酸化法を適用してフイールド絶
縁膜2を形成し、次いで、通常の技法を適用し
てゲート絶縁膜3を形成する。
Refer to Figure 1 (1) A field insulating film 2 is formed on a silicon semiconductor substrate 1 by applying a selective oxidation method using a silicon nitride mask, and then a gate insulating film 3 is formed by applying a normal technique. .

第2図参照 (2) スパツタ法を適用し、厚さ2000〔Å〕程度の
モリブデン膜4を形成する。
Refer to FIG. 2 (2) A sputtering method is applied to form a molybdenum film 4 with a thickness of about 2000 Å.

(3) 化学気相成長法(CVD法)に依り厚さ2000
〔Å〕程度の燐含有多結晶シリコン膜5を成長
させる。
(3) Thickness 2000mm by chemical vapor deposition method (CVD method)
A phosphorus-containing polycrystalline silicon film 5 having a thickness of approximately [Å] is grown.

尚、この燐含有多結晶シリコン膜5は燐含有
モリブデン・シリサイド膜に代えても良い。
Note that this phosphorus-containing polycrystalline silicon film 5 may be replaced with a phosphorus-containing molybdenum silicide film.

第3図参照 (4) フオト・リソグラフイ技術を適用し、フオ
ト・レジスト膜6をマスクとして多結晶シリコ
ン膜5、モリブデン膜4、ゲート絶縁膜3のパ
ターニングを行なう。
Refer to FIG. 3 (4) Applying the photolithography technique, the polycrystalline silicon film 5, molybdenum film 4, and gate insulating film 3 are patterned using the photoresist film 6 as a mask.

(5) イオン注入法に依り砒素イオンのデポジシヨ
ンを行なう。
(5) Arsenic ions are deposited by ion implantation.

第4図参照 (6) 近赤外線又は可視光レーザに依り局部加熱を
行ない、多結晶シリコン膜5とモリブデン膜4
とを溶融して均質な燐含有モリブデン・シリサ
イドからなるゲート電極7を形成するとともに
工程(5)で砒素イオンをデポジシヨンした部分の
レーザ・アニールを行なう。図に於ける記号8
はn+型ソース領域を、また記号9はn+型ドレ
イン領域をそれぞれ表わしている。
See Figure 4 (6) Local heating is performed using a near-infrared or visible laser to heat the polycrystalline silicon film 5 and molybdenum film 4.
A gate electrode 7 made of homogeneous phosphorus-containing molybdenum silicide is formed by melting the silicide, and the portion where arsenic ions are deposited in step (5) is laser annealed. Symbol 8 in the diagram
9 represents an n + type source region, and symbol 9 represents an n + type drain region.

この工程では、最初、レーザ・エネルギが多
結晶シリコン膜5に吸収されてそれが溶融し、
モリブデン膜4と反応するものであり、若し、
モリブデン膜4が多結晶シリコン膜5の上に在
ると、レーザ光が反射されるので加熱の効率は
悪くなる。
In this process, laser energy is first absorbed into the polycrystalline silicon film 5 and melts it.
It reacts with the molybdenum film 4, and if
If the molybdenum film 4 is on the polycrystalline silicon film 5, the laser beam will be reflected, resulting in poor heating efficiency.

尚、ここで用いた近赤外線レーザは、Qスイ
ツチYAGレーザであり、出力は2〔ワツト〕、
ビーム径は50〔μm〕φであつた。
The near-infrared laser used here is a Q-switch YAG laser, with an output of 2 [watts].
The beam diameter was 50 [μm]φ.

(7) この後、通常の技法を適用して装置を完成さ
せる。
(7) After this, normal techniques are applied to complete the device.

このようにして作製した装置では、ゲート電極
7が均質なモリブデン・シリサイドであつて、そ
の仕事関数φMは多結晶シリコンのそれに近く、
また、燐のゲツタ作用に依り、表面電荷量QSS
小さくなる。また、本実施例に於けるように、近
赤外或いは可視の範囲のレーザ光を用いると、多
結晶シリコンにエネルギが良く吸収され、液相拡
散で下層のモリブデンと均一に合金化され、しか
も、モリブデン・シリサイド化が進行するとエネ
ルギに対する反射率が高くなり、過剰なレーザ光
照射が行われても加熱は自動停止される状態とな
り、従つて、ゲート絶縁膜3とモリブデン膜4と
の界面で過熱に依つて両者が反応することは抑止
される。
In the device manufactured in this way, the gate electrode 7 is made of homogeneous molybdenum silicide, and its work function φ M is close to that of polycrystalline silicon.
Furthermore, due to the gettering effect of phosphorus, the amount of surface charge Q SS also decreases. Furthermore, when near-infrared or visible laser light is used as in this example, energy is well absorbed by polycrystalline silicon, and it is uniformly alloyed with the underlying molybdenum layer by liquid phase diffusion. As molybdenum silicide progresses, the reflectance to energy increases, and heating is automatically stopped even if excessive laser beam irradiation is performed. Reaction between the two due to overheating is inhibited.

以上の説明で判るように、本発明に依れば、
MIS電界効半導体装置を製造するに際し、ゲート
絶縁膜上にモリブデン膜及び多結晶シリコン膜或
いはモリブデン・シリサイド膜を形成し、それ等
の膜をゲートの形状にパターニングしてからレー
ザ・ビームを照射して多結晶シリコン膜或いはモ
リブデン・シリサイド膜とその下のモリブデン膜
とを溶融して合金化させ均質なモリブデン・シリ
サイドからなるゲート電極を形成するものである
から、パターニング時にフオト・レジストが塗布
されるのは多結晶シリコン膜であり、モリブデン
膜ではないから、その密着性は良好であつて精密
なパターニングを行なうことができる。そして、
得られるゲート電極はモリブデン・シリサイドで
あるから、アルミニウム配線とのコンタクト性は
良好であり、仕事関数φM及び表面電荷量QSSとも
に小さい。
As can be seen from the above explanation, according to the present invention,
When manufacturing an MIS field effect semiconductor device, a molybdenum film, a polycrystalline silicon film, or a molybdenum silicide film is formed on the gate insulating film, and these films are patterned into the shape of the gate and then irradiated with a laser beam. Since the polycrystalline silicon film or molybdenum silicide film and the underlying molybdenum film are melted and alloyed to form a gate electrode made of homogeneous molybdenum silicide, a photoresist is applied during patterning. Since it is a polycrystalline silicon film and not a molybdenum film, its adhesion is good and precise patterning can be performed. and,
Since the obtained gate electrode is made of molybdenum silicide, it has good contact with the aluminum wiring, and both the work function φ M and the surface charge amount Q SS are small.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第4図は本発明一実施例を説明する
為の工程要所に於ける半導体装置の要部側断面説
明図である。 図に於いて、1は基板、2はフイルド絶縁膜、
3はゲート絶縁膜、4はモリブデン膜、5は多結
晶シリコン膜、6はフオト・レジスト膜、7はゲ
ート電極、8はソース領域、9はドレイン領域で
ある。
1 to 4 are side cross-sectional views of essential parts of a semiconductor device at key points in the process for explaining one embodiment of the present invention. In the figure, 1 is a substrate, 2 is a field insulating film,
3 is a gate insulating film, 4 is a molybdenum film, 5 is a polycrystalline silicon film, 6 is a photoresist film, 7 is a gate electrode, 8 is a source region, and 9 is a drain region.

Claims (1)

【特許請求の範囲】[Claims] 1 ゲート絶縁膜上にモリブデン膜及び多結晶シ
リコン膜或いはモリブデン・シリサイド膜を形成
し、それ等の膜をゲート形状にパターニングして
からレーザ・ビームを照射して多結晶シリコン膜
或いはモリブデン・シリサイド膜とモリブデン膜
とを溶融し合金化させて均質なモリブデン・シリ
サイドのゲート電極を形成する工程が含まれるこ
とを特徴とするMIS電荷半導体装置の製造方法。
1 Form a molybdenum film and a polycrystalline silicon film or a molybdenum silicide film on the gate insulating film, pattern these films into a gate shape, and then irradiate a laser beam to form a polycrystalline silicon film or molybdenum silicide film. 1. A method for manufacturing an MIS charge semiconductor device, comprising the step of melting and alloying a molybdenum film and a molybdenum film to form a homogeneous molybdenum silicide gate electrode.
JP17201479A 1979-12-27 1979-12-27 Manufacture of mis field-effect semiconductor device Granted JPS5694671A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17201479A JPS5694671A (en) 1979-12-27 1979-12-27 Manufacture of mis field-effect semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17201479A JPS5694671A (en) 1979-12-27 1979-12-27 Manufacture of mis field-effect semiconductor device

Publications (2)

Publication Number Publication Date
JPS5694671A JPS5694671A (en) 1981-07-31
JPH0214791B2 true JPH0214791B2 (en) 1990-04-10

Family

ID=15933921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17201479A Granted JPS5694671A (en) 1979-12-27 1979-12-27 Manufacture of mis field-effect semiconductor device

Country Status (1)

Country Link
JP (1) JPS5694671A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8303179A (en) * 1983-09-15 1985-04-01 Philips Nv SEMICONDUCTOR DEVICE.
JPH084078B2 (en) * 1985-05-27 1996-01-17 富士通株式会社 Method for manufacturing semiconductor device
JP2660056B2 (en) * 1989-09-12 1997-10-08 三菱電機株式会社 Complementary MOS semiconductor device
TW232751B (en) 1992-10-09 1994-10-21 Semiconductor Energy Res Co Ltd Semiconductor device and method for forming the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53114671A (en) * 1977-03-17 1978-10-06 Toshiba Corp Manufacture for semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53114671A (en) * 1977-03-17 1978-10-06 Toshiba Corp Manufacture for semiconductor device

Also Published As

Publication number Publication date
JPS5694671A (en) 1981-07-31

Similar Documents

Publication Publication Date Title
TW403972B (en) Method of fabricating mis semiconductor device
JP4295922B2 (en) Gas immersion laser annealing method suitable for application in the fabrication of small integrated circuits
WO2001033639A1 (en) Formation of contacts on thin films
JP2890584B2 (en) Method for manufacturing semiconductor device
JP2864518B2 (en) Method for manufacturing semiconductor device
US4551907A (en) Process for fabricating a semiconductor device
JPH0214791B2 (en)
JPS58116764A (en) Manufacture of semiconductor device
TW200805431A (en) Method for forming an array substrate
JP2821598B2 (en) Method for manufacturing semiconductor integrated circuit device
JPS61156731A (en) Manufacture of semiconductor device
JPS633447B2 (en)
JP2948486B2 (en) Method for manufacturing semiconductor device
JPS6381948A (en) Multilayer interconnection semiconductor device
JPH0329321A (en) Contact metallization of semiconductor integrated circuit device
JPS61274325A (en) Manufacture of semiconductor device
JPS6197975A (en) Manufacture of semiconductor device
JPS628007B2 (en)
KR100256256B1 (en) Method of forming metal wiring in semiconductor device
JPS6151941A (en) Manufacture of electrode wiring film
JPS62122173A (en) Semiconductor device
JPH0440858B2 (en)
JPS61166143A (en) Manufacture of semiconductor device
JPH01287964A (en) Manufacture of semiconductor device
JPS6322628B2 (en)